
����������
�������

Citation: Hassanpour, M.; Riera, M.;

González, A. A Survey of Near-Data

Processing Architectures for Neural

Networks. Mach. Learn. Knowl. Extr.

2022, 4, 66–102. https://doi.org/

10.3390/make4010004

Academic Editor: Andreas Holzinger

Received: 30 November 2021

Accepted: 8 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

A Survey of Near-Data Processing Architectures for
Neural Networks
Mehdi Hassanpour , Marc Riera * and Antonio González

Department of Computer Architecture, Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain;
mehdi@ac.upc.edu (M.H.); antonio@ac.upc.edu (A.G.)
* Correspondence: mriera@ac.upc.edu

Abstract: Data-intensive workloads and applications, such as machine learning (ML), are fundamen-
tally limited by traditional computing systems based on the von-Neumann architecture. As data
movement operations and energy consumption become key bottlenecks in the design of computing
systems, the interest in unconventional approaches such as Near-Data Processing (NDP), machine
learning, and especially neural network (NN)-based accelerators has grown significantly. Emerging
memory technologies, such as ReRAM and 3D-stacked, are promising for efficiently architecting
NDP-based accelerators for NN due to their capabilities to work as both high-density/low-energy
storage and in/near-memory computation/search engine. In this paper, we present a survey of
techniques for designing NDP architectures for NN. By classifying the techniques based on the
memory technology employed, we underscore their similarities and differences. Finally, we discuss
open challenges and future perspectives that need to be explored in order to improve and extend
the adoption of NDP architectures for future computing platforms. This paper will be valuable for
computer architects, chip designers, and researchers in the area of machine learning.

Keywords: machine learning; deep neural networks; near-data processing; near-memory-processing;
processing-in-memory; conventional memory technology; emerging memory technology; hardware
architecture

1. Introduction

The era of artificial intelligence and big data is introducing new workloads which
operate on huge datasets. A clear example is found in machine learning (ML) and es-
pecially neural-network based techniques, which are commonly applied as a solution to
find patterns and interpret large amounts of data. Despite the increasing popularity of
ML algorithms, there are several challenges to efficiently implement and execute neural
networks on conventional processing units based on the von-Neumann compute-centric
architecture [1] such as CPUs and GPUs. The main performance and energy bottleneck
of traditional architectures is the memory hierarchy due to the huge number of inputs,
weights, and partial outputs, resulting in numerous data movements which incur in higher
energy consumption than the operations [2,3]. Thus, researchers are exploring novel hard-
ware architectures to accelerate these algorithms by moving most of the computations
“in/near-memory” and, hence, reduce the data movements as much as possible. In sum-
mary, modern applications based on machine learning are very data-intensive and demand
a high level of parallelism and memory bandwidth [4]. To address these issues, some
recent works have proposed near-data processing accelerators for neural networks with
the promise to break the memory wall.

Deep learning has transformed how smart devices interpret and respond to many
different types of information/data, as well as the way in which we interact with our
devices. The traditional keyboard and mouse, and even the currently popular touch-
screens are being left behind in favor of more intuitive and yet sophisticated interfaces
based on cognitive applications such as image, text, and speech recognition. Commercial

Mach. Learn. Knowl. Extr. 2022, 4, 66–102. https://doi.org/10.3390/make4010004 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make4010004
https://doi.org/10.3390/make4010004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-1278-9382
https://orcid.org/0000-0002-2768-5703
https://orcid.org/0000-0002-0009-0996
https://doi.org/10.3390/make4010004
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make4010004?type=check_update&version=3

Mach. Learn. Knowl. Extr. 2022, 4 67

examples of such applications include Virtual Personal Assistants (VPA) [5–7] such as
Google’s Assistant, Apple’s Siri, Microsoft’s Cortana, and Amazon’s Alexa. VPAs are
meant to interact with an end user in a natural way (i.e., voice, text, or images), to answer
questions, follow a conversation, and accomplish different tasks. These mobile applications
are used on a daily basis by millions of people and are powered by efficient deep learning
models. Nowadays, deep learning, and machine learning in general, has expanded its
use cases and can be found not only in most of our daily life devices but also in our
cities and environment, despite us not being fully aware of it. Examples range from
simple classification and perceptual tasks to control algorithms for autonomous systems [8]
(ranging from home robots to drones and cars) or medical health care systems [9] (e.g.,
medical diagnosis or drug discovery and development). Moreover, we are witnessing
how even mature system components and algorithms can have their performance and
functionality improved by deep learning techniques. For example, computer architecture
researchers are exploring the integration of neural networks for branch prediction [10], and
also in computer system areas such as network protocols, data compression, or encryption.

Deep Neural Networks (DNNs) have proven to be the most effective machine learning
solution for a broad range of classification and decision-making problems such as speech
recognition [11], image processing [12], or machine translation [13]. Figure 1a,b show an
example of an artificial neuron and a DNN with its corresponding computations. DNNs
are composed of a number of hidden layers between the input and output layers, forming
feed-forward networks, which means that the outputs of one layer become the inputs of
the next layer in the model, or recurrent networks, in which the output of a neuron can be
the input of neurons in the same or previous layers. Each layer consists of a set of neurons
interconnected with the neurons of adjacent layers according to the degree of relevance
among them. The output of each neuron in a given layer is computed as an activation
function of a weighted (W) sum of its inputs (X) as shown by Equation (1). The main
computational cost of a DNN comes from the weighted sum of inputs of each neuron and
layer as the activation functions can be mapped and implemented using look-up tables.
Note that although the inputs of a layer depend on the outputs of the previous layer, there
is still a high level of parallelism within each layer.

yj = f (∑
i

WiXi + b) (1)

Modern DNNs, such as AlexNet [14] and GoogleNet [15], are composed of hundreds of
layers where a single execution can demand the evaluation of millions of model parameters
(i.e., weights). In consequence, DNN models tend to be huge, their size ranges from tens
to hundreds of megabytes, or even gigabytes, and computing the weighted sum of inputs
for each neuron of a given layer requires a large number of data movements between
the different levels of the memory hierarchy and the processing units. Furthermore, in
order to be able to exploit the high level of parallelism of the DNN layers, a high memory
bandwidth is required to provide the necessary data to feed multiple processing units. This
enormous traffic in the memory hierarchy represents a great portion of energy consumption
for any given device and, together with the high memory storage and memory bandwidth
requirements, heavily constrains the efficiency of the compute-centric architectures.

Mach. Learn. Knowl. Extr. 2022, 4 68

 xi wi F (xi wi)

x1

x2

xn

yi

i j

l

wi k

Input

Layer
Hidden Layers

Output

Layer

yj = f(xiwi)

(a) (b)

Figure 1. (a) Computations of an artificial neuron and (b) DNN composed of three FC layers.

The study in [2] quantified the energy cost of data movement for emerging smartphone
workloads on mobile platforms. To illustrate the high energy cost of the memory traffic,
Figure 2 shows an example of the total energy breakdown for different mobile workloads,
where Data Movement considers the energy cost of moving data between different levels
of the memory hierarchy, Stalls indicate the energy consumption during stall cycles, and
the rest is represented as Others. This analysis shows that, on average, 34.6% of the
total device’s energy is spent on moving data from one level of the memory hierarchy to
another. A similar study on a 28 nm nVidia chip [16], implies that the energy consumed
for performing an operation is significantly lower than the amount spent for fetching
operands. Specifically, the energy cost of fetching data from local memory (SRAM) and
main memory (DRAM) is 26 pJ and 16 nJ respectively, compared to 1 pJ and 20 pJ for integer
and floating point operations respectively. Consequently, some recent works have focused
on reducing the data movements of the memory hierarchy by proposing accelerators based
on memory-centric architectures.

B
re

ak
do

w
n

%

0

20

40

60

80

100

GW
B

Vide
oP

lay
ba

ck

Pho
tov

iew

EW
B-B

lac
kb

oa
rd

RW
B

Froz
en

 B
ub

ble

Others Stalls Data Movement

Figure 2. Energy breakdown for emerging smartphone workloads on mobile platforms (adapted
from [2]).

Most general-purpose computer systems and accelerators use a von-Neumann archi-
tecture, which separates the memory from the computing units. However, with the ever

Mach. Learn. Knowl. Extr. 2022, 4 69

improving computational power of modern processing units, hardware communication
fabrics struggle to advance at the same pace or even at a sufficient rate to efficiently support
modern applications. It is well known that during the last 40 years the rate of improvement
in microprocessor speed has exceeded the rate of improvement in DRAM memory speed.
Both processor and memory performance have been improving exponentially, but the
exponent for the processor is significantly higher than that of memory, in such a way
that the difference between the two has also grown exponentially. Figure 3 illustrates
the performance gap over time between the memory and the processor. Due to the end
of Moore’s law, the performance gap has become smaller in recent years, which has led
to increased efforts to improve the memory technologies as well as the proposal of new
memory-centric architectures. The “Memory Wall” [17] problem has become the main
bottleneck of data-centric applications, as large amounts of data must be moved between
the memory and the processing units, generating a large volume of communication traffic in
bandwidth-limited systems [18]. DNNs are particularly susceptible to hitting the memory
wall due to their large data demands and, hence, it has become one of the major challenges
to be solved in order to execute ML algorithms efficiently.

100,000

10,000

1000

100

10

1

P
er

fo
rm

a
n

ce

1980 1985 1990 1995 2000 2005 2010

Year

----- Processor ▪ ▪ ▪ ▪ ▪ Memory

Figure 3. Processor–Memory performance gap over time exemplifying the memory wall problem [19].

In order to overcome the problems of compute-centric architectures and alleviate the
cost of communicating data between memory and the processing units, many recently
proposed architectures adopt a memory-centric design based on the so-called Near-Data
Processing (NDP) paradigm. Figure 4 shows how with the adoption of the NDP approach,
storage and processing units will no longer be separated, and the memory hierarchy will
shift towards a processing hierarchy or a hierarchical active-data storage [20].

NDP architectures can be further classified in two main categories. First, Near-
Memory-Processing (NMP) consists of moving the processing units closer to the memory
to mitigate the cost of the data movements. NMP has gained a lot of attention with the
introduction of the 3D stacked memory technology, which allows the integration of logic
and memory in the same chip by stacking multiple dies vertically. Popular state-of-the-art
DNN accelerators such as DaDianNao [21] and TPU [22] also follow the NMP approach by
including bigger on-chip buffers to store inputs and weights, and reuse them across process-
ing elements to limit the data transfers. On the other hand, Processing-In-Memory (PIM)
consists in removing the necessity of moving data to the processing units by performing the
computations inside the memory [23–25]. The PIM approach is commonly implemented by
exploiting the analog characteristics of emerging Non-Volatile Memories (NVM) such as
ReRAM crossbars, but not only NVMs can be used to perform computations [26,27], but
also commodity memory technologies such as DRAMs and SRAMs have demonstrated the
ability to perform logic operations with small changes to the memory array peripherals.

Mach. Learn. Knowl. Extr. 2022, 4 70

Both NMP and PIM address the memory wall issue by spatially merging compute and
storage units, drastically reducing the number of data transfers as well as their cost.

Computing in Caches

Near Memory Processing

Processing In Memory

(PIM)

Computing in Storage Class

Memory (SCM)

Near Disk Storage Processing

Processing in Flash

Computing on Disk

Intelligent Network

Figure 4. Memory hierarchy enhanced with Near-Data Processing (NDP) capacity (adapted
from [20]).

In this paper, we present a survey of near-data processing architectures for machine
learning, and DNNs in particular. To achieve a balance between brevity and breadth, we
only include state-of-the-art techniques implemented using commodity memories, 3D
stacked memories based on DRAM, and ReRAM crossbars, although other emerging mem-
ories also provide NDP capabilities. We focus on describing the qualitative insights without
generally including quantitative results, and paying special attention to the architectural
and system-level techniques. This paper is expected to be useful for computer architecture
researchers and practitioners.

The rest of the paper is organized as follows. Section 2 provides some background
information on modern DNNs, commodity memories and emerging memory technologies.
Section 3 reviews the state-of-the-art NDP architectures for data-centric applications such
as neural networks, and discusses the main advantages and disadvantages of the different
proposals. Finally, Section 4 concludes this paper with a discussion of future perspectives.

2. Background

In the following subsections we review some terminology and concepts that may be
helpful throughout this survey. First, we give a general description of deep neural networks
(DNNs), including the main DNN categories and their different types of layers. Next, we
review some fundamental concepts about conventional memory technologies such as
DRAM and SRAM, which have proven to be capable of doing computations inside the
memory arrays. Finally, we discuss new memory technologies such as ReRAM crossbars
and 3D-stacked memories, which offer more opportunities, over commodity memory
technologies, to implement a highly efficient DNN accelerator in terms of both performance
and energy consumption.

2.1. Deep Neural Networks (DNNs)

Deep learning [28,29] is a set of algorithms that is part of a larger family of machine
learning methods based on artificial neural networks and data representation techniques
that allow to learn and interpret features of large datasets. DNNs are a type of deep
learning model that aims to mimic the human brain functionalities based on a very simple
artificial neuron that performs a nonlinear function, also known as activation function, on a
weighted sum of the inputs. As discussed in Section 1, these artificial neurons are arranged
into multiple layers. The term “deep” refers to the use of a large number of layers, which

Mach. Learn. Knowl. Extr. 2022, 4 71

results in more accurate models that capture complex patterns and concepts. DNNs are
typically used as classifiers in order to identify which class the current input belongs to, so
the last layer of the network often performs a softmax function that generates a probability
distribution over a list of potential classes.

DNN’s operation has two phases, training (or learning) and inference (or prediction),
which refer to the DNN model construction and use, respectively. The training procedure
determines the weights and parameters of a DNN, adjusting them repeatedly until the
DNN achieves the desired accuracy. During training, a large set of examples, with its
corresponding labels indicating the correct classification, is used to execute the DNN’s
forward pass and measure the error against the correct labels. Then, the error is used in the
DNN’s backward pass to update the weights. On the other hand, inference uses the DNN
model developed during the training phase to make predictions on unseen data. Although
the DNN training is complex and computationally expensive, it is usually performed only
once per model, and then the learned weights are used in inference as many times as
it is required to classify new input data. On the other hand, DNN inference has strict
latency and/or energy constraints and, hence, many research works focus on improving
the execution of the inference phase. Nevertheless, a recent line of research with increasing
popularity aims to propose efficient DNN accelerators for both phases.

DNNs can be classified in three main categories. Multi-Layer Perceptrons (MLP) [30]
consist of multiple Fully-Connected (FC) layers in which every input neuron is connected,
via synapses with particular weights, to every output neuron. Convolutional Neural
Networks (CNN) [31] are composed of multiple convolutional layers to extract features,
usually followed by one or several FC layers to perform the final classification. CNNs have
proven to be particularly efficient for image and video processing. Finally, Recurrent Neural
Networks (RNN) [32] consist of multiple layers of cells with feedback connections. RNN
cells store information from past executions to improve the accuracy of future predictions,
where cells consist of multiple single-layer FC networks commonly referred as gates.
Each type of DNN is especially effective for a specific subset of cognitive applications.
Moreover, for each application, each DNN has a different composition of layers with
specific operations. The fully-connected (FC), convolutional, and recurrent layers take up
the bulk of the computations in most DNNs. Other types of layers performing pooling,
normalization, or activation functions are also common in modern DNNs. However, these
other layers have no synaptic weights and represent a very low percentage of the DNN
execution time. In consequence, state-of-the-art DNN accelerators focus on optimizing the
execution of FC and convolutional layers.

2.2. Conventional Memory Technologies

Conventional memory technologies are widely used in the memory hierarchy of many
current systems. DRAM is commonly employed for the main memory of most computer
systems while SRAM is used to implement CPU caches and register files, as well as small
buffers for different components. Both DRAM and SRAM are considered commodity
memories, and a popular line of research tries to take advantage of the widespread use
of these memories to perform near data processing by proposing minor changes to the
memory chip circuitry, as we will describe later in Section 3.1.

A DRAM or SRAM chip is commonly divided into multiple memory banks con-
nected to a global bus. Each bank consists of multiple memory arrays containing the
DRAM/SRAM cells. Figure 5 shows an example of a typical 2D organization (i.e., memory
array) of a DRAM or SRAM chip. The cells of a given row of the memory array are con-
nected to a Word-Line (WL) while the cells in the same column share the same Bit-Line (BL).
The read and write operations are performed by activating the WL of the corresponding row
of the array, and exploiting the charge sharing effect of the bitlines. Among the peripherals
of the memory array, the decoders are required to map and translate the addresses of the
memory accesses to specific rows and columns of the array, while the sense amplifiers in

Mach. Learn. Knowl. Extr. 2022, 4 72

the column circuitry detect small changes in the voltage of the bitlines and amplify the
swing over a reference voltage to help to perform the read and write operations.

Column Circuitry

R
o

w
 D

ec
o

d
er

C
o

lu
m

n

D
ec

o
d

er

Bitline

Bitline Conditioning

W
o
rd

li
n

e

Cell

Figure 5. General overview of conventional 2D memory array organization.

A DRAM cell stores one bit of information using a capacitor and an access transistor
as shown in Figure 6a, which is known as the 1T1C cell design. During the read operation,
all the bitlines of the array are pre-charged equally to VDD/2 using the peripheral drivers.
Then, the corresponding WL of the row to be read is activated. Due to the charge sharing
effect, the capacitance of the bitlines start to lose (if stored value is 0) or gain charge (if 1 is
stored) changing the pre-charged voltages by a small amount, and destroying the values
stored in the cells of the row. The small voltage swing in each of the bitlines is sensed and
amplified to a stable state by the sense amplifiers and, hence, the value of each bitline is
converted to a strong one (i.e., VDD) or zero accordingly. Finally, as the WL is still active
and connecting the capacitor of each cell of the row to the corresponding BL, the capacitors
are fully charged (or discharged), restoring their original value. Similarly, to perform a
write operation in a row of cells, the bitlines are pre-charged to VDD (to store 1) or 0 (to
store 0), and the corresponding WL is activated. As the sense amplifiers hold the voltage of
each bitline at a stable state, the capacitor of each cell will continue to charge (or discharge)
until the pre-stored value is overwritten with the new value.

Cs

CBL

BL

WL

WL

VDDBLB BL

Q

(a) 1T1C DRAM cell. (b) 6T SRAM cell.

Figure 6. Examples of typical (a) DRAM and (b) SRAM cell designs.

Mach. Learn. Knowl. Extr. 2022, 4 73

SRAM cells store bits of data and their negated versions using four transistors in the
form of cross-coupled inverters. In addition, two more transistors are employed to control
the access to the bitlines. Figure 6b shows a typical SRAM 6T cell design. On a read request,
both bitlines, BL and BL, are pre-charged to VDD. Then, when the WL of a cell is activated,
one of the bitlines starts to discharge, that is, BL if the stored value is zero or BL otherwise.
The read operation has the potential to change the stored value and, hence, the size of the
transistors must be chosen carefully so that the original value does not flip. To write a new
value in a 6T cell, BL and BL are driven to high and low to store a one, or the other way
around to store a zero. Then, the WL is activated, and the bitlines overpower the cell with
the new value.

DRAM cells are small as they are typically composed of one transistor and one ca-
pacitor, which provides higher density over SRAM memories. Despite the higher capacity
of DRAMs, the 1T1C cells are not ideal due to the high leakage of the capacitor’s charge,
which might lead to losing the stored values after some time. In consequence, DRAM cells
require additional circuitry to perform regular refreshes of the cell values, which has a
negative impact on DRAM performance. On the other hand, SRAM is faster than DRAM
and does not need any refresh circuitry. However, the 6T cells are large, resulting in lower
density and higher cost. Therefore, DRAM is preferred over SRAM for main memory due
to its higher capacity and lower cost, while SRAM is employed for caches and small buffers
due to its higher performance.

2.3. Resistive Random Access Memory (ReRAM)

In 1971, Leon Chua [33] theorized about the existence of a fourth passive electrical
component that he referred to as the “memristor” (or memory resistor), complementing the
quartet of fundamental electrical components together with the resistor, the inductor, and
the capacitor. In 2008, a team at HP Labs managed to develop the first physical memristor
switch [34], and later on started the prototyping of ReRAM memories using them.

A memristor is a non-linear two-terminal electrical component with a layer of a
resistive switching material sandwiched between the top and bottom electrodes as shown
in Figure 7a. The resistive switching material layer consists of two regions, “doped” and
“undoped”, with low (RON) and high (ROFF) resistances, respectively, which is equivalent
to connecting two resistors in series as shown in Figure 7b. The memristor’s electrical
resistance depends on the history of current that had previously flowed through the device,
that is, the amount of electric charge flowing through the memristor device changes the
length of the two regions based on the direction of the current and, as a result, the total
resistance varies. The memristor device remembers its most recent resistance after turning
off the power supply achieving the so-called non-volatility property [35].

Bottom Electrode

Metal Oxide

Top Electrode

Voltage

Doped Undoped

A

Doped

Undoped
ROFF

RON

V

Reset

Set

C
u

rr
e
n
t

Voltage

(a) (b) (c)

Figure 7. (a) Structure of a ReRAM cell; (b) memristor switching behavior; and (c) I-V curve of bipolar
switching (adapted from [34,36]).

Figure 7c shows the I–V curve of a typical bipolar ReRAM cell. By applying an external
voltage across a memristor, a ReRAM cell can be switched between a high resistance state
(HRS) and a low resistance state (LRS), which are used to represent the logic “0” and “1”,

Mach. Learn. Knowl. Extr. 2022, 4 74

respectively. Switching a cell from HRS (logic “0”) to LRS (logic “1”) is a SET operation,
and the reverse process is a RESET operation. To SET the cell, a positive voltage that can
generate sufficient write current is required, while to RESET the cell, a negative voltage
with a proper magnitude is necessary. In addition, ReRAM cells can store more than one bit
of information by employing various resistance levels, which can be realized by changing
the resistance of a ReRAM cell gradually with finer write control. This multi-level cell
(MLC) characteristic makes the ReRAM memories suitable for storing a large amount of
DNN weights.

Recent works have demonstrated the use of ReRAM devices to perform dot-product
computations which, as described previously, are common in many DNN layers. Figure 8
shows an example of an analog MAC operation, and a MVM using a ReRAM crossbar.
Similar to the conventional memory technologies, each BL of a ReRAM memory array
connects to each WL through a ReRAM cell, which usually consists of a single memristor
with an access transistor, also known as the 1T1R cell design. Applying a voltage Vi to a
ReRAM cell with resistance Ri results in a current of Vi × Gi passing from the cell to the
bitline, as per Ohm’s law, where Gi = 1/Ri. Then, from Kirchoff’s law, the total current
from the bitline is the sum of currents generated through all the cells sharing the same
bitline, that is, the total current (I) is the dot-product of input voltages at each row (V) and
cell conductances (G) in a column as shown by Equation (2). This can be used to implement
a DNN in an efficient manner. In this case, the synaptic weights of neurons are encoded as
conductances of the ReRAM cells. Then, the total current of a BL is used to compute the
output of a neuron in a given layer. Note that the dot-products are applied massively in
parallel performing a MVM in a single time step.

I = ∑
i

Vi × Gi (2)

Implementing DNN accelerators using ReRAM devices is quite effective, as ReRAM
provides high capacity to store the weights, low latency to access them, and high perfor-
mance PIM capabilities to perform the dot-products. In addition, as the leakage current
of memristors is significantly lower than DRAM/SRAM cells, the energy efficiency can
be highly improved. Furthermore, ReRAM devices can also be used for implementing
bitwise operations and search operations which can be useful to implement different
DNN layers. Section 3.3 describes state-of-the-art NDP accelerators for DNNs based on
ReRAM architectures.

D
A

C
D

A
C

V1

G11

I12 = V1G12

G12

I2 = I12 + I22

G22

I22 = V2G22

G21

I21 = V2G21

V2

I1 = I11 + I21

I11 = V1G11

Figure 8. Analog dot-product operation using ReRAM.

Despite the numerous benefits, the use of ReRAM devices also present several chal-
lenges [37]:

• Challenges in Achieving High Performance: Despite the low read latency of ReRAM,
changing a memristor’s resistance value requires a high and long enough voltage,

Mach. Learn. Knowl. Extr. 2022, 4 75

which incurs in high write latency and energy consumption compared to SRAM.
Consequently, the weights of a neural network are usually pre-stored in multiple
ReRAM crossbars, and are reused across multiple executions to avoid writes as much
as possible. Furthermore, ReRAM is not suitable for DNN training due to the high
number of writes that are required to update the weights. In addition, the non-ideal
characteristics and limitations of ReRAM, such as process variations, can reduce their
performance even further.

• Challenges in Analog/Digital Domain: The dot-product computations within a
ReRAM crossbar require input voltages in the wordlines and produce output currents
in the bitlines, thus operating in the analog domain. However, not all components
in a DNN accelerator work in the analog domain, either due to the impossibility of
implementing the operations of some layers in analog domain, or as some operations
are executed much faster using digital components and cannot be accelerated with
the use of ReRAM. Therefore, to perform computations using ReRAM, the digital
inputs must be converted to analog voltages, and the analog outputs are converted
back to digital, hence requiring the use of DACs and ADCs and incurring high power
consumption and area overheads, which limits the scalability of ReRAM crossbars.
For example, ISAAC’s ADCs account for 58% of power and 31% of area for a given
tile of the accelerator [38]. In addition, the precision of the analog computations, and
the overall accuracy of the DNN model, may be affected by the signal degradation of
using DACs/ADCs, external noise signals, or non-zero wire resistance, among other
sources of errors.

• Reliability Challenges of ReRAM: Most ReRAM reliability issues come from the high
defect rate and process variations (PV) that happen during fabrication. The faults
are considered soft when the resistance of the memristor can still be changed but the
result is different from the expected value, or hard when the memristor becomes stuck
at a given resistance state. The hard faults may happen, not only due to PV, but also
due to the ReRAM’s limited write endurance, which is another important obstacle for
its general applicability. To mitigate these issues, redundancy-based techniques can be
used; however, they incur significant complexity and area overheads.

2.4. 3D-Stacked Memory

3D stacking aids the design of future computing systems by allowing for wider buses
and faster on-chip memories, and by enabling the composition of heterogeneous dies,
built using different process technologies, within a single package. High density 3D
memory is a promising emerging technology for the memory system of DNN accelerators.
It consists of stacking multiple memory dies on top of each other, which increases the
memory capacity and bandwidth compared to 2D memory, and also reduces the access
latency due to the shorter on-chip wiring interconnection [39]. These aspects can lead
to an overall improvement in performance and power efficiency. Compared with the
conventional 2D DRAM, 3D memory provides an order of magnitude higher bandwidth
(160 to 250 GBps) [40] with up to 5× better energy efficiency and, hence, 3D memory is
an excellent option for meeting the high throughput, low energy requirements of scalable
DNN accelerators.

The 3D memory dies are commonly based on DRAM, but the integration of other
memory technologies is being actively researched with very promising results. For example,
the 3D XPoint developed by Intel and Micron is a commercial Non-Volatile Memory (NVM)
based on ReRAM. On the other hand, recent advances in low-capacitance through-silicon
vias (TSVs) technology have enabled 3D memory that includes a few DRAM dies on top
of a logic chip. Although there are numerous implementations of 3D-stacked memory
technologies, the Hybrid Memory Cube (HMC) is the preferred choice for most DNN
accelerator proposals [41,42]. There are several works that place multiple arrays of NN
processing elements on the logic layer of an HMC to improve performance and power

Mach. Learn. Knowl. Extr. 2022, 4 76

efficiency. Section 3.2 describes state-of-the-art NDP accelerators for DNNs based on DRAM
HMC architectures.

The Hybrid Memory Cube (HMC) is designed for high performance data-centric
applications. Figure 9 shows a high-level diagram of an HMC, which is usually composed
of multiple vertically stacked DRAM dies with a single logic layer at the bottom. The
different layers are interconnected using thousands of TSVs to attain the much desired high
memory bandwidth, and each DRAM die is divided into multiple partitions in a 2D grid
where the corresponding partitions on the vertical direction form a single vault. In addition,
the large number of TSVs can be organized into multiple independently-operated channels
that exploit memory level parallelism, that is, one channel per vault where each vault has an
independent vault controller on the logic die and, thus, multiple partitions in the DRAM die
can be accessed simultaneously. The HMC provides highly parallel access to the memory
which is well suited to the highly parallel architecture of the DNN accelerators [43]. The
logic and memory dies can be fabricated in different process technology nodes. However,
the area of the logic die relative to the memory dies is constrained by the package, and
power dissipation is limited by much tighter thermal constraints.

Logic

Logic

Memory

Memory

Memory

Vault

Partition

Vault Controller

Figure 9. High-level architecture of Hybrid Memory Cube (HMC) (adapted from [44]).

To fully exploit the benefits of 3D-stacked memory, there are several challenges to
address. First, given the characteristics of 3D memory, it may be worth revisiting the design
of on-chip buffers in the logic die, as the lower latency and energy cost of the accesses to
main memory allow for smaller and faster on-chip buffers with different use cases. Second,
3D integration technology also provides opportunities to rethink where computations are
executed, potentially moving some operations closer to the actual memory locations. Third,
HMC changes the memory and computer hardware, creating a highly parallel system with
multiple vertical channels and, thus, one which opens the door to new approaches for
dataflow scheduling and efficient partitioning of DNN computations. Last but not least,
the thermal issues for 3D stacking, as well as higher manufacturing complexity, lead to
lower yield and problematic testability. Therefore, stacking multiple dies can increase the
operation temperature resulting in performance degradation and, hence, proper cooling
methods and better manufacturing solutions are required to extend the adoption of this
technology.

To summarize, 3D-stacking is not just a solution for the memory wall but rather a
key-enabler in single chip packaging, with low to medium risk involved, to accomplish
a reduction in system-level power as well as form factor. HMC integrates fast logic layer
and dense memory layers and allows for embedding fast processing units close to a large
and high-bandwidth memory system. Furthermore, HMC offers a unique novel abstract
bus interface to communicate with the CPU host, and high parallelism via the so-called
independent vaults, making it a very promising solution for DNN accelerators.

Mach. Learn. Knowl. Extr. 2022, 4 77

3. Near-Data Processing Architectures

Recent advances and discoveries in new memory technologies, together with the
increasing use of cognitive applications based on neural networks, have led to a growing in-
terest in the area of Near-Data Processing (NDP) architectures for data-centric applications,
and especially DNNs. In the following subsections, we discuss and categorize multiple
state-of-the-art approaches based on the memory technology employed. Section 3.1 de-
scribes NDP techniques based on commodity memory technologies such as DRAM and
SRAM not only to improve the execution of neural networks but also for bulk bitwise
operations. In Section 3.2, we review two DNN accelerators based on 3D-stacked DRAM
memory with HMCs. Finally, Section 3.3 gives a general overview of the NDP architectures
of several accelerators for DNNs based on ReRAM.

3.1. Commodity Memory Based NDP Architectures
3.1.1. Ambit

Seshadri et al. proposed Ambit [45], an in-memory accelerator to perform bulk bitwise
operations using commodity DRAM technology. Many important applications can benefit
of bitwise operations on large bit vectors, but its throughput is limited by the memory
bandwidth available to the processing units. In current general purpose systems, such as
CPU or GPGPU, a bulk bitwise operation requires a large number of data movements in the
memory hierarchy, which result in high latency, memory traffic, and energy consumption.
To overcome these bottlenecks, Ambit exploits the analog operation of DRAM technology to
perform bitwise operations completely inside the DRAM memory arrays, thereby exploiting
the full internal DRAM bandwidth and the memory-level parallelism across multiple arrays.
Ambit consists of two components, Ambit-AND-OR and Ambit-NOT.

Ambit-AND-OR is based on the key idea of Triple-Row Activation (TRA), which
consists of a simultaneous activation of three DRAM rows that share the same set of
sense amplifiers, enabling the system to perform bitwise AND and OR operations. TRA
simultaneously connects a sense amplifier with three DRAM cells on the same bitline,
where the final state of the bitline is expected to be VDD if at least two of the three cells are
initially fully charged, or 0, if at least two of the three cells are initially fully empty. Due
to the charge sharing principle and the use of sense amplifiers in the column peripherals,
TRA results in a majority function across the cells in the three rows.

Figure 10 shows an example of how TRA works when two of the three cells sharing
the same bitline are initially in the charged state, that is, cells B and C are storing a logic
1 while A stores a 0. First, the bitline is pre-charged to VDD/2 in the initial state. Then,
when the wordlines of all the three cells are raised simultaneously, charge sharing results in
a positive deviation on the bitline. Therefore, after sense amplification, the sense amplifier
drives the bitline to VDD as discussed in Section 2.2, and as a result, fully charges all the
three cells overwriting the original values. By controlling the initial value of one of the three
cells, i.e., C in the example, TRA is used to perform a bitwise AND (C = 0) or OR (C = 1) of
the other two cells, A and B, as shown by Equation (3), where A, B, and C represent the
logical values of the three cells performing the bitwise majority function.

AB + BC + CA = C(A + B) + C̄(AB) (3)

A naive mechanism to support TRA may be very costly and unreliable due to five
potential issues regarding its implementation. First, when simultaneously activating three
cells, the deviation on the bitline may be smaller than when activating only one cell, which
may cause the sense amplifiers to detect wrong values. Second, the transistors and bitlines
may not behave ideally due to process variations, affecting the reliability of TRA and
the correctness of its results. The authors tackle these two issues by performing rigorous
SPICE simulations, and proving that TRA is reliable and works correctly under several
circumstances. Third, TRA overwrites the data of all the three source cells with the final
result value, thereby destroying their original values. Fourth, DRAM cells leak charge
over time, which may lead to unexpected TRA functionality if the cells involved have

Mach. Learn. Knowl. Extr. 2022, 4 78

leaked significantly. Fifth, conventional DRAM is not able to simultaneously activate three
arbitrary rows by default and, hence, TRA requires multiple row decoders and a wider
address bus.

0

0

0

1

0 0

1

1

A

B

C C

B

A

1

1

1

1

C

B

A

½VDD ½VDD 0

½VDD ½VDD + δ VDD

Initial State After Charge Sharing After Sense Amplification

Figure 10. Example of a Triple-Row Activation (TRA) (adapted from [45]).

To overcome the last three issues, the authors presented a practical implementation
based on three ideas. First, they restricted the TRA to a designated set of rows, and employ
RowClone [46] to perform the required copy/initialization operations efficiently inside the
DRAM arrays before and after completing each bitwise operation, avoiding the overwrite
(issue 3) and leakage (issue 4) problems. Second, they reserved and defined a fixed subset
of DRAM row addresses and map them so that a single address is used to perform a TRA
on a predefined set of designated rows. Finally, they split the row decoder in two parts: one
small part handles all the activations of the designated rows, and the other part handles
the activation of regular data rows, reducing the complexity of the row decoder (issue 5).

On the other hand, Ambit-NOT exploits the fact that at the end of the sense ampli-
fication process, due to the two inverters present inside the sense amplifiers, the voltage
level of the bitline represents the negated logical value of the cell. Their key idea is to
perform bulk bitwise NOT operations in DRAM by transferring the data on the bitline to
a cell that can also be connected to the bitline. For this purpose, a small subset of rows
with dual-contact cells is introduced, as well as modest changes to the sense amplifiers. A
dual-contact cell (DCC) is a DRAM cell with two transistors (i.e., a 2T1C cell design). In
a DCC, one transistor, controlled by the d-wordline (or data wordline), connects the cell
capacitor to the bitline, and the other transistor, controlled by the n-wordline (or negation
wordline), connects the cell capacitor to the bitline. The negated value of a source cell can
be transferred on to the DCC connected to the same bitline by performing two consecutive
single row activations. Figure 11 shows an example of a bitwise NOT using a DCC. First,
the source cell wordline is activated, driving the bitline to the data value corresponding
to the source cell and the bitline to the negated value. Then, the mechanism activates the
n-wordline, enabling the transistor that connects the DCC to the bitline, and overwriting
the DCC capacitor value with the negated value of the source cell.

Mach. Learn. Knowl. Extr. 2022, 4 79

0

0

0

0

d-wordline

½VDD

½VDD

n-wordline

1

0

0

0

½VDD

½VDD+ δ 1

0

0

1

0

VDD 0

0

1

1

0

VDD source

Initial State After Charge Sharing Activated Source Row Activated n-wordline

Figure 11. Bitwise NOT using a dual-contact cell (DCC) connected to a sense amplifier (adapted
from [45]).

Discussion. Ambit-AND-OR and Ambit-NOT allow Ambit to perform any bulk bitwise
operation efficiently inside DRAM. Ambit largely exploits the existing DRAM structure
and interface, and hence incurs in a low cost implementation on top of commodity DRAM
designs. In addition, Ambit can be easily integrated with any DRAM technology including
3D-stacked HMC, as the underlying DRAM microarchitecture is the same. Ambit provides
great improvements in performance and energy reduction, that is, up to 32×/35× averaged
across seven bulk bitwise operations, which can be leveraged by different applications such
as neural networks.

3.1.2. Neural Cache

Following a parallel line of research, Eckert et al. proposed Neural Cache [47], a
bit-serial in-cache accelerator for DNNs using commodity SRAM technology. The Neural
Cache architecture re-purposes cache structures to transform them into massively parallel
compute units capable of running DNN inference. The authors’ propose to extend the
column peripherals of SRAM arrays of a commodity Last Level Cache (LLC) with extra
logic to perform arithmetic computations directly inside the memory. Similar to Ambit, the
Neural Cache architecture enables in-memory processing inside the SRAM arrays based
on the observation that by activating two wordlines of two cells sharing the same bitlines,
bitwise AND and NOR operations can be performed between the values of the two cells
after the sense amplification process of BL and BLB. Although this idea was first proposed,
alongside the copy and zero initialization operations, in the paper Compute Caches [48],
Neural Cache further extends it by adding support for more complex operations such as
addition, multiplication, and reduction, which are required for most DNN computations.

In contrast to the DRAM TRA that is used in Ambit, the activation of multiple rows
in SRAM memory arrays does not modify the values of the cells and, thus, the copy of
both, source operands in a designated space and results back to the destiny, is not required.
Neural Cache prevents data corruption due to multi-row access by lowering the wordline
voltage to bias against the write of the SRAM cells. The robustness comes at the cost
of increased delay during compute operations, but does not affect conventional array
read/write accesses. In order to perform bitwise AND and NOR operations between two
rows of SRAM cells, Neural Cache initially precharges all the bitlines of a given SRAM
array to ‘1’. Then, the wordlines corresponding to the two rows of cells with which to
operate are activated. An AND operation is performed by sensing the bitline (BL). If both
the activated bits in a column have a ‘1’, then the BL stays high and it is sensed as a ‘1’. If
any one of the bits were ‘0’ it will lower the BL voltage below Vre f and will be sensed as a
‘0’. A NOR operation can be performed by sensing the bitline bar (BLB). Figure 12 shows
an example of the SRAM circuit for in-place operations.

Mach. Learn. Knowl. Extr. 2022, 4 80

BLB0

Vref

BL0

WLi NOR WLj

BLBn

Vref

BLn

WLi AND WLj

WLi

WLj 0 11 0

`

SASA SA SA

0 10 1

Figure 12. SRAM circuit for bitwise NOR/AND operations (adapted from [48]). An AND operation
is performed by sensing BL. A NOR operation can be performed by sensing bitline bar (BLB).

In conventional architectures, arrays are generated, stored, accessed, and processed
element-by-element in the vertical direction along the bitlines, which is well known as the
bit-parallel or regular data layout. Compute Cache supports several simple bitwise opera-
tions that are bit-parallel and do not require communication between bitlines. However,
Neural Cache requires support for more complex operations, and the main challenge is
to facilitate the interaction between bitlines. For example, the addition operation requires
carry propagation between bitlines.

The authors propose a bit-serial implementation with a transposed data layout to
address the above challenge. The key idea of the bit-serial arithmetic is to process one bit
of multiple data elements every cycle. Although bit-serial computation is expected to have
higher latency per operation, it is also expected to have significantly larger throughput
than bit-parallel arithmetic. Bit-serial computing in SRAM arrays can be realized by storing
data elements in a transposed data layout. Transposing ensures that all bits of a data
element are mapped to the same bitline, thus eliminating the need for communication
between bitlines. Neural Cache introduces a Transpose Memory Unit (TMU) to convert
data between transposed and regular format before writing or reading the SRAM arrays. A
TMU consists of an 8T SRAM array which can access data from both vertical and horizontal
directions. Only a few TMUs are required to fulfill the bandwidth demand of Neural
Cache, and static data elements such as the weights can be transposed offline. In addition,
Neural Cache includes extra logic in the column peripherals of the SRAM arrays. First,
an XOR operation is performed based on the AND/NOR operations from the SRAM
bitlines. Then, a full-adder with a register to store the carry is implemented by adding the
required logic gates and a latch. Furthermore, additional logic is included to perform a
predicated multiplication/division. Figure 13 shows an example of the SRAM array bitline
peripherals.

Mach. Learn. Knowl. Extr. 2022, 4 81

SA SA

C

¬A & ¬B

A ^ B

Cout

A & B

T
S

D
R

D
R

WPS

BL BLB

Vref

Predication

T_EN

DIN DOUT

C_EN

Cin

Figure 13. Bitline peripherals in Neural Cache (adapted from [47]).

Figure 14 shows an example of an addition operation with a 12 × 4 SRAM array
storing two vectors A and B, each with 4-bit elements, in transpose layout. The two vectors
must be aligned so that the two words that are going to be added together share the same
bitline. The addition algorithm of two N-bit elements is carried out bit-by-bit starting
from the least significant bit (LSB) of the two words. N empty rows are reserved to store
the results, and there is an additional row of latches inside the column peripherals for
the carry storage. In the first half of each cycle, two read wordlines (RWL) are activated
simultaneously, generating the sum and carry-out bits through the sense amplifiers and
logic gates in the column peripherals. In the second half of each cycle, a write wordline
(WWL) is activated to store back the sum bit, and the carry-out bit overwrites the data in
the carry latch becoming the carry-in of the next cycle. The addition takes N + 1 cycles to
complete. Multiplication and division are supported based on addition and a predication
algorithm, and reduction is supported as a set of moves and additions.

The architecture of Neural Cache is implemented on top of the LLC of an Intel Xeon
processor, which consists of 14 cache slices with 20 ways in each slice. The last way (way-
20) of each cache slice is reserved to enable normal processing for CPU cores, while the
penultimate way (way-19) is reserved to store inputs and outputs. The remaining ways
are utilized for storing filter weights and performing DNN computations. Neural Cache
computes DNN layers serially, which means that the inference is performed layer by layer
with the operands stored in-place in memory. On the other hand, the convolutions within
a CNN layer are computed in parallel. A single convolution consists of generating one
element of the output feature map. Each LLC slice works on a uniformly distributed set
of consecutive output elements from all the filters, and each of the SRAM arrays within a
slice computes convolutions in parallel. Furthermore, Neural Cache also exploits channel
level parallelism in a single convolution. For each convolution, an SRAM array executes
multiple MACs in parallel by mapping the channels to different bitlines, which is followed
by a reduction step across channels.

Mach. Learn. Knowl. Extr. 2022, 4 82

Vector A

Vector B

Sum

Carry

RWL

RWL

WWL

RWL

RWL

WWL

RWL

RWL

WWL

Carry

RWL

RWL

WWL

0

1

1

0

0

0

1

1

0 0 0 0

1

W
o
rd

 4

W
o
rd

 3

W
o
rd

 2

W
o
rd

 1

0

1

1

0

0

0

1

1

0

1 0 0 0

1

W
o
rd

 4

W
o
rd

 3

W
o
rd

 2

W
o
rd

 1

0

1

1

0

0

0

1

1

0

0

1 0 0 0

1

W
o
rd

 4

W
o
rd

 3

W
o
rd

 2

W
o
rd

 1

0

1

1

0

0

0

1

1

1

0

0

0 0 0 0

1

W
o
rd

 4

W
o
rd

 3

W
o
rd

 2

W
o
rd

 1

0

1

1

0

0

0

1

1

0 0 0 0

W
o
rd

 4

W
o
rd

 3

W
o
rd

 2

W
o
rd

 1

Figure 14. Example of an addition operation in Neural Cache (adapted from [47]).

To summarize, each column in an SRAM array performs a separate calculation and
the thousands of memory arrays in the cache can operate concurrently. The inputs are
streamed in from the reserved way-19, while the filter weights are loaded from DRAM only
once per layer, and replicated in multiple SRAM arrays from different LLC ways and slices
to improve data reuse, that is, filter weights are stationary in the compute arrays (way-1
to way-18) of each slice. In addition, Neural Cache assumes 8-bit precision and quantized
inputs and filter weights, as well as batching, to further increase the throughput of the
accelerator.

Discussion. Neural Cache adds support for the most common DNN operations directly
into a commodity LLC using SRAM memory cells. By employing a novel data layout and
dataflow, the LLC structure and organization is exploited to efficiently execute CNNs with
a low area overhead. Neural Cache provides better performance and energy efficiency
compared to a modern desktop CPU and GPU. However, the LLC may be limited by
storage capacity to efficiently execute large DNNs, and some bit-serial operations such as
the multiplication or the reduction may be very slow, limiting the performance compared
to state-of-the-art DNN accelerators.

3.1.3. Bit Prudent

Wang et al. proposed Bit Prudent [49], an in-cache accelerator that extends the in-
SRAM architecture of Neural Cache, to further improve the inference of CNNs by leverag-
ing the neural network redundancy and massive parallelism.

Based on the observation that DNNs are normally oversized, and tend to have a
significant amount of weights with a value close to zero [50], static pruning is an effective
technique to reduce the model size and the number of computations by removing unimpor-
tant connections and/or nodes depending on the weight values. After an iterative process
of pruning and training, the pruned model retains accuracy while requiring significantly
less memory storage and computations, resulting in large performance improvements and
energy savings.

The authors propose to exploit the high degree of neural network redundancy in
two ways. First, they prune and fine-tune the trained network model, and develop two
distinct methods, coalescing and overlapping, to run inferences efficiently with sparse
models. Second, they propose an architecture for network models with a reduced bit-width
benefiting from the bit-serial computation.

Despite the numerous benefits of static DNN pruning, there are several challenges
for exploiting the sparsity of pruned neural networks in Neural Cache. Firstly, the vector
parallelism in SRAM arrays requires that computation cannot be skipped, even if only one
of the vector elements needs it. The authors solved this problem by developing techniques

Mach. Learn. Knowl. Extr. 2022, 4 83

which create dense computation by coalescing non-zero filter channels. Filter channels
are gathered into a dense format using a novel offline structured channel pruning and
retraining process, while input channels are gathered dynamically at runtime using a new
hardware coalescing unit. This specialized hardware unit consists of a crossbar switch,
with a reconfiguring peripheral, that outputs the needed inputs for a given filter depending
on a bit-mask of pruned channels. However, input coalescing can increase input loading
time. Moreover, different filters may be heterogeneously pruned and the same input data
can no longer be broadcast to all filters, further increasing the input loading time.

The authors tackled this problem by proposing an input-loading aware pruning
method that restricts the channels that can be pruned in each filter. Then, they explored
a filter channel overlapping technique which does not change the input data mapping
from the original unpruned network models, removing the need for input coalescing. The
key idea is to overlap the filters which are sparse at different channels into one filter. The
overlapping technique adds more constraints to the pruning method limiting the benefits
of pruning, but its hardware overhead is lower and it is much simpler to implement.
Figure 15a,b show an example of a sparse convolution with coalescing and overlapping,
respectively. In the sparse convolution with coalescing, filter channels are statically pruned
and coalesced while generating a mask that keeps track of the pruned channels of each filter.
Then, input activations are coalesced at runtime, according to the mask, avoiding useless
computations. In contrast, in the sparse convolution with overlapping, filter channels
are statically pruned by groups so that the non-pruned channels of different filters can be
overlapped into a single filter and, hence, avoid the need for coalescing the input activations.
Both methods require small changes to the dataflow and execution scheme of Neural Cache,
but they are implemented and evaluated independently as the two techniques are not
orthogonal.

On the other hand, the authors also developed efficient compute techniques for low-
precision neural networks. The bit-serial compute paradigm naturally takes advantage of
low-precision input activations and weights, as compute cycles of bit-serial algorithms are
proportional to bit-width. However, the bit-serial multiply-accumulate of Neural Cache
is inefficient when weights have ultra-low precision such as ternary or binary, due to the
extra starting steps for multiplication. They redesigned the process of multiply-accumulate
for ternary/binary weights to combine the multiplication and accumulation in fewer cycles
using logical operations and additions.

Discussion. The bit prudent architecture adds support for sparse and reduced precision
DNN models in Neural Cache, employing novel techniques such as input channel coalesc-
ing or filter overlapping. The evaluation of the different proposals shows that the reduced
precision techniques achieve the best performance and energy efficiency at the cost of high
accuracy loss. In contrast, the accelerator designs supporting sparse models improve the
Neural Cache efficiency with negligible accuracy loss, highly improving the performance
over a CPU and GPU. In addition, the authors compared against state-of-the-art sparse
DNN accelerators achieving much better throughput per area per energy. However, the
support for sparse models is limited to CNNs with structured channel pruning, and they
did not take into account the possibility to use dynamic precision techniques. Moreover,
each proposal is implemented and evaluated independently, and not combined in a single
accelerator design, losing opportunities for higher benefits in terms of performance and
energy consumption.

Mach. Learn. Knowl. Extr. 2022, 4 84

M

1

M

1 1

M

Coalesce

M

Input Activation

Maps

Output

Activation

Maps

Original

Filters (M)

Pruned

Filters (M)

Coalesced

Filters

C

C C

C

Runtime (MAC & Reduction)Static Preprocessing

(a)

Input Activation

Maps

Output

Activation

Maps

Original

Filters (M)

Group-Pruned

Filters (M)

Overlapped

Filters

MM

2 2

1 1

M-1 M-1

M

Runtime (MAC & Reduction)Static Preprocessing

C

C

C

C C {1, 2}

{M-1, M}

(b)

Figure 15. Sparse Convolution with (a) coalescing and (b) overlapping (adapted from [49]).

3.2. 3D-Stacked Memory Based Architectures
3.2.1. Neurocube

Kim et al. proposed Neurocube [41], a programmable digital neuromorphic archi-
tecture based on 3D high-density memory. The authors implement an accelerator for
efficient neural network computing that is integrated in the logic layer of a 3D stack Hybrid
Memory Cube (HMC) based on DRAM. Neurocube aims to provide a balance between the
programmablity and scalability of GPGPUs, and the performance and energy efficiency of
ASICs, by exploiting the advantages of 3D stack memory such as the high bandwidth and
low latency of the TSV connections, or the high level of parallelism due to the independent
vaults. Neurocube is highly optimized for the execution of CNNs, but its high degree of
programmability and scalability allows to map and run different types of DNNs, including
support for both the training and inference phases.

Mach. Learn. Knowl. Extr. 2022, 4 85

As described in Section 2.4, a typical HMC is composed of multiple DRAM layers
integrated in 3D with a logic layer at the bottom. The DRAM layers of an HMC are spatially
divided into multiple memory channels or vaults, which can be accessed in parallel. The
Neurocube architecture consists of clusters of processing engines (PE) connected by a 2D
mesh NoC in the processing layer. Each PE of the logic layer is associated to a single
memory vault, and can operate independently, and communicate through the TSVs and a
vault controller (VC). The organization of each PE is similar to a tile of previous state-of-
the-art DNN accelerators such as DaDianNao [21], and is composed of multiple memory
buffers to store weights and inputs as well as some MACs to perform operations. Figure 16
shows a general overview of the Neurocube architecture and a PE.

Cache

MAC MAC

Buffer

Router

TSV

CounterWeights

MAC MAC
Vault Controller (VC)

PNG

Router

PE

Figure 16. Overview of the Neurocube architecture and organization of a PE (adapted from [41]).

The memory centric computing principle embeds specialized state-machines within
the vault controllers of the HMC to drive data into the PE clusters. Each vault controller
includes a Programmable Neurosequence Generator (PNG) unit that generates the com-
mands to orchestrate the corresponding operations of the DNN layers. The PNGs employ
a finite state machine (FSM) with counters that are initialized depending on the number of
MACs in each PE and the DNN layer topology. Based on the fact that DNNs are data-driven
and have statically known memory access patterns, the PNGs keep track of the data to be
accessed at each moment, and produce the corresponding sequence of memory addresses
required in the execution of each layer. Neurocube processes a DNN layer by layer, and
for each layer the computations are translated to three nested loops that can be mapped
to finite state machines using three counters, that is, a loop across all neurons in the layer,
a loop across all connections for each single neuron in the layer, and a loop across all the
MACs. Initially, the host programs the counters of all PNGs by loading the corresponding
configuration parameters. Then, the PNGs compute the memory addresses required for
each output neuron in the layer, and encapsulate the state of the input neurons and their
associated weights in packets that are moved to the PEs.

On the other hand, Neurocube employs an output stationary dataflow for both convo-
lutional and FC layers, meaning that each MAC from a PE is responsible for the computa-
tions of a different output neuron at a time, but with small optimizations depending on the
layer type and its size. For example, if the size of the synaptic weights matrix of a convolu-
tional layer is small, all weights are stored in a local PE memory for reuse. The PEs form
different vaults that communicate among them using a 2D mesh NoC router. The work of
a given layer is distributed between the vaults and its associated PEs, and to reduce the
communication cost of the NoC, the weights of convolutional filters are replicated among
the vaults while dividing the input images into overlapped segments. In this way, each
vault can operate on its set of output neurons without having to communicate with the rest
during most of the execution. Similarly, the weight matrix of FC layers is divided among
vaults and the input vector is replicated. In case the input vector does not fit, it is also
partitioned, increasing the NoC traffic. In order to sequence through the correct number of

Mach. Learn. Knowl. Extr. 2022, 4 86

input neurons for each output neuron, each PE has an operation counter (OP-counter) that
keeps track of the input neuron currently being processed by the MAC units. The cache in
each PE is used to store packets that arrive out of order, while the inputs and weights for
the current iteration are stored in a temporal buffer. When all the operands for the current
iteration are available, the MACs are triggered and the operands for the next iteration are
searched from the cache.

Discussion. Neurocube is one of the first proposals implementing a DNN accelerator in
the logic layer of an HMC, tackling the typical thermal and area concerns of the 3D-stacked
memory designs. Neurocube can be used for both DNN inference and training, providing
better performance and energy efficiency compared to a GPU. The accelerator exploits
the high bandwidth offered by the HMC, and implements a straightforward dataflow
with an FSM to control the memory accesses and the execution of the different DNN
layers. However, their dataflow is not optimized to exploit the intrinsic features of a 3D-
stacked architecture, and no computations are performed within the DRAM layers, leaving
opportunities to further improve the design with PIM capabilities.

3.2.2. TETRIS

Continuing the same line of research, Gao et al. proposed TETRIS [40], a scalable
and efficient accelerator for DNN inference based on 3D-stacked HMC using DRAM
layers. Similar to Neurocube, TETRIS also exploits NDP in the logic layer of an HMC.
It presents an optimized hardware architecture coupled with software scheduling and
partitioning techniques that exploit the intrinsic characteristics of 3D memory. First, the
authors show that the high throughput and low energy characteristics of 3D memory allow
the rebalancing of the NN accelerator design, using more area for processing elements and
less area for SRAM buffers. Second, they move portions of the NN computations close
to the DRAM banks to decrease the bandwidth pressure and increase performance and
energy efficiency. Third, they demonstrate that, despite the use of small SRAM buffers,
the presence of 3D memory simplifies the dataflow scheduling for NN computations and
presents an analytical scheduling scheme. Finally, they develop a hybrid partitioning
scheme that parallelizes the NN computations across multiple vaults and stacks.

Similar to Neurocube, the TETRIS architecture employs an HMC with a stack of
multiple DRAM dies vertically divided into 16 vaults. Each vault is associated to one
Neural Network Engine (NNE) in the logic layer connected through TSVs, and the different
NNEs are interconnected with a 2D mesh NoC. Unlike Neurocube, the NNE of each vault
consists of a systolic array of processing elements (PEs) with a global SRAM buffer shared
among the PEs, and where each PE has a register file and a MAC to locally store the
inputs/weights and perform computations. Multiple vault engines can be used to process
a single NN layer in parallel, and the memory buffers in each NNE and PE make use of
prefetching techniques to increase the data reuse from memory. The NNEs are based on
conventional 2D accelerators such as Eyeriss [51], which also implement a row stationary
dataflow that improves data reuse while reducing the data movements. Row stationary
(RS) maps 1D convolutions onto a single PE to utilize the PE register file for local data
reuse, and orchestrates the 2D convolution dataflow on the 2D array interconnect so that
the data propagation among PEs remains local. Figure 17 shows a high-level overview of
the TETRIS architecture and a single NNE.

Mach. Learn. Knowl. Extr. 2022, 4 87

To remote Vault
Logic

DRAM

DRAM

DRAM

Bank

Col

decoder

R
o

w

d
ec

o
d

er

Bank

Col

decoder

R
o
w

d
ec

o
d

er

Global

SA

Global

SA

A
d

d
r/

C
m

d

T
S

V
s

D
a
ta

T
S

V
s

R
o
u

te
r

M
em

 C
tr

l

N
N

E

To Local Vault

(a)

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

G
lo

b
al

 B
u

ff
er

M
e

m
o

ry

Reg File

A
LU

(b)

Figure 17. (a) Overview of the TETRIS architecture and (b) organization of a Neural Network Engine
(NNE) (adapted from [40]).

On the other hand, the area of the logic layer of an HMC is constrained by the size of
the 3D package which, along the power constrains of 3D memory, limit the scaling of the PE
arrays and its buffers. One of the key observations that motivates the TETRIS architecture
is that the logic layer requires a better balance between the number of PEs and the size of
the memory buffers. Compared to prior works that tend to use more area for the memory
buffers, the authors evaluate this trade-off, and decide to spend the same amount of area
for both (i.e., 50:50 ratio) to achieve higher performance and fully exploit the bandwidth of
the HMC. As a side effect of reducing the amount of memory in the logic layer, there may
be more data movements due to an increase in unfinished accumulations or partial sums,
so the data have to be fetched again to finish the calculations. To alleviate this problem,
they put extra adders in the DRAM dies close to the banks, and introduce a new atomic
update that performs the read-add-write operation inside the memory layer, reducing the
overall cost of the accumulations.

The efficiency of a DNN accelerator depends heavily on the dataflow scheduling and
partitioning of the NN computations. The scheduling is particularly important for TETRIS,
as it uses small on-chip buffers which could potentially increase the accesses to DRAM.
Moreover, as TETRIS includes one NN accelerator per vault, it is crucial to effectively
partition and parallelize the NN workloads across vaults. The scheduling problem can
be decomposed into two subproblems: the mapping and the ordering. TETRIS leverages
the row stationary dataflow from Eyeriss [51] for the mapping of the inputs, weights, and
outputs of a 2D convolution inside the systolic array of PEs from a given vault. Then, the
authors propose a bypass ordering to schedule the 2D convolutions, storing just one of

Mach. Learn. Knowl. Extr. 2022, 4 88

the three streams in the global shared buffer, and relying on the low cost accesses of 3D
memory for the rest. For example, the Output Weight (OW) bypass avoids the global buffer
for the outputs and weights and only stores the inputs to be reused.

The mapping exploits the PE array interconnect and register files, while the ordering
focuses on how to buffer the data in the global shared buffer to maximize on-chip reuse.
The ordering involves the blocking of the input/output channels and batch size, but the
bypass ordering simplifies the problem compared to general loop blocking algorithms.
They analytically derive the optimal scheduling by finding the best blocking parameters
while minimizing the number of DRAM accesses given one of the three bypass ordering
variants. Then, to partition the work of a NN layer and distribute it among the vaults, they
consider different partitioning schemes, and propose a simple cost model that minimizes
the overall memory access energy taking into account a penalty for remote vault accesses.
Finally, TETRIS implements a hybrid approach that balances the benefits from feature map
partitioning and output partitioning.

Discussion. Overall, the results show that TETRIS significantly improves the perfor-
mance and reduces the energy consumption over DNN accelerators with conventional,
low-power DRAM memory systems such as Eyeriss as well as Neurocube. TETRIS provides
an improved dataflow scheduling and NN partitioning compared to Neurocube, exploiting
better the data reuse while reducing both local and remote DRAM accesses. In addition,
the inclusion of accumulators inside the memory layers offers a nice solution to reduce the
cost of memory accesses, and opens up opportunities to do further research in this line.

3.3. ReRAM Based Architectures

As described in Section 2.3, the introduction of memristor devices, along with the
massively parallel analog MAC operation provided by ReRAM crossbar arrays, has brought
a new set of opportunities in the area of NDP architectures, although they also present
some new challenges, such as the high overhead of the digital–analog conversions. In this
section, we discuss several ReRAM based approaches for the acceleration of DNNs.

3.3.1. PRIME

Chi et al. proposed PRIME [52], a PIM architecture for accelerating DNN compu-
tations in ReRAM-based main memory. In PRIME, a portion of ReRAM crossbar arrays
can be configured as accelerators for NN applications or as normal memory for a larger
memory space. The authors propose a microarchitecture and circuit designs, as well
as a software/hardware interface for software developers to implement various DNNs
on PRIME.

PRIME divides a ReRAM bank into three types of subarrays: memory (Mem), buffer
and full function (FF). Mem subarrays only store data, whereas FF subarrays can either store
data or perform DNN computations, as shown in Figure 18. To switch the FF subarrays
from memory to compute mode, data stored in them are moved to the memory subarrays.
Then, weights of the mapped DNNs are written to the FF subarrays, and the periphery is
reconfigured by a controller. The opposite process happens to change from compute to
memory mode. On the other hand, the Buffer subarrays store the data for FF subarrays
without requiring the involvement of the CPU. SRAM buffers are not suitable for this task
due to the lower storage capacity and high area overhead. FF subarrays are connected to
their closest memory buffer through private data ports, benefiting from the high bandwidth
of in-memory data movement and the ability to work in parallel to the CPU.

Mach. Learn. Knowl. Extr. 2022, 4 89

Mem

Sigmoid Sub

SASub

SA

Global Row Buffer

Latchm

Mem

Buffer Subarray

Latchm

Sigmoid

(a)

Negative

Weights

Sigmoid Sub

SASub

SA

Global Row Buffer

Latchm

Positive

Weights

Buffer Subarray

Latchm

Sigmoid

(b)

Figure 18. PRIME FF subarray configurations (adapted from [52]). (a) Memory mode; (b) Computa-
tion mode.

PRIME efficiently accelerates NN computation by leveraging ReRAM’s computation
capability and the PIM architecture. To enable the NN computation function in FF subar-
rays, the authors modified the decoders, drivers, column multiplexers (MUX), and sense
amplifiers (SA) of the periphery. Figure 19 shows a high-level overview of the PRIME
architecture. They noted that an SA performs similar function as an ADC, and the same
is also true for read/write drivers and DACs. Hence, with only small modifications, the
authors reused the read/write drivers and SAs to perform the function of DACs and ADCs,
respectively. This sharing of periphery between computation and memory lowers the area
overhead.

Bank

Mem

Subarray

Mem

Subarray

F
F

S
u
b
ar

ra
y

Buffer Subarray

Connection

F
F

S
u
b
ar

ra
y

Col Mux

SA

ReRAM

Crossbar

Col MuxG
lo

b
a

l
R

o
w

 D
ec

o
d

er

Controller

Vol.

W
D

D

ReRAM

Crossbar

Col Mux

SA

ReRAM

Crossbar

Col Mux

W
D

D

ReRAM

Crossbar

W
D

D

W
D

D

Mat Mat

Global I/O Row Buffer
Data

Adr

Vol.

Figure 19. Overview of the PRIME architecture (adapted from [52]).

Mach. Learn. Knowl. Extr. 2022, 4 90

Precision is one of the most critical challenges for ReRAM based NN computations.
As NN applications can tolerate low precision of inputs and weights, they assume 3-bit and
4-bit precision of input voltage and synaptic weights, respectively, which implies 8 voltage
and 16 resistance levels, respectively. The output precision required is 6-bit with truncation,
and a dynamic fixed-point format is used. In order to reduce the accuracy loss, they employ
a scheme whereby two 3-bit inputs are composed into one 6-bit input and two 4-bit cells are
used for representing one 8-bit weight. To implement FC layers, they separate the synaptic
weight matrix in two matrices for storing positive and negative weights and store them
into two different crossbars. Then, inputs are read from the memory buffer and stored in a
latch of the decoder/driver unit. MVM of positive and negative weights is implemented
in ReRAM arrays, and the resulting currents are sent to an analog substractor unit and
a sigmoid unit of the column multiplexer. Finally, the results are converted to digital in
the SA, and written back to the memory buffer. They also discuss the implementation of
convolution and max/mean pooling layers. The mapping of the DNN layers to ReRAM
is optimized at compilation time depending on the size of the DNN (e.g., small, medium
or large). PRIME allows us to use multiple banks to implement large scale DNNs, while
running in a pipelined fashion to improve throughput and avoid reprogramming the FF
subarrays at every execution of a layer.

Discussion. By leveraging both a PIM architecture and the efficiency of using ReRAM
for DNN computation, PRIME distinguishes itself from prior works on DNN acceleration
with significant performance improvements and energy savings on multiple ML workloads.
The organization of PRIME in different types of subarrays, the schemes to encode/decode
the inputs/outputs and weights, and the modifications of the memory peripherals, provide
an interesting solution to some of the ReRAM based architecture challenges. However,
PRIME supports positive and negative weights but only unsigned inputs, and the analog
dot-product computations are lossy as the resolution of the ADCs does not always match
the precision of the computed dot-product. Furthermore, the analog–digital conversions
still represent an important overhead, and the modified SAs may be slow as multiple
comparisons against different voltage levels are required to make each conversion.

3.3.2. ISAAC

Shafiee et al. presented ISAAC [38], an accelerator for CNN inference with in situ
analog arithmetic in ReRAM crossbars. ISAAC takes a PIM approach similar to PRIME,
where memristor crossbar arrays not only store weights, but are also used to perform
dot-product operations in an analog manner. This requires the integration of several digital
and analog components, as well as overcoming multiple challenges.

First, the authors present a design with a pipelined architecture, employing dedicated
crossbars for each DNN layer, and eDRAM buffers that aggregate data between pipeline
stages. Figure 20 shows a high-level overview of the ISAAC architecture. Similar to
DaDianNao [21], the system is organized into several tiles each designed with multiple
In situ Multiply-Accumulate (IMA) units to perform analog dot-products, shift-and-add
(S+A), sigmoid and max pool (MP) unit, as well as some buffers and registers to store data.
Within the core of each IMA, there are numerous ReRAM crossbar arrays, DACs/ADCs,
and Sample-and-Hold (S+H) units. ISAAC processes one layer at a time, distributing those
computations across all tiles to maximize parallelism, and executing multiple layers and
neurons on a single tile with time multiplexing. On the other hand, ReRAM crossbars
are slow to re-program and, thus, each crossbar of ISAAC is dedicated to process a set
of neurons in a given CNN layer. The outputs of that layer are fed to other crossbars
that are dedicated to process the next CNN layer, and so on. As soon as enough outputs
are generated by a layer and aggregated in an eDRAM buffer, the next layer can start its
operations. By designing such a pipeline, the buffering requirements between layers is
reduced, allowing us to dedicate most of the chip for dot product engines. In order to
improve the throughput of the initial layers and create a more balanced pipeline, additional
crossbars can be employed for those layers by replicating the weights.

Mach. Learn. Knowl. Extr. 2022, 4 91

TT T T

T T T T

T T T T

T T T T

MP

eDRAM

Buffer

IMA IMA

σ
OR

S + A

IMAIMA

IMA IMA IMAIMA

XBDAC

S + H

XBDAC

S + H

XBDAC

S + H

XBDAC

S + H

IR

OR

S + H

ADC

ADC

ADC

ADC

External I/O

Interface

Chip Tile In-Situ Multiply Accumulate

Figure 20. Overview of the ISAAC architecture (adapted from [38]).

Second, the authors observed that the key overheads in a crossbar are the analog-to-
digital (ADC) and digital-to-analog converters (DAC), which are required to communicate
between units operating in different domains. Then, they propose strategies and define new
data encoding techniques that are amenable to analog computations and can reduce the high
overheads of DACs/ADCs. Each ADC is shared by multiple crossbar arrays. Weights are
stored as 16-bit fixed-point values in 16/w w-bits cells of a single row (e.g., w = 2). A 16-bit
digital input is represented using 16 consecutive voltage levels, each recording a 0/1 bit of
the 16-bit input. Consequently, a pipelined execution is also employed within IMAs.

The analog product is computed as 16 sequential operations which requires only 1-bit
DAC. A sample-and-hold circuit receives the bitline current, feeding it to a shared ADC unit
when available, while a new set of inputs starts to be processed. Lastly, the partial sums are
merged using shifts-and-adds. The crossbar inputs are provided as 2’s complement, and
the negative synaptic weights are represented as a bias. When the weights in a column are
collectively large, they are stored in flipped form which ensures that the MSB of the sum-of-
products is always 0, reducing the size of ADCs by one bit. Due to the nearly exponential
relationship between the resolution and cost of ADC, and the large contribution of ADC in
overall power consumption, this optimization has large impact on overall efficiency.

Discussion. ISAAC design includes a balance of ReRAM storage/compute, ADCs,
and eDRAM storage on a chip. ISAAC provides large improvements in throughput and
energy efficiency compared to prior NDP accelerators. Along with PRIME, ISAAC is one
of the first PIM accelerators for CNNs based on ReRAM crossbars, exploiting the ability
to perform analog dot-products within the crossbars. The pipelined architecture is an
attractive solution to the long ReRAM writing latency, and the strategies to reduce the
ADC/DAC overheads are also promising. However, ReRAM crossbars cannot be efficiently
re-programmed on the fly, and the operations of some layers, such as the normalization,
cannot be easily adapted. In addition, their deep pipeline suffers from bubbles and stalls
when not many inputs (e.g., images) can be successively fed into the accelerator. Moreover,
the ADCs still represent an important energy overhead, and some digital components, such
as the shared data bus or the eDRAM buffers, consume a large portion of area.

3.3.3. Pipelayer

Following the works of PRIME and ISAAC, Song et al. proposed PipeLayer [53],
a pipelined ReRAM-based accelerator for both training and inference of CNNs. As NN
training involves weight updates and intricate data dependencies, most works only support
inference, and assume that weights are written in ReRAM cells only at the beginning. By
comparison, PipeLayer also presents techniques for implementing NN training in ReRAM.

Figure 21 shows a high-level overview of the PipeLayer architecture. Similar to PRIME,
they divide the ReRAM crossbar arrays into two types: memory and morphable subarrays.
The morphable subarrays can perform both computation and data storage, while the mem-
ory subarrays only store data such as results from the morphable subarrays. Both forward
and backward computations have data dependencies. The results of forward computa-
tions are stored in memory subarrays, which are used in the backward computations for
generating the errors and partial derivatives to update the weights.

Mach. Learn. Knowl. Extr. 2022, 4 92

Memory Subarray

Connection

Activation

Morp

Subarray

I&F

D
ri

v
er

Activation

Morp

Subarray

I&F

D
ri

v
er

G
lo

b
a

l
R

o
w

 D
ec

o
d

er

Controller
DATA

A
d

d
r_

R
o
w

A
d

d
r_

C
o

l

Morp

Subarray

I&F

D
ri

v
er

Morp

Subarray

I&F

D
ri

v
er

D
ri

v
er

D
ri

v
er

Activation

Morp

Subarray

I&F

D
ri

v
er

Activation

Morp

Subarray

I&F

D
ri

v
er

Morp

Subarray

I&F

D
ri

v
er

Morp

Subarray

I&F

D
ri

v
er

D
ri

v
er

D
ri

v
er

Global I/O Row Buffer

Figure 21. Overview of the PipeLayer architecture. (adapted from [53]).

Figure 22 shows the training of a three-layer CNN with PipeLayer. In T1, inputs stored
in the memory subarray d0 enter the morphable subarray A1 to perform a MVM operation.
The results are written to the memory subarray d1. This process continues until the results
of the forward computation are stored in d3. Then, backward computation starts in T4,
where errors δl (l denotes the layer) and partial derivatives (∇Wl) are generated. First, the
error for the third layer (δ3) is calculated in T4 and stored in a memory subarray. In T5,
two calculations happen concurrently depending on (δ3). First, the partial derivatives ∇W3
are calculated using the results in d2 and δ3. Second, the error δ2 of the second layer is
calculated from δ3 and, based on ∇W3, weights in A31 and A32 are updated. Continuing
in this manner, ∇W1 is calculated in T7. Note that the cycles (e.g., T0, T1, . . .) are logical
cycles, meaning that each cycle may take several physical clock cycles depending on the
implementation.

In training, the notion of batch limits the number of inputs that can be processed
consecutively, as the inputs in the next batch need to be processed based on the updated
weights. As previously discussed, the deep pipeline in ISAAC is vulnerable to pipeline
bubbles and execution stalls, especially when the amount of consecutive inputs is small,
resulting in an inefficient scheme for training. The authors analyze the data dependencies
and weight update procedure in training algorithms and propose an efficient pipeline to
exploit both intra/inter-layer parallelism. In order to exploit intra-layer parallelism, they
noted that, as the number of inputs to a ReRAM crossbar array in each logical cycle is
large, mapping all the kernels to a single crossbar leads to an inefficient design. Hence,
they mapped and replicated them in multiple crossbars, then collected and added their
outputs. The number of replicated copies of crossbars storing the same weights shows the
granularity of parallelism and, by choosing a right value, a trade-off between hardware
overhead and throughput can be achieved.

Mach. Learn. Knowl. Extr. 2022, 4 93

d0

A1

W1

d1

A2

W2

d2

A3

W3

d3

 W1

A11

d0

δ1

 W2

A21

d1

δ2

 W3

A31

d2

δ3

T

A32

(W3)*

A22

(W2)*

T0 T1 T2 T3

T7 T6 T5 T4

a) Forward

b) Backward

Figure 22. Example of PipeLayer configured for training (adapted from [53]). (a) Forward Computa-
tion; (b) Backward Computation.

The authors further noted that, during training, the inputs processed before a weight-
update (or batch) do not have any dependency. As the batch size is usually much larger
than one during the training (e.g., 64), they proposed a pipelined training architecture
where inputs inside a batch can be processed in a pipelined manner, but inputs of next batch
cannot enter the pipeline until the previous batch has been fully processed. To avoid the
need of DACs, instead of voltage-level based input, they utilize a weighted spike-coding
approach similar to ISAAC, and its higher latency is tolerated by the pipelined design of
different layers. To avoid the need of ADCs, they use a “integration and fire” component
(I&F) which integrates analog currents and stores the generated output spikes in a counter.

Discussion. PipeLayer enables a highly pipelined execution of both training and infer-
ence, without introducing the potential stalls in previous works, and opening opportunities
for further research on ReRAM-based DNN training accelerators. Compared to a GPU
implementation, their design achieves large improvements in performance and energy
efficiency, but they do not compare against other state-of-the-art DNN accelerators for
training. Similar to PRIME and ISAAC, PipeLayer requires a large amount of ReRAM
crossbars due to the pipelined execution, and the throughput of the training may be limited
by the slow writing latency and complex re-programming of ReRAM crossbars. In addition,
their training dataflow is not much different from previous proposals, and one of the major
drawbacks of a pipelined training is the increased requirement of memory subarrays, as
the data stored during the forward computation must not be overwritten until consumed
in the backward computation. Finally, similar to the modified SA of PRIME, the cost
of the integration and fire circuit may be higher than a conventional ADC, limiting the
performance of the accelerator.

3.3.4. CASCADE

Chou et al. proposed CASCADE [54], a DNN accelerator connecting ReRAMs to
extend the analog dataflow in an end-to-end PIM paradigm. A key limitation of ReRAM-
based PIM architectures is the cost of the multi-bit analog-to-digital (A/D) conversions that
are required to perform In-ReRAM analog dot product computations, which can defeat
the efficiency and performance benefits of PIM. The digital inputs to the ReRAM crossbar
need to be converted to voltage pulses using DACs, and the outputs of the crossbar in the
form of analog currents need to be integrated and digitized using ADCs. The resolution
requirement of analog computation is pushed to accommodate tens or hundreds of products
of multi-bit WL pulses with multi-bit ReRAM conductances that are summed together.

Mach. Learn. Knowl. Extr. 2022, 4 94

High resolution ADCs are required, adding a significant overhead that scales with the
crossbar size and device resolution.

A second limitation of in-ReRAM computation is that even a single layer in a state-of-
the-art DNN/RNN can be too large to fit on a practical ReRAM crossbar. Therefore, one
kernel computation needs to be separated and mapped to multiple ReRAM crossbars. The
resulting partial sums from multiple crossbars need to be digitized and accumulated in the
digital domain. In addition, it is impractical to assume that an 8-bit weight value can be
reliably stored in one ReRAM cell with current technologies. Multi-level cell (MLC) requires
the use of more complex DACs/ADCs, and can be more easily affected by noise and process
variations. In consequence, it is more practical to map a multi-bit weight value to multiple
ReRAM cells. Similarly, it is also more practical to separate an input to units of 1 bit and
apply them serially. All of these practical approaches lead to more partial sums that need
to be digitized and digitally accumulated. To summarize, in-ReRAM computation consists
of in-ReRAM dot products, A/D conversions, and digital accumulation of partial sums.

CASCADE is an in-ReRAM computation architecture for DNNs and RNNs, that
specifically addresses the problems of high-cost A/D conversion and digital partial sum
accumulation. Figure 23a shows a high-level overview of the CASCADE architecture,
which is made of multiple Analog Processing Units (APU). Each APU connects a multiply-
accumulate (MAC) ReRAM crossbar array with a couple of buffer ReRAM arrays to extend
the processing in analog domain and in-memory: dot products are followed by partial-
sum buffering and accumulation to implement a complete DNN/RNN layer. The output
currents of MAC ReRAMs are converted to proportional voltages using TIAs, and stored in
the buffer ReRAMs. The transimpedance amplifier (TIA) interface is designed to enable a
variation-tolerant, robust analog dataflow. Moreover, to limit the BL resolution to 6 bits,
and reduce the impact of variation and noise, they use 1-bit weight mapping and moderate-
sized MAC ReRAM arrays of 64× 64. With bit-serial input streaming and binary weight
mapping in a MAC ReRAM, only two voltage references are needed, one for read and one
for write, simplifying routing and driver circuitry.

In addition, they propose to use a lower voltage to write to buffer ReRAMs, and 1T1R
MLCs to control the write current, which leads to improved endurance and lower energy
consumption. The authors also present a new memory mapping scheme named R-Mapping
to enable the in-ReRAM accumulation of partial sums; and an analog summation scheme is
used to reduce the number of A/D conversions required to obtain the final sum. Figure 23b
shows the final accumulation with a summing amplifier. The partial sums are divided into
groups to efficiently obtain the output of a required resolution. The MSB group directly
contributes to the required output, while the partial sums of the LSB group are connected
to analog summing amplifiers that scale the current before summing. Finally, the digital
values are added together to produce the final sum.

Discussion. Overall, CASCADE is a DNN/RNN accelerator that executes a model layer
by layer, and reduces the number of A/D conversions, compared to ISAAC and PRIME, by
extending the analog dataflow with additional ReRAM buffers to perform the in-ReRAM
accumulation of partial sums. Compared to recent in-ReRAM computation architectures,
CASCADE provides large improvements in energy efficiency while maintaining a competi-
tive throughput. However, the execution and dataflow of the accelerator is not described in
detail, and the cost of writing in the ReRAM crossbars is not properly discussed, specially
for the buffer ReRAMs that require multi-level cells (MLCs). Furthermore, the overhead
of the TIAs is not compared against typical ADCs. Finally, activation, normalization and
pooling layers are still performed in the digital domain, opening up opportunities to further
extend the analog dataflow.

Mach. Learn. Knowl. Extr. 2022, 4 95

E
x
te

r
n

a
l

I/
O

 I
n

te
r
fa

c
e

G
lo

b
a

l
B

u
ff

e
r

P
o

st
-P

r
o

c
e
ss

in
g

 U
n

it

G
lo

b
a

l
B

u
ff

e
r

E
x
te

r
n

a
l

I/
O

 I
n

te
r
fa

c
e

G
lo

b
a

l
R

o
w

 D
e
c
o
d

e
r

C
o
n

tr
o
l

A
P

U

A
P

U

A
P

U

A
P

U

Summing Amplifier

ADC

A
P

U

A
P

U

A
P

U

A
P

U

Summing Amplifier

B
u

ff
e
r

R
e
R

A
M

T
IA

 +
 D

r
iv

e
r

DAC

B
u

ff
e
r

R
e
R

A
M

T
IA

 +
 D

r
iv

e
r

DAC

B
u

ff
e
r

R
e
R

A
M

T
IA

 +
 D

r
iv

e
r

DAC

(a)

P0,0P0,15

B
L

0

B
L

1

B
L

2

B
L

3

B
L

4

B
L

5

B
L

6

B
L

7

B
L

8

B
L

9

B
L

1
0

B
L

1
1

B
L

1
2

B
L

1
3

B
L

1
4

B
L

1
5

B
L

1
6

B
L

1
8

B
L

1
9

B
L

2
0

B
L

2
1

B
L

2
2

B
L

2
3

B
L

2
7

B
L

2
4

B
L

2
6

B
L

2
5

B
L

2
8

B
L

2
9

× 2−1 × 2−2 × 2−3 × 2−4 × 2−5 × 2−6 × 2−7 × 2−1 × 2−2 × 2−3 × 2−4 × 2−5 × 2−6 × 2−7 × 2−1 × 2−2 × 2−3 × 2−4 × 2−5 × 2−6 × 2−7

+

+

+

x 2−7

x 2−7

A
D

C

Post-Processing Unit

A
D

C

A
D

C

A
D

C

A
D

C

A
D

C

A
D

C

A
D

C

A
D

C

A
D

C

P14,14P14,29

Summing Amplifier

B
L

1
7

(b)

Figure 23. (a) Overview of the CASCADE architecture; and (b) final accumulation with a summing
amplifier (adapted from [54]).

3.3.5. RAPIDNN

Imani et al. proposed RAPIDNN [55], a DNN acceleration framework with neuron-
to-memory transformation. As already discussed, one of the main challenges to extend
the adoption of ReRAM crossbars to perform NN computations is the conversion between
analog–digital domains. ADCs and DACs are slow and represent a large portion of area
and power consumption in previous accelerators based on ReRAM crossbars. RAPIDNN
addresses this issue by reinterpreting a DNN model and mapping it into a PIM accelerator,
which is designed using NVM blocks that model four fundamental DNN operations, i.e.,
multiplication, addition, activation functions, and pooling, giving support to most of the
typical DNN layers. Unlike ISAAC or PRIME, RAPIDNN supports all DNN functionalities
in a digital-based memory design.

The RAPIDNN accelerator supports multiplication and addition operations inside a
ReRAM crossbar with single-level cells, and other operations, such as activation function
and pooling, are modeled with associative memory (AM) blocks which are a form of
lookup table. Their key observation is that, even though the operations of a DNN model are

Mach. Learn. Knowl. Extr. 2022, 4 96

continuous functions, they can be approximated as step-wise functions without losing the
quality of inference. Once a step-wise approximation is developed, they create computation
tables which store the finite pre-computed values, and map them into specialized memory
blocks capable of in-memory computations.

The RAPIDNN framework consists of the DNN Composer and the PIM accelerator
as shown in Figure 24. The DNN Composer extracts representative operands of a DNN
model, e.g., weights and input values, using clustering methods such as K-Means. The
clustering of the weights is performed by layer in FC and by filter in CONV layers. For
the inputs, as they change dynamically, they use a subset of the training set to generate
the intermediate inputs of each layer and perform a clustering of those to obtain their
quantization approach. The activation functions are also quantized into a subset of values.
After performing the clustering, they test the network accuracy and, if needed, they perform
retraining, and repeat the clustering process again to minimize the accuracy loss. Finally,
the DNN Composer computes all the possible combinations of products between the set of
clustered inputs and weights in an offline process, and stores the pre-computed results into
the accelerator memory blocks.

DNN

Model

Model

Reinterpretion
Accelerator

Data

Block 1

Data

Block 2

RNA RNA RNA

Retraining

Model Writing

ControllerReg. Config
DNN Composer

Broadcast Buffer

Figure 24. Overview of the RAPIDNN framework (adapted from [55]).

On the other hand, the PIM accelerator is composed of two main blocks: data blocks
and Resistive Neural Acceleration (RNA) blocks. The data blocks are a type of NVM
(e.g., ReRAM) storing all the parameters of a DNN model, while the RNAs are made of
logic and AM tables consisting of a crossbar and a Nearest Distance CAM (ND-CAM).
Figure 25 shows the architecture of an RNA block. At runtime, the accelerator identifies
computation results to be accessed based on an efficient in-memory search capability. Each
RNA is dedicated to compute the output of a single neuron. The weighted accumulation is
performed by counting the number of times each pair of encoded input/weight appears.
Then, the counts will be reinterpreted as shifts and adds. The pre-computed products are
stored in a crossbar memory which integrates the logic to perform shifts and additions.
The additions are performed with NOR operations in the form of tree adders. Finally, both
the activation function and the encoding are performed with a ND-CAM and a lookup
table. The ND-CAM finds the address of the closest value which is used to access the
lookup table.

Weighted Accumulation

Indexing

in i3 i2 i1

in i3 i2 i1

in i3 i2 i1

D
e
M

U
X

X1 × W1

X1 × W2

X1 × W3

Xu × Ww

Bias (b)

S
eq

u
en

ce
 D

ec
o

d
e
r

R
eg

is
te

rs

In
-M

em
o
ry

 A
d

d
it

io
n

C
o

u
n

te
r

 i

Input Buffer

P
o

o
l

Crossbar

Memory

 w

 2

 1

Activation Function

Y1

Y2

Yq

D
ri

v
er

Input Buffer

Z1

Z2

Zq

D
ri

v
er

Sense Amp

Encoding/Pooling

Z1

Z2

Zu

D
ri

v
er

Input Buffer

 1

 2

 q

D
ri

v
er

Sense Amp

Crossbar

Memory

Near

Distance

Table

Near

Distance

Table

Crossbar

Memory

max/

min

Figure 25. Architecture of an RNA block in the RAPIDNN accelerator (adapted from [55]).

Mach. Learn. Knowl. Extr. 2022, 4 97

Discussion. RAPIDNN is the first DNN accelerator which maps all functionalities
inside the memory block using direct digital-based computations, and without any analog-
to-digital conversion. The approximation of most operations, using crossbars that store
pre-computed values and ND-CAMs that perform the searches, shows promising results,
and leaves room for further improvement, as the ND-CAM may not work correctly in some
cases, further increasing the accuracy loss. RAPIDNN achieves better performance and
energy efficiency compared to DaDianNao, ISAAC, and PipeLayer, while ensuring less
than 1% accuracy loss. However, RAPIDNN executes all the layers in a pipelined architec-
ture which incurs in high power consumption. Moreover, RAPIDNN not only employs
clustering, but also approximates the weighted accumulations and the activations, which
incurs in higher accuracy loss compared to linear quantization, and may require retraining.
In addition, using clustering the accelerator still needs to perform some FP operations.

4. Conclusions and Future Perspectives

Recent advances in traditional memory systems, as well as new memory technologies,
have renewed interest in an old research topic (i.e., 1970 [56]), currently known by the name
of Near-Data Processing (NDP). In addition, many modern applications are data intensive
and demand a high level of parallelism and memory bandwidth. While deep learning
techniques, and machine learning in general, are promising solutions to a broad range
of applications, the characteristics of conventional memories and processors limits their
potential. Addressing these challenges requires fundamental breakthroughs in memory
and computer architectures. In this paper, we present a survey of techniques for designing
DNN accelerators with NDP architectures. We described the key insights of different recent
works and organized the works in several categories based on the memory technology
employed to highlight their similarities and differences. Finally, in this section, we conclude
the paper with a discussion of future work.

Based on the observation that DRAM/SRAM arrays can simultaneously activate
multiple rows to perform bitwsise operations, many prior works focus on adding PIM
capabilities to commodity memories with minor changes, so that the main structure and
interface to communicate memory and CPU/GPU systems remains the same. Future works
can remove the need to keep the architectural structure of traditional memory systems
with custom accelerators. ASICs are an interesting solution, as they are more flexible
and offer the opportunity to combine different memory technologies, conventional and
emerging, with PIM capabilities to provide a computer system optimized for data-centric
applications. For example, Ambit could be implemented in an HMC, and be further
extended and improved to exploit this new memory technology. Moreover, most works
based on traditional memory systems only include computation capabilities in a specific
level of the memory hierarchy, such as the LLC or main memory, but multiple levels of the
hierarchy could be used combined with novel dataflows.

In another line of research, Ambit and Neural Cache effectively exploit the bandwidth
of typical DRAM and SRAM arrays, respectively, and the parallelism of multiple arrays,
but only perform computations between two rows of a given array. While two rows may
already offer a high level of parallelism, it can be a major drawback compared to ReRAM
crossbars that can operate using the entire array. Further research could be undertaken to
exploit the analog operation of SRAM/DRAM arrays to increase the level of parallelism,
which may require the use of modified memory cells and peripherals. Following this
direction, Neural Cache includes extra logic in the sense amplifiers of SRAM arrays to
perform complex operations, and Ambit employs a row of 2T1C cells for the DRAM bitwise
NOT operation. Other new memory arrays with additional logic in the peripherals and/or
a mix of different cells to perform faster operations could be investigated. Furthermore,
new data layouts could be explored to facilitate the interaction between bitlines. Although
additional circuitry may be expensive and reduce the memory density, ASICs can be flexible
enough in terms of storage capacity to overcome the overheads.

Mach. Learn. Knowl. Extr. 2022, 4 98

In addition, it is critical to design efficient and reliable PIM DRAM/SRAM arrays
taking into account not only the negative effects of process variations, but also aging and
soft errors.

On the other hand, Bit-Prudent extends Neural Cache with support for sparse and
low-precision models, but they only consider a structured channel pruning for CNNs
and binary/ternary networks. New pruning methods and dynamic precision approaches
can be studied and evaluated in combination with novel hardware changes to support
these models in NDP architectures based on commodity memory. Additionally, given the
limitations of CMOS technology, the use of new emerging memory technologies, such as
HMC or ReRAM, could also be interesting for these designs.

Most works based on 3D-stacked memory with HMCs perform the majority of the
computations in the logic die. In contrast, TETRIS introduced some adders in the DRAM
dies to perform accumulations, and although the technology process to fabricate the
different layers may differ and be slower, solutions that perform more computations in
the memory layers could be further investigated. Following this approach, the level of
parallelism in HMCs can be increased, exploiting not only the independent vaults but also
the different memory layers, which may require a better organization of the data as well as
novel dataflows.

In the same line, Neurocube and TETRIS are mostly focused on CNNs, but recent
DNN models, such as RNNs or Transformers, may also require new data mappings and
execution schemes. In addition, these accelerators tend to work on a single NN layer at a
time, but considering that there is usually enough storage capacity for the entire model, a
pipelined execution of the layers could be more practical.

In addition, as there is an increasing number of applications that require the execution
of multiple DNNs, efforts could be made for exploring new schedulers to support the
parallel execution of multiple models, as well as potential computation reuse opportunities.

Furthermore, little research has been undertaken on DNN accelerators for both in-
ference and training exploiting the intrinsic features of 3D-stacked memories. Similarly,
sparse DNN accelerators based on HMCs have received little attention. Moreover, some
of these solutions may incur in additional traffic to communicate between vaults, turning
the NoC into a potential bottleneck of the system, and requiring additional improvements.
On the other hand, some of the main challenges to extend the adoption of 3D-stacked
memory and HMCs are the thermal and area constrains, which limit the scaling of the
architectures based on this technology and, hence, proper solutions are required to relax
theses restrictions.

Following a parallel line of research, most ReRAM based architectures have focused
on accelerating a limited range of computations/algorithms, such as bitwise operations
or MVM, which represent the majority of the DNN computations. However, not every
DNN model/layer/operation can be easily integrated into every NDP accelerator. For
example, the normalization layer requires operations that cannot be easily adapted and
accelerated using ReRAM crossbars and, hence, it may be important to investigate novel
algorithm–hardware co-designs.

In addition, the difficulty in re-programming the memristor arrays on the fly has led
many prior works to propose architectures with several ReRAM crossbars to instantiate
the full DNN model once, and then proceed with a pipelined execution to improve the
utilization of the resources. This solution can be very effective in an HPC environment
where batches of multiple inputs can be easily generated to achieve high throughput, and
where the area and power constraints are not so tight. However, embedded and mobile
devices have strict restrictions, so the number of crossbars must be relatively small and
not able to store the full model. In consequence, solutions that increase the ReRAM write
endurance or reduce the ReRAM write latency/energy can be highly attractive for power-
constrained systems, enabling architectures that execute one layer at a time and perform
efficient context switching. Similarly, techniques to reduce the number of write operations

Mach. Learn. Knowl. Extr. 2022, 4 99

such as data-compression will be very effective in dealing with the write-agnostic nature
of ReRAM.

Equally important, initial proposals of ReRAM based accelerators for DNNs, such
as PRIME and ISAAC, incur in high energy and area overheads due to the numerous
A/D conversions, whose cost is directly proportional to the ADCs/DACs resolution. The
bit-serial input voltage execution reduces the DAC resolution to just one bit. However,
lowering the ADC resolution may affect the final accuracy of the DNN as the outputs would
be truncated. Consequently, the design of alternative methods to perform A/D conversions
is crucial to reduce these overheads. Further, each ReRAM based accelerator employs
a different encoding/decoding scheme for inputs and weights with its corresponding
hardware. However, it is not clear how they compare against each other. For example,
PipeLayer employs an integrate and fire scheme that replaces the ADCs, but a comparative
evaluation is not provided.

On the other hand, follow up works have tried to reduce the use of DACs/ADCs
either by operating in analog domain as much as possible to reduce the number of A/D
conversions (i.e., CASCADE), or by digitizing the full design approximating most of the
operations with ND-CAM searches (i.e., RAPIDNN). Still, these approaches do not solve the
problem completely and/or add other problems to be solved. Therefore, further research
in this direction to propose a better design may be interesting.

Compared to DNNs, less progress has been made towards implementing Spiking Neu-
ral Networks (SNNs) on ReRAM. Similarly, training acceleration has received less attention
than inference acceleration, as the training phase is more computationally demanding than
the inference phase. In addition, ReRAM crossbars are not well suited for DNN training
due to the long writing latency of memristor arrays and the difficulty for re-programming
the ReRAM crossbar on the fly. In consequence, most previous works focus on optimizing
the inference phase. PipeLayer is one of the few ReRAM based accelerators supporting
training. However, their training dataflow is mostly based on state-of-the-art DNN accel-
erators. Similar to ISAAC, PipeLayer employs a pipelined execution that requires a large
number of crossbars, which may not be suitable for low power devices. In addition, it is
not clear how they deal with all the ReRAM writing issues.

As the works based on 3D-stacked memory, most state-of-the-art ReRAM based
accelerators do not support the execution of sparse/binary/ternary models nor dynamic
precision schemes. For example, pruning methods that are more suitable to perform analog
computations with ReRAM crossbars, or schemes that dynamically change the precision of
the inputs benefiting from the bit-serial input voltage execution, may be interesting lines
of research.

The vulnerabilities of ReRAM crossbars, such as process variations, hard faults, or
resistance drift, pose a serious threat to the accuracy of in-ReRAM computations. In
addition, crossbars and DACs/ADCs can be exposed to analog signal degradation or
external noise sources that can further reduce the DNN model quality. Tolerating these
errors is feasible only in error-resilient applications which comprise a fraction of the total
applications. Consequently, advanced manufacturing processes will be even more crucial
to reduce the ReRAM vulnerabilities, and future research should focus on improving the
design of the accelerators to be more resilient to possible errors while maintaining the
performance and energy efficiency.

In general, most existing NDP architectures for DNNs employ HMCs with DRAM dies
or ReRAM crossbars. A comparative evaluation of other high density 3D stack memory
technologies such as Wide I/O and HBM would be also interesting, as well as combining
3D stack architectures with NVMs such as PCM and STT. Ideally, one would have an
accelerator not only for DNNs, but for multiple data-centric applications such as graph
processing and databases. Computer architects have the opportunity to extend the benefits
of NDP architectures to the entire spectrum of applications, by employing a heterogeneous
hardware approach that combines different emerging memory technologies with PIM capa-

Mach. Learn. Knowl. Extr. 2022, 4 100

bilities, to accelerate not only DNN models with its corresponding layers and operations,
but also a variety of data intensive applications.

Finally, similar to NMP/PIM, In-Storage Computing (ISC) is another NDP branch
that addresses the large data movement overhead between storage and processor. ISC
architectures [57–59] are designed to integrate functional units, e.g., FPGAs, inside or near
storage modules, to offload computations and mitigate the data movement between storage
and the main processor. ISC often performs pre-computation in the integrated computing
units, and sends the result with smaller size to the main processor. An FPGA-based ISC
architecture achieves a good tradeoff between programmability and computing capability,
which can potentially meet different computation requirements. ISC has also attracted
industrial interest, and several commercial products are being released. The Samsung
SmartSSD computational storage drive [60] combines SSD and Xilinx’s FPGA with a fast
private data path between them, enabling efficient parallel computation at the SSD. The
SmartSSD can be leveraged to provide data acceleration services (e.g., data compression,
encryption, format transformation, etc.) and analytics acceleration services (e.g., database,
image recognition, machine learning, etc.). In summary, as shown in Figure 4, future
research on NDP should focus not only in exploiting NMP/PIM, but the entire memory
hierarchy to offload computations at different levels of the hierarchy and reduce the overall
memory traffic.

Author Contributions: Conceptualization, M.H., M.R. and A.G.; Funding acquisition, A.G.; Investi-
gation, M.H. and M.R.; Project administration, M.R. and A.G.; Resources, A.G.; Supervision, M.R.
and A.G.; Visualization, M.H.; Writing—original draft, M.H. and M.R.; Writing—review and editing,
M.R. and A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s Horizon
2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under grant
PID2020-113172RB-I00, and the ICREA Academia program.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Von Neumann, J. First Draft of a Report on the EDVAC. IEEE Ann. Hist. Comput. 1993, 15, 27–75. [CrossRef]
2. Pandiyan, D.; Wu, C.J. Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms.

In Proceedings of the 2014 IEEE International Symposium on Workload Characterization (IISWC), Raleigh, NC, USA, 26–28
October 2014; pp. 171–180.

3. Kestor, G.; Gioiosa, R.; Kerbyson, D.J.; Hoisie, A. Quantifying the energy cost of data movement in scientific applications.
In Proceedings of the 2013 IEEE International Symposium on Workload Characterization (IISWC), Portland, OR, USA, 22–24
September 2013; pp. 56–65.

4. Balasubramonian, R.; Chang, J.; Manning, T.; Moreno, J.H.; Murphy, R.; Nair, R.; Swanson, S. Near-data processing: Insights from
a micro-46 workshop. IEEE Micro 2014, 34, 36–42. [CrossRef]

5. Hoy, M.B. Alexa, Siri, Cortana, and more: an introduction to voice assistants. Med. Ref. Serv. Q. 2018, 37, 81–88. [CrossRef]
6. López, G.; Quesada, L.; Guerrero, L.A. Alexa vs. Siri vs. Cortana vs. Google Assistant: a comparison of speech-based natural user

interfaces. In International Conference on Applied Human Factors and Ergonomics; Springer: Cham, Switzerland, 2017.
7. Kepuska, V.; Bohouta, G. Next-generation of virtual personal assistants (microsoft cortana, apple siri, amazon alexa and google

home). In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las
Vegas, NV, USA, 8–10 January 2018.

8. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.
End to end learning for self-driving cars. arXiv 2016, arXiv:1604.07316.

9. Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: review, opportunities and challenges. Briefings
Bioinform. 2018, 19, 1236–1246. [CrossRef]

10. Jiménez, D.A.; Lin, C. Dynamic branch prediction with perceptrons. In Proceedings of the HPCA Seventh International
Symposium on High-Performance Computer Architecture, Monterrey, Mexico, 19–24 January 2001; pp. 197–206.

11. Deng, L.; Hinton, G.; Kingsbury, B. New types of deep neural network learning for speech recognition and related applications:
An overview. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, Canada, 26–31 May 2013; pp. 8599–8603.

http://doi.org/10.1109/85.238389
http://dx.doi.org/10.1109/MM.2014.55
http://dx.doi.org/10.1080/02763869.2018.1404391
http://dx.doi.org/10.1093/bib/bbx044

Mach. Learn. Knowl. Extr. 2022, 4 101

12. Egmont-Petersen, M.; de Ridder, D.; Handels, H. Image processing with neural networks—A review. Pattern Recognit. 2002,
35, 2279–2301. [CrossRef]

13. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014,
arXiv:1409.0473.

14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

15. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

16. Dally, W.J. Challenges for Future Computing Systems. Lecture Slides. 2015. Available online: https://www.cs.colostate.edu/
~cs575dl/Sp2015/Lectures/Dally2015.pdf (accessed on 29 November 2021).

17. Wulf, W.A.; McKee, S.A. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Comput. Archit. News 1995,
23, 20–24. [CrossRef]

18. Kagi, A.; Goodman, J.R.; Burger, D. Memory bandwidth limitations of future microprocessors. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture (ISCA’96), Philadelphia, PA, USA, 24 May 1996; pp. 78–78.

19. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach; Morgan Kaufmann: Burlington, MA, USA, 2012.
20. Siegl, P.; Buchty, R.; Berekovic, M. Data-centric computing frontiers: A survey on processing-in-memory. In Proceedings of the

Second International Symposium on Memory Systems, Alexandria, VA, USA, 3–6 October 2016; pp. 295–308.
21. Chen, Y.; Luo, T.; Liu, S.; Zhang, S.; He, L.; Wang, J.; Li, L.; Chen, T.; Xu, Z.; Sun, N.; et al. Dadiannao: A machine-learning

supercomputer. In Proceedings of the 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge,
UK, 13–17 December 2014.

22. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, Toronto, ON, Canada, 24–28 June 2017; pp. 1–12.

23. Gao, F.; Tziantzioulis, G.; Wentzlaff, D. Computedram: In-memory compute using off-the-shelf drams. In Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture, Columbus, OH, USA, 12–16 October 2019; pp. 100–113.

24. Deng, Q.; Jiang, L.; Zhang, Y.; Zhang, M.; Yang, J. DrAcc: A DRAM based accelerator for accurate CNN inference. In Proceedings
of the 55th Annual Design Automation Conference, San Francisco, CA, USA, 24–29 June 2018; pp. 1–6.

25. Li, S.; Niu, D.; Malladi, K.T.; Zheng, H.; Brennan, B.; Xie, Y. Drisa: A dram-based reconfigurable in situ accelerator. In Proceedings
of the 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Boston, MA, USA, 14–17 October
2017; pp. 288–301.

26. Li, S.; Xu, C.; Zou, Q.; Zhao, J.; Lu, Y.; Xie, Y. Pinatubo: A processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories. In Proceedings of the 53rd Annual Design Automation Conference, Austin, TX, USA, 5–9 June
2016; pp. 1–6.

27. Pan, Y.; Ouyang, P.; Zhao, Y.; Kang, W.; Yin, S.; Zhang, Y.; Zhao, W.; Wei, S. A multilevel cell STT-MRAM-based computing
in-memory accelerator for binary convolutional neural network. IEEE Trans. Magn. 2018, 54, 1–5. [CrossRef]

28. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
29. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
30. Rosenblatt, F. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms; Technical Report; Cornell Aeronautical

Lab Inc.: Buffalo, NY, USA, 1961.
31. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
32. Jaeger, H. A tutorial on Training Recurrent Neural Networks, Covering BPPT, RTRL, EKF and the“ Echo State Network” Approach; GMD

Report 159, German National Research Center for Information Technology: Sankt Augustin, Germany, 2002; 48p.
33. Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [CrossRef]
34. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [CrossRef]
35. Akinaga, H.; Shima, H. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 2010, 98, 2237–2251.

[CrossRef]
36. Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Wang, Y.; Liu, Y.; Xie, Y. Processing-in-Memory in ReRAM-Based Main Memory; SEAL-Lab

Technical Report; Scalable Energy-Efficient Architecture Lab, University of California: Santa Barbara, CA, USA, 2015.
37. Mittal, S. A survey of ReRAM-based architectures for processing-in-memory and neural networks. Mach. Learn. Knowl. Extr.

2019, 1, 75–114. [CrossRef]
38. Shafiee, A.; Nag, A.; Muralimanohar, N.; Balasubramonian, R.; Strachan, J.P.; Hu, M.; Williams, R.S.; Srikumar, V. ISAAC: A

Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In Proceedings of the 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; pp. 14–26.

39. Davis, W.R.; Wilson, J.; Mick, S.; Xu, J.; Hua, H.; Mineo, C.; Sule, A.M.; Steer, M.; Franzon, P.D. Demystifying 3D ICs: The pros
and cons of going vertical. IEEE Des. Test Comput. 2005, 22, 498–510. [CrossRef]

http://dx.doi.org/10.1016/S0031-3203(01)00178-9
http://dx.doi.org/10.1145/3065386
https://www.cs.colostate.edu/~cs575dl/Sp2015/Lectures/Dally2015.pdf
https://www.cs.colostate.edu/~cs575dl/Sp2015/Lectures/Dally2015.pdf
http://dx.doi.org/10.1145/216585.216588
http://dx.doi.org/10.1109/TMAG.2018.2848625
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TCT.1971.1083337
http://dx.doi.org/10.1038/nature06932
http://dx.doi.org/10.1109/JPROC.2010.2070830
http://dx.doi.org/10.3390/make1010005
http://dx.doi.org/10.1109/MDT.2005.136

Mach. Learn. Knowl. Extr. 2022, 4 102

40. Gao, M.; Pu, J.; Yang, X.; Horowitz, M.; Kozyrakis, C. Tetris: Scalable and efficient neural network acceleration with 3d memory.
In Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and
Operating Systems, Xi’an, China, 8–12 April 2017; pp. 751–764.

41. Kim, D.; Kung, J.; Chai, S.; Yalamanchili, S.; Mukhopadhyay, S. Neurocube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory. In Proceedings of the 43rd International Symposium on Computer Architecture, Seoul, Korea,
18–22 June 2016; pp. 380–392. [CrossRef]

42. Kim, D.; Na, T.; Yalamanchili, S.; Mukhopadhyay, S. DeepTrain: A programmable embedded platform for training deep neural
networks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 2360–2370. [CrossRef]

43. Rosenfeld, P.; Cooper-Balis, E.; Farrell, T.; Resnick, D.; Jacob, B. Peering over the Memory Wall: Design Space and Performance Analysis
of the Hybrid Memory Cube; Tech. Rep. UMD-SCA-2012-10-01; University of Maryland Systems and Computer Architecture Group:
College Park, MD, USA, 2012.

44. Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification 2.1. 2014.
45. Seshadri, V.; Lee, D.; Mullins, T.; Hassan, H.; Boroumand, A.; Kim, J.; Kozuch, M.A.; Mutlu, O.; Gibbons, P.B.; Mowry, T.C. Ambit:

In-memory accelerator for bulk bitwise operations using commodity DRAM technology. In Proceedings of the 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), Boston, MA, USA , 14–17 October 2017; pp. 273–287.

46. Seshadri, V.; Kim, Y.; Fallin, C.; Lee, D.; Ausavarungnirun, R.; Pekhimenko, G.; Luo, Y.; Mutlu, O.; Gibbons, P.B.; Kozuch, M.A.;
et al. RowClone: fast and energy-efficient in-DRAM bulk data copy and initialization. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, Davis, CA, USA, 7–11 December 2013; pp. 185–197.

47. Eckert, C.; Wang, X.; Wang, J.; Subramaniyan, A.; Iyer, R.; Sylvester, D.; Blaaauw, D.; Das, R. Neural cache: Bit-serial in-cache
acceleration of deep neural networks. In Proceedings of the 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), Los Angeles, CA, USA , 1–6 June 2018; pp. 383–396.

48. Aga, S.; Jeloka, S.; Subramaniyan, A.; Narayanasamy, S.; Blaauw, D.; Das, R. Compute caches. In Proceedings of the 2017
IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA , 4–8 February 2017;
pp. 481–492.

49. Wang, X.; Yu, J.; Augustine, C.; Iyer, R.; Das, R. Bit prudent in-cache acceleration of deep convolutional neural networks. In
Proceedings of the 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), Washington, DC,
USA, 16–20 February 2019; pp. 81–93.

50. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; pp. 1135–1143.

51. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J. Solid-State Circuits 2016, 52, 127–138. [CrossRef]

52. Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A Novel Processing-in-Memory Architecture for Neural
Network Computation in ReRAM-Based Main Memory. ACM SIGARCH Comput. Archit. News 2016, 44, 27–39. [CrossRef]

53. Song, L.; Qian, X.; Li, H.; Chen, Y. PipeLayer: A Pipelined ReRAM-Based Accelerator for Deep Learning. In Proceedings of the
2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017;
pp. 541–552.

54. Chou, T.; Tang, W.; Botimer, J.; Zhang, Z. CASCADE: Connecting RRAMs to Extend Analog Dataflow In an End-to-End
in-Memory Processing Paradigm. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
Columbus, OH, USA, 12–16 October 2019; pp. 114–125.

55. Imani, M.; Samragh Razlighi, M.; Kim, Y.; Gupta, S.; Koushanfar, F.; Rosing, T. Deep Learning Acceleration with Neuron-to-
Memory Transformation. In Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA), San Diego, CA, USA, 22–26 February 2020; pp. 1–14.

56. Stone, H.S. A Logic-in-Memory Computer. IEEE Trans. Comput. 1970, C-19, 73–78. [CrossRef]
57. Ruan, Z.; He, T.; Cong, J. INSIDER: Designing in-Storage Computing System for Emerging High-Performance Drive. In

Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference, Renton, WA, USA, 10–12 July 2019;
pp. 379–394.

58. Seshadri, S.; Gahagan, M.; Bhaskaran, S.; Bunker, T.; De, A.; Jin, Y.; Liu, Y.; Swanson, S. Willow: A User-Programmable SSD.
In Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, Broomfield, CO, USA, 6–8
October 2014; pp. 67–80.

59. Song, Y.H.; Jung, S.; Lee, S.W.; Kim, J.S. Cosmos openSSD: A PCIe-based open source SSD platform. In Proceedings of the Flash
Memory Summit 2014, Santa Clara, CA, USA, 30 July 2014.

60. Do, J.; Kee, Y.S.; Patel, J.M.; Park, C.; Park, K.; DeWitt, D.J. Query Processing on Smart SSDs: Opportunities and Challenges. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013;
pp. 1221–1230.

http://dx.doi.org/10.1109/ISCA.2016.41
http://dx.doi.org/10.1109/TCAD.2018.2858358
http://dx.doi.org/10.1109/JSSC.2016.2616357
http://dx.doi.org/10.1145/3007787.3001140
http://dx.doi.org/10.1109/TC.1970.5008902

	Introduction
	Background
	Deep Neural Networks (DNNs)
	Conventional Memory Technologies
	Resistive Random Access Memory (ReRAM)
	3D-Stacked Memory

	Near-Data Processing Architectures
	Commodity Memory Based NDP Architectures
	Ambit
	Neural Cache
	Bit Prudent

	3D-Stacked Memory Based Architectures
	Neurocube
	TETRIS

	ReRAM Based Architectures
	PRIME
	ISAAC
	Pipelayer
	CASCADE
	RAPIDNN

	Conclusions and Future Perspectives
	References

