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Abstract: Reinforcement learning (RL) allows an agent to solve sequential decision-making problems
by interacting with an environment in a trial-and-error fashion. When these environments are very
complex, pure random exploration of possible solutions often fails, or is very sample inefficient,
requiring an unreasonable amount of interaction with the environment. Hierarchical reinforcement
learning (HRL) utilizes forms of temporal- and state-abstractions in order to tackle these challenges,
while simultaneously paving the road for behavior reuse and increased interpretability of RL systems.
In this survey paper we first introduce a selection of problem-specific approaches, which provided
insight in how to utilize often handcrafted abstractions in specific task settings. We then introduce
the Options framework, which provides a more generic approach, allowing abstractions to be
discovered and learned semi-automatically. Afterwards we introduce the goal-conditional approach,
which allows sub-behaviors to be embedded in a continuous space. In order to further advance
the development of HRL agents, capable of simultaneously learning abstractions and how to use
them, solely from interaction with complex high dimensional environments, we also identify a set of
promising research directions.

Keywords: hierarchical reinforcement learning; deep reinforcement learning; reinforcement learning

1. Introduction

Reinforcement learning (RL) [1,2] is a powerful method for solving sequential decision-
making problems. RL agents are capable of learning how to solve a problem from inter-
actions with its environment. In order to solve the problem, the agent does not need to
know the dynamics of the environment in advance. A successful RL system will efficiently
utilize experience gathered during trial-and-error learning, in order to maximize an external
training-signal, called the reward-signal.

Combining RL with recent advancements in the area of deep learning [3,4] has had a
big impact on RL, giving birth to a new subfield called deep reinforcement learning [5–8].
Deep RL applies RL techniques, using high-dimensional state-spaces, such as images [9]
and natural language [10]. This has been made possible because of the capability of deep
learning algorithms to introduce different learnable layers of abstractions on the raw input
data. For example, the DQN algorithm [8], and more recently PPO [11] Rainbow [12], and
Atari57 [13] are RL algorithms that are capable of achieving above human-level performance
on a set of classic Atari 2600 video games. These approaches are able to distill a highly
performing behavior by directly using the screen pixels. Other recent successes of deep RL
include beating top professional human players in the complex board game of Go [14], and
achieving human level performance in cooperative 3D multiplayer video games such as
DOTA 2 [15,16], StarCraft II [17] and a modified version of Quake III Arena [18].

There has also been significant progress towards applying deep RL in real-world
applications such as robotics [19–24], dialog management systems [25], education [26],
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autonomous vehicles [27,28] smart grids [29], fleet management [30], resource manage-
ment [31,32] and recommender systems [33]. However, building real-world RL applica-
tions still remains challenging [34], because RL algorithms struggle with being sample
efficient [35–38], that is, being able to learn a satisfying behavior, from a limited amount of
interaction with the environment. Furthermore, real-world RL systems require hard con-
straints in order to not damage equipment and allow safe exploration [39,40]. Real-world
RL systems will also need to be capable of handling real-time systems, allowing states
and actions to evolve simultaneously [41–43], which is different from the commonly used
turn-by-turn environment interactions.

Hierarchical reinforcement learning (HRL) extends the capabilities of RL, by proposing
a divide-and-conquer approach. In this approach, the complex, difficult to solve problem, is
abstracted into multiple smaller problems. These abstracted problems are generally easier
to solve and their solutions can be reused to solve different problems. This approach has
previously been successfully utilized [44–46] to speed up many offline planning algorithms
where the dynamics of the environment are known in advance.

This compositionality has been identified [1,47] as one of the key building blocks
of artificial intelligence. Humans intuitively harness compositionality in order to tackle
complex problems. For example, planning a vacation can be a complex endeavour if consid-
ered as a whole. However, when decomposed into multiple smaller tasks (e.g., selecting a
hotel, booking a flight, arranging transportation to the airport) the task becomes more man-
ageable. Efficiently using such abstractions has proven to make significant contributions
towards solving various important open RL problems such as reward-function specification,
exploration, sample efficiency, transfer learning, lifelong learning and interpretability.

An essential part of RL algorithms is that they use feedback in order to learn what
is good and bad behavior. When feedback in the form of a reward signal is abundantly
available, an agent can learn quickly. Unfortunately, specifying such dense reward signals is
a complex challenge [48], and often results in unwanted side effects. Moreover, most control
problems naturally come with a sparse reward signal (e.g., object grasped, destination
reached). A sparse reward formulation makes learning extremely challenging as there is
mostly only information on what does not work. Hierarchical reinforcement learning (HRL)
often utilizes various forms of intrinsic motivation [49] in order to provide additional
denser reward signals for individual abstractions.

A second open challenge in RL has been how to explore the environment effi-
ciently [50–53]. Recent empirical research [54] demonstrated that even simple forms of
temporally correlating actions, improves exploration efficiency. In this research, temporally
extended exploration is seen as one of the most important contributions of HRL.

Reinforcement learning (RL) systems are also notoriously known for their sample inef-
ficiency. While efficient use of abstractions seems a promising solution to this long-standing
challenge, increased sample efficiency through HRL is most commonly only realized when
amortizing computation over multiple iterations of very similar problems. Off-policy
learning [37,55,56] is a popular approach towards making RL more sample efficient. HRL
algorithms unfortunately typically still require a more stable on-policy approach.

Current RL algorithms focus mostly on solving only a single problem. However,
abstractions that can be re-used when solving different tasks, pose a possible answer to
the question of transfer learning in RL [57]. Drawing inspiration from research done in
deep learning on how to transfer visual representations from one task to another [58,59],
HRL methods have shown to be capable of learning transferable abstractions within the
same problem setting [60]. However, how to transfer abstractions between very different
problems remains an open problem.

Hierarchical reinforcement learning (HRL) algorithms are also considered an im-
portant step for building lifelong-learning agents [47,61,62]. These agents are capable of
extending and managing their knowledge, in order to become more efficient in solving
ever more complex problems.
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Generally, RL systems suffer from being opaque to humans [63–65]. Various forms of
abstractions used in HRL could allow an increased interpretability.

While the potential of HRL is vast, automatically discovering abstractions is non-trivial
and remains an open research question. A lot of progress has been made recently, utilizing
various forms of temporal and state abstractions. However, solutions currently either
heavily depend on expert knowledge, do not scale well, or are sample inefficient.

The goal of this paper is to provide RL researchers a comprehensive understanding
of how various HRL algorithms contribute towards solving the above described open
challenges in RL. While initial steps in HRL have been previously surveyed [66], the
capability of deep learning to work with high dimensional data has inspired a whole
new set of directions and possibilities in HRL. For example, the challenge of end-to-end
discovering, and sequencing temporally extended actions, directly from high dimensional
inputs, is a novel direction which has become possible because of recent breakthroughs
in deep learning. While also briefly covering early research, the focus of this survey is on
these new directions inspired by deep learning.

This paper first introduces the typically utilized formalism in Section 2. Afterwards in
Section 3 the core challenges of HRL are discussed. The largest part of this paper consists of
a survey of three frameworks and their most common implementations (problem-specific
models in Section 4, options in Section 5, and the goal-conditional framework in Section 6).
An overview of benchmark environments and tasks used in HRL is provided in Section 7.
We provide an evaluation of the discussed frameworks and algorithms in Section 8. In order
to spark future research, we also provide a list of future research directions in Section 9.

2. Background

In this section we briefly present the formal framework which is typically used to
describe RL problems and HRL agents.

2.1. Markov Decision Processes

A Markov Decision Process (MDP) [67] is a formal model, used to describe discrete-
time stochastic control processes. The MDP model is useful for representing decision-
making problems in which an agent can influence the process by executing actions.

A MDP is defined by a tuple (S ,A,P ,R), in this tuple:

• S defines the set of possible states the agent can be in, also called the state-space,
• A contains the set of actions the agent can execute, also called the action-space,
• P : S ×A× S → [0, 1] is the transition function. This function determines what the

outcome-state of an action in a state will be. This function is also often called the
environment-model.

• R : S × A × S is the reward-function, an agent can receive reward when visiting
certain states.

The agent exercises control over the MDP by executing actions. A solution to an MDP
can be expressed with a policy π. This policy models which action the agent takes, given a
state: π(s) : S → P(A). The objective in an optimal control problem is to find an optimal
policy π∗ that maximizes the return, which is defined as the expected accumulated reward
along a trajectory.

π∗ = arg max
π

Eτ∼π

[
T

∑
t=0

γtR(st, at)

]
(1)

Typically, the state of the MDP is reset after a finite number of T-steps. This is called an
episodic MDP. In a non-episodic MDP T = ∞. The sequence of states, actions and rewards
collected during a single instance of an episode is considered a trajectory τ.

In a MDP, the probability of future state transitions only depends on the current state.
This assumption is called the Markov-property. In practice this entails that the current state
should contain all the information an agent needs to make optimal action decisions. And
thus the agent does not require the usage of a memory of past states.
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The received reward is often discounted using a discount factor γ. Reward received
in the future is often less valuable to the agent than reward we can receive immediately.
If γ < 1 this also entails that cumulative rewards of trajectories are finite. This is especially
important when the MDP is non-episodic, and can go on forever.

Semi-Markov Decision Processes

In the MDP framework an action is taken on each discrete time step. This means
that each action exactly takes the same amount of timesteps to execute. However, when
working in a continuous time space, or when dealing with temporally extended sequences
of actions, which is often the case in HRL, different actions might have different execution
lengths, as demonstrated in Figure 1.

In order to support variable duration of a single action, the MDP framework has been
extended to the Semi-Markov Decision Process (SMDP) framework [68–70]. This was done
by adding an additional random variable T to the transition-function P . This random
variable denotes the time between actions. In the case of a SMDP the reward-function
R(st, at) denotes the cumulative reward collected during T steps after executing at in st.

s1 s2 s3a1 a2

s1 s4s2 s3

a1 (temporally extended action)

a2

Discrete timestep

Variable length timestep

(a) MDP

(b) SMDP

Figure 1. The MDP framework differs from an SMDP, in that an SMDP allows the length between
timesteps to be variable. This is an essential property to support temporally extended actions.

2.2. Reinforcement Learning

Assuming full knowledge of the MDP, techniques such as dynamic programming [71]
can be utilized to derive an optimal policy π∗. However, full knowledge of the underlying
MDP is often an unrealistic assumption. In most sequential control processes, the transition-
function P of the MDP is unknown.

Reinforcement learning (RL) [1] is the problem set, concerned with handling unknown
factors in the MDP, by utilizing a trial-and-error approach. A RL agent starts in an initial
state s0 ∈ S . At each time step t the agent interacts with the environment by taking an
action at ∈ A. The agent can either act greedy, and exploit what it already has learned
by following its current policy π(s). Alternatively, the agent can also choose to explore
the outcome of a different random action in order to possibly learn a better policy. This
distinctive interaction between agent and environment is pictured in Figure 2.

Balancing this explore/exploit trade off is one of the characteristic problems of RL.
Different exploration schemes exist. For example, by adding noise to the action-space, ε-
greedy takes random actions ε% of the time. The ε parameter is often decayed over a number
of steps. Other exploration schemes add noise directly to the policy parameters [72,73],
add an intrinsic curiosity bonus to the reward signal [50,51,53,74], or use a distributional
perspective [75,76].

After taking action at, the agent gets feedback in the form of a reward-signal rt+1, and
a new state st+1. The credit assignment problem [77] is concerned with figuring out which
of the previously taken action (or set of actions) leads to a reward-signal.



Mach. Learn. Knowl. Extr. 2022, 4 176

Agent

Environment

State
st

Action
at

Reward
rt

Figure 2. The reinforcement learning framework.

The reward an agent receives directly from the environment is called the extrinsic
reward. Extrinsic, because it is external to our agent. These reward signals can be dense
or sparse. An open field in which the agent gets the distance to the goal-state after each
action is an example of an environment with a dense reward-signal. Alternatively, if the
agent only receives feedback upon reaching the goal-state, the reward is sparsely observed.
An environment with a dense reward-structure makes the credit assignment problem
more tractable. However, in most realistic environments, non-zero rewards are often only
sparsely observed.

Most RL agents learn a policy either indirectly by learning a value function first
(Section 2.2.1), or directly by searching the policy space (Section 2.2.2).

2.2.1. Value-Based Methods

The indirect RL approach uses a value function Vπ(s). This function is capable of
estimating the cumulative discounted future reward (the value) starting from state s and
following policy π:

Vπ(s) = E
{

rt+1 + γrt+2 + γ2rt+3 + · · · |st = s, π
}

(2)

If the agent has access to the dynamics of the environment P , and the state-space
is small and discrete, the agent can maximize its expected cumulative future reward by
navigating to the state that is within the agent’s reach and has the highest expected value.

However, most of the time, the environment dynamics P are unknown, and an agent
cannot reliably know what the result state st+1 will be after taking action at. This is
especially the case when the environment is stochastic in nature. In order to decide what
action to take given the current state st, a state-action-value function (or Q-function) is
often used. This Q-function represents the estimated cumulative future discounted reward
of taking an action a in state s while following policy π:

Qπ(s, a) = E

[
∞

∑
k=0

γkrt+k|st = s, at = a, π

]
(3)

The goal of the agent is to come as close as possible to the optimal Q-function. The
optimal Q-function (Q∗), is capable of outputting the maximum achievable cumulative
reward, starting in state s, and taking action a.

Q∗(s, a) = max
π

Qπ(s, a) (4)

This Q-function can be learned, using algorithms such as the off-policy Q-Learning [78]
algorithm or the on-policy SARSA algorithm [79]. An on-policy algorithm updates a policy
only with samples gathered by utilizing this policy. Off-policy learning is typically more
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sample-efficient, as it also is capable of utilizing experiences gathered when following a
different policy (for example a policy which explores more) and re-using past experiences
gathered by utilizing previous versions of the policy.

Q-learning is considered off-policy, because it does not use the current policy to
estimate the total value of the next state st+1, but instead uses the highest expected value.

Qπ(st, at)← Qπ(st, at) + α(rt + γ max
a

Qπ(st+1, a)−Qπ(st, at)) (5)

While SARSA is considered on-policy because it uses the current policy to sample the
next action at+1:

Qπ(st, at)← Qπ(st, at) + α(rt + γQπ(st+1, at+1)−Qπ(st, at)) (6)

In order to actually learn the Q-function from interaction (st, at, rt, st+1) with the
environment, both Q-learning and SARSA use a Bellman equation [71], which recursively
allows updating Q-values:

Qπ(st, at) = E
st+1∼P

[r(st, at) + γE[Qπ(st+1, at+1)]] (7)

Once the agent has iteratively learned a good estimate of Q∗ from interaction with the
environment (value iteration), a greedy policy can be derived:

π∗(s) = argmaxa∈AQ∗(s, a) (8)

2.2.2. Policy Gradient Methods

An alternative family of policy gradient methods directly search for an optimal policy
π∗ in the policy space, by using gradient descent on the total expected future value objective
function J(πθ).

J(πθ) = E
τ∼πθ

[R(τ)]J(πθ) =
∫

πθ(τ)r(τ)dτ (9)

This family of algorithms typically utilizes policy iteration. In policy iteration, the
agent alternates between an evaluation phase, and a phase in which the policy is updated
according to the received feedback.

For example, the REINFORCE family of algorithms [80] searches for the parameters θ
of πθ by using the gradient:

∇θ ∑
a

πθ(s, a)Q(s, a) (10)

In practice, these types of algorithms try out different actions, and increase the likeli-
hood that the policy will sample successful actions again, when in similar states.

Unfortunately calculating ∇J(πθ) is non-trivial because the dynamics of the environ-
ment are generally unknown. The policy gradient theorem [81] allows the policy gradient
to be represented as an expectation.

∇θ J(πθ) = E
τ∼πθ

[
T

∑
t=0
∇θ log πθ(at | st)Φt

]
(11)

This allows the gradient to be calculated from environment interactions:

Φt = R(τ) (12)

In order to perform this policy improvement step, the agent needs an estimate of the
total future value of an action in a state Q(s, a). In order to obtain such value-estimation,
Monte Carlo simulation can be utilized to estimate total future value from entire trajectories.
Because gradients obtained by sampling trajectories are often subject to high variance, it
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is also common to instead of estimating the value function, to use a baseline, in order to
obtain a function with a lower estimation variance.

Φt =
T

∑
t′=t

R(st′ , at′ , st′+1)− b(st) (13)

A simple baseline would be to subtract an average reward, obtained over a number of
episodes. An advantage function is also often used, using the total future value of the state
V(st) as the baseline:

Φt = A(st, at) = Q(st, at)−V(st) (14)

In order to facilitate exploration an entropy regularizer is often used, facilitating
stochastic behavior of the policy.

Policy gradient methods have also been combined with value function estimation
methods. This approach is called Actor-Critic [82]. This family of methods uses policy
gradients to optimize a parameterized policy (the actor), while simultaneously deriving a
value function (the critic), in order to reduce the variance of policy gradient methods.

θ ← θ + α∇θE[Q(st, at)] (15)

2.3. Deep Reinforcement Learning

When the state and action-space are limited and discrete, elements of a RL architecture
(such as the policy, and/or value estimations), can be represented using a low-dimensional
matrix. However, this method quickly becomes intractable for more complex problems,
utilizing high-dimensional input data such as images or audio. Various function approxi-
mation methods have been used in the past in order to represent different components of a
RL agent. Example function approximation techniques include: linear models that learn
individual expert-provided features of the state-space [83], and tree-based algorithms [84].

Recently deep neural networks have demonstrated to be capable of learning useful
hierarchies of task-specific representations from raw high-dimensional input signals [3,4].
These representations can be used to perform complex machine learning tasks end-to-end such
as image classification [85–88], image captioning [89], visual question answering [90], image
generation [91–93], sound generation [94], object detection [95,96], speech recognition [97–100],
natural language translation [94,101], and natural language understanding [102,103]. These
techniques are also starting to be utilized by industries such as agriculture [104] and
medicine [105].

The progress made in the area of deep learning has been made possible by a few
building blocks. For example, in computer vision applications, convolutional neural
networks [106] have been demonstrated to be capable of capturing task-specific spatial and
temporal dependencies. In such a network each layer uses filters in order to extract learned
high-level features from the input in order to provide a lower dimensional representation
as the original input to the downstream task (e.g., image classification or MDP value
estimation).

Building blocks such as Long Short-Term Memory (LSTM) [107] recurrent networks
and Gated Recurrent Units (GRU ([108] allow deep learning to work with data which is
sequential in nature. To accomplish this, they use gates which are capable of learning
which parts of the sequential input data, summarized in a hidden state, should be passed
on, and what to forget. These techniques are especially interesting when working with
natural language, as the meaning of a word in a sentence is often dependent on other
neighboring words. However, in RL too, memory can be useful, or even required, when the
current non-Markovian state does not contain all information required to make an optimal
action decision.

However, when sequences become longer, LSTM and GRU based approaches struggle
due to their reliance on a single fixed-length vector to represent a long sequence of previous
inputs. Attention [109] is a mechanism introduced to solve this problem. When using
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Attention, instead of relying on a single hidden state, representing past members of a
sequence, attention mechanisms learn how to weigh different hidden states associated
with different past sequence members. More recently transformer architectures [110] solely
rely on this attention mechanism and eliminate the usage of recurrent networks. This also
allows for faster inference, as inputs can now be processed in parallel.

Also, unsupervised deep learning approaches, capable of generating new previously
unseen data instances have recently achieved tremendous successes, and have been added
to the standard set of deep learning building blocks. These techniques include Variational
Autoencoders (VAE) [111], which utilize a regularized bottleneck autoencoder approach.
A regular autoencoder [112] encodes a high-dimensional input in a lower dimensional
latent space. The VAE regularization tries to make sure that points close in the latent space
are also similar once decoded back into their high-dimensional form. This regularization
allows the generation of new data instances by generating points in the latent space.

Generative Adversarial Networks (GAN) [113] generate new data using a generator
network, which receives feedback whether the generated instances look realistic by a second
discriminator network. This approach has been demonstrated to be capable of generating
out-of-sample high dimensional images [91] indistinguishable from real photographs.

While research in deep learning has focussed on processing high dimensional inputs
such as image data and natural language, alternative forms of data have been studied. For
example, Graph Neural Networks (GNN) [114,115] are capable of directly working with
data structured as a graph.

One of the key challenges in RL is to be able to generalize feedback received from the
environment to unvisited states, and untested actions. Using deep neural networks we
can learn representations from raw high-dimensional input-spaces, which in turn can be
used to approximate value functions, or directly express a policy. Unfortunately, combining
non-linear function approximation, and iterative value function bootstrapping is prone
to unstable learning [116,117], especially in an off-policy setting. This problem has been
identified as the deadly triad of RL [1].

The seminal work of Mnih et al. [8] demonstrated above human-level performance on
a set of classic Atari 2600 video-games [118]. The introduced off-policy Deep Q-Network
(DQN) architecture was able to learn different policies for a range of different video games,
using only pixels as input data. In order to generalize collected experience to unseen states,
and untested actions, the Q(st, at) function is represented using a deep neural network.
The issue of instability caused by function approximation in RL [119] was tackled by the
usage of a separate target network, used to predict next-state future values. This target
network is only periodically updated. Additionally, an experience replay buffer [120,121]
was used, in order to reduce temporal correlation in the observed state-reward sequences.

The DQN algorithm has been heavily studied, and various improvements have been
proposed such as Double Q-Learning (DDQN) [122], prioritized replay [123], dueling
networks [124], multi-step learning [125] and distributional RL [75,76,126]. The Rainbow
framework [12] combines these improvements. While the original DQN-architecture could
not achieve above-human performance on all tested games, the Agent57 approach [13],
outperforms humans in all proposed test games, by automatically parameterizing a family
of policies.

Various algorithms that directly optimize a parameterized policy such as Deep De-
terministic Policy Gradient (DDPG) [127], Trust Region Policy Optimization (TRPO) [128]
and Proximal Policy Optimization (PPO) [11] have also been able to work directly on
high-dimensional input spaces using deep neural networks. In order to stabilize learning,
policy improvements are often restricted in order to avoid making too big updates, which
could collapse performance.

3. Hierarchical Reinforcement Learning

State-of-the-art deep RL algorithms require enormous amounts of interaction with the
environment, before learning a satisfying control policy. Human intelligence in contrast,
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typically only requires a fraction of the required training experience, in order to solve the
same tasks.

Lake et al. [47] identified compositionality, the idea that new representations can be
constructed through the combination of primitives, as one of the core building blocks
of human intelligence, and suggested that it will also be of quintessential importance in
order to advance artificial learning systems. Compositionality can be seen as a way to
facilitate lifelong learning [62], learning new concepts, by combining previously learned
primitives [129]. In addition, the power of compositionality to come up with, seemingly
unlimited new concepts, based on meaningful primitives cannot be underestimated.

HRL aims to achieve compositionality, by learning reusable sub-behaviors together
with a composition strategy. While compositionality in HRL can be achieved in low-
dimensional state-spaces, deep neural networks have been demonstrated to be capable of
automatically discovering composable representations, which offer significant opportuni-
ties for HRL, to facilitate compositionality directly using high-dimensional inputs.

In this section, we first describe the various mechanisms that HRL utilizes in order
to achieve this (Section 3.1), how this benefits RL (Section 3.2) and which challenges a
modular RL approach entails (Section 3.3).

3.1. Mechanisms
3.1.1. Temporal Abstractions

One of the core mechanisms of HRL are temporal abstractions. Solving complex
problems often involves reasoning on multiple time scales. For example, when driving
to work you typically do not start planning about whether you should steer left or right.
You start on a much higher level, by planning for example about what roads to take, and
whether you should stop to refuel.

A temporally extended action (sub-behavior), consists of a sequence of primitive
actions and possibly other temporally extended actions. These temporal abstractions can be
utilized by a learning agent in order to make decisions on a higher level of abstraction. The
sequence of actions that make up a temporally extended action can be fixed, or governed
by a policy.

3.1.2. State Abstractions

A second form of abstraction that is common in HRL, are abstractions imposed on
the state-space [130]. It is not feasible to learn the best action in every possible state in a
high-dimensional input space. Instead, we use state abstractions (e.g., enemy visible on
screen?), to reason about what action to take. Appropriate state abstractions have been
demonstrated to significantly increase learning performance in RL problems [83,131].

For example, similar states in terms of transition dynamics and reward function,
measured using the notion of bisimulation [132] for MDPs, can be grouped to build state
abstractions [133]. These can be used to transfer an optimal policy from one MDP to a
larger one [134] and to discover temporal abstractions [135].

Current deep RL algorithms are capable of learning their own state abstractions from
raw high dimensional state-spaces. These algorithms are for example capable of detecting
doors, and learn that it is beneficial to walk through these doors. Unfortunately, these
learned state representations are often not sufficiently expressive to reason about complex
environments, and develop long-horizon plans. Such a plan might for example be to search
for a key, and return to the current location when confronted with a locked door.

Given abstractions over the state-space, and linked temporally extended actions, the
agent can reason on a higher-level about the decisions it can make. Instead of learning a
behavior for controlling the entire raw state-space, a hierarchy of different systems is able
to control various abstracted parts of the state-space through temporally extended actions.
An example of such a hierarchy is presented in Figure 3.
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Figure 3. An example of the usage of state- and temporal- abstractions in the Monezuma’s Revenge
Atari 2600 video game. The agent uses a state abstraction (agent has a key), in order to decide upon
which temporally extended action to activate.

Anders and Andrew [136] identified the benefit of utilizing different state abstractions
for different sub-behaviors. The intuition behind this idea is that when performing different
sub-behaviors, other aspects of the state-space become relevant. Ignoring irrelevant features
to the sub-behavior, allows for more efficient exploration, and learning of the different
temporal abstractions.

3.2. HRL Advantages

Using both temporally extended actions and state abstractions, HRL is capable of pro-
viding significant improvements in various open RL challenges, such as credit assignment,
exploration and continual learning.

3.2.1. Credit Assignment

The issue of credit assignment is a long-standing challenge in RL. Credit assignment is
tasked with figuring out which action had which impact on the overall perceived reward.

Temporal and state abstractions can greatly increase the sample efficiency of RL by
making credit assignment less challenging. Given a set of temporal abstractions, the agent
is freed from the complexity of having to reason about which action to take on every
individual step. The agent instead activates temporal abstractions which can run for
multiple steps. When performing credit assignment by learning a value function, this has a
profound effect on the efficiency of the value-backups [137,138]. While utilizing primitive
actions only, a value backup only goes back one step, thus when reaching a goal-state, only
the expected future value of the previously visited state gets updated. Using temporal
abstractions, this reward gets propagated further back, allowing faster learning of a value
function. This idea is demonstrated in Figure 4.
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Figure 4. Value backups, (a) using primitive actions, and (b) using temporal abstractions. With
temporal abstractions an optimal policy can be found using less value backups.

3.2.2. Exploration

While improved sample efficiency through more structured credit assignment is
capable of solving RL problems which previous flat RL algorithms could not solve. A recent
ablation study [54], empirically demonstrated that the most significant contribution of
current HRL architectures, lies in its capability to explore in a semantically meaningful and
temporally extended fashion (Figure 5). Exploration, using only primitive actions often
results in over-exploration of states near the starting state of the agent. Using temporal
abstractions for exploration allows the agent to explore the environment in a more structural
way, which allows the agent to also explore more difficult to reach states.

Primitive actions Temporal abstractions

Figure 5. Exploration using only primitive actions, mostly explores states near the starting position
of the agent (state visitation counts are represented using a red gradient). Temporal abstractions can
help the agent to explore more distant states.

However, the opposite has also been observed. Given a suboptimal set of sub-
behaviors, pathological exploration can easily worsen learning performance [139].

3.2.3. Continual Learning

Problems in RL are most of the time solved from scratch, starting without any prior
information. While finding a learning algorithm, capable of solving problems requiring
long-term planning, without any priors, is certainly an interesting research direction. In
the short-term the sample efficiency of RL can greatly be improved by building upon
previously learned knowledge [47].

A policy learned without any abstractions is very difficult to transfer to a new problem
(e.g., use a set of steering directions to navigate to a different location). In contrast, once
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learned, sub-behaviors can be transferred to solve different problems in similar environ-
ments [61,140–142]. Thus, the cost associated with learning sub-behaviors should not only
be weighted on a single task, but should possibly be considered over multiple tasks.

Tessler et al. [61] for example presented a lifelong learning RL framework capa-
ble of learning different skills in the complex open-world game of Minecraft [143]. In
a second stage multiple skills are distilled into a single network in order to efficiently
retain knowledge.

The ability of sub-behavior re-use is an important stepping stone towards agents
which are capable of continual learning [62]. More complex problems can be solved if
an agent is efficiently able to improve upon what it already has learned from previous
problems [144].

3.3. HRL Challenges

Learning algorithms that utilize hierarchical compositions of temporally extended
actions will have to define how these sub-behaviors should be discovered, how they can be
developed, how efficient state-abstractions can be learned and how they can be composed.
In this section, we briefly describe these challenges.

3.3.1. Automatic Discovery of Abstractions

Early HRL approaches [145–147] utilized manually defined sub-behaviors. While they
demonstrated performance increases by using sub-behaviors, the requirement of manually
defining sub-behaviors heavily limited their scalability.

One of the most important questions of HRL consists of: how can we automatically
discover meaningful sub-behaviors? A lot of empirical research (e.g., [140,148–150]) has
been conducted on algorithms that are capable of automatically learning meaningful sub-
behaviors, from interaction with the environment, without any knowledge provided by
an external expert, in a sample efficient way. Theoretically, it has been proven [151], that
finding a small set of sub-behaviors in a limited number of steps is an NP-hard problem.
Abel et al. [152] studied which sets of state abstractions and temporal abstractions are
capable of preserving representation of near-optimal policies. However, this method
requires access to the underlying MDP.

In low-dimensional environments, a small discrete set of sub-behaviors can greatly
improve the sample efficiency of the learning algorithm. However, in truly complex
environments, a large continuous range of sub-behaviors will be required.

The most commonly used techniques to automatically discover temporal abstractions,
either utilize special properties of different states [153,154], or correlate trajectories with a
sub-behavior random variable [148–150,155].

3.3.2. Development of Abstractions

In order to use temporally extended actions, they need to receive enough suitable
samples from the environment in order to become sufficiently developed.

In the most promising HRL approaches, sub-behaviors are developed end-to-end,
while they are also being discovered [140,149,150]. This however does not need to be the
case. Sub-behaviors can also be discovered and trained using a staged approach [61,154,156].
For example: the state-space could be split in a few equal parts, with a sub-behavior
assigned to each part. In a second phase, the sub-behaviors can be developed by for
example randomly activating them. However, as the number of sub-behaviors increases,
more efficient development strategies will be required to make sure that all sub-behaviors
are sufficiently trained. If multiple sub-behaviors are generalized by a single parameterized
function, samples can be used to train multiple sub-behaviors at the same time. Similarly,
off-policy methods can be used to simultaneously develop multiple abstractions [137].
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3.3.3. Decomposing Example Trajectories

Often, it is possible to obtain human demonstrations for different control tasks. HRL
can maximize the utility of such demonstrations by decomposing them into sub-behaviors.
Instead of learning a single task from demonstrations, the discovered sub-behaviors can be
used as building blocks to solve a range of related tasks, potentially without the need of
additional demonstrations.

In imitation learning [157–160], the exploration problem of RL is made somewhat
less complex, because the agent is equipped with a set of demonstration trajectories,
which originate from a better than random agent (e.g., a human domain expert). While
imitation learning typically is used to solve a single problem, if imitation learning is used
to discover temporal abstractions, these abstractions might be re-used to solve multiple
similar problems [161–163].

Providing a reward-function for a control problem is often a complex issue in itself [48].
The idea of Inverse Reinforcement Learning (IRL) [164,165] is that instead of manually spec-
ifying a reward-function an agent should instead learn this reward-function by observing
demonstrations from an extrinsic agent. However, learning a single reward-function for
the entire problem is often too coarsely defined, or demonstrations might originate from
a set of different reward-functions, instead of one (e.g., when purely exploring multiple
sub-behaviors). A single reward-function might also be task- or environment-specific, and
not allow generalization over multiple problems. Hierarchical IRL aims to learn a composi-
tion of multiple smaller reward-functions, which can in turn be used to train sub-behaviors
using trial-and-error learning techniques [166,167].

3.3.4. Composition

Sub-behaviors alone are not enough to solve HRL problems. They need to be composed
in order to form complex plans. A capable HRL algorithm will need to be able to select a
favorable sub-behavior to use given a state.

There are two major approaches which are commonly used to learn compositions:

• Bottom-up training: the sub-behaviors are discovered and developed first. Once
they have been sufficiently developed, they are frozen, and a composition-policy
is learned by sampling different sub-behaviors. This is the most straightforward
way, as the higher level does not need to take into account that the outcome of the
selected temporal extended actions might have changed. Sub-behaviors learned
using a bottom-up approach, can often also be transferred to solve similar problems.
However, in the first phase, time might be spent learning sub-behaviors which the
higher-level actually does not need.

• Top-down training: the higher-level first selects a subgoal g ∈ S it deems interesting
in order to reach the overall goal. Once selected, the lower-level is trained to reach the
proposed subgoal. This approach is often more efficient, compared to training bottom-
up in solving a single control problem. However, it needs to take non-stationary sub-
behaviors into account. It is also often not straight-forward to transfer sub-behaviors
to different problems.

4. Problem-Specific Models

Initial research on HRL agents was focused on proving the benefits of using temporal
abstractions in an online RL setting. In order to demonstrate the capabilities of HRL, highly
problem-specific models were proposed. They offered, intuitive, and often interpretable
answers on how to model hierarchies of abstractions.

This problem-specific nature is often deemed to be difficult to learn automatically by
a learning agent. Learning parts of problem-specific models often relies on the idea of
information hiding and reward hiding [168]. By either concealing parts of the observed
state or reward, no sub-behavior has all the required information in order to solve the entire
task. This forces different abstractions to focus on different parts of the task.
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Problem-specific models however often also heavily rely on external knowledge
provided by an expert, or task-specific structure present in the environment.

The most common problem-specific models are briefly discussed in the following
subsections. A more in-depth survey on some of these frameworks and related early
research has been previously conducted by Barto and Mahadevan [66].

4.1. Feudal

Feudal Q-learning [168] is an approach, that makes use of a simple abstraction of the
state-space on multiple levels. Feudal Q-Learning has different managers assigned to differ-
ent regions of the state-space. This system is inspired by medieval society management: the
king commands nobles, these nobles command knights, and so on. In Feudal Q-learning
a hierarchy of learning modules is constructed. At the top of this hierarchy is a manager,
which is in charge of an abstracted state-space, and sets out a task for a single lower-level
worker within this space. The lower-level worker in turn is capable of taking actions within
this space. This lower-level worker is rewarded for successfully executing the received
command, independently of the reward of the higher-level. Using reward-hiding, only
the highest level manager uses the extrinsic reward-signal to set out tasks for the level just
below it. This approach has also been proven useful when confronted with large action
spaces [169].

While this is a highly interpretable approach, unfortunately the Feudal model can only
be utilized to solve a specific kind of problem in which the state-space can be neatly divided.

4.2. Hierarchies of Abstract Machines

Parr and Russell [170] proposed an approach that composes the behavior of a HRL
agent by utilizing different finite state machines, which are able to invoke each other.
This approach is inspired by software development, in which functions call each other to
manipulate the state of the program.

A machine in a Hierarchies of Abstract Machines (HAM) setting is defined by a
transition function, and a start-function that is responsible for choosing the initial action of
the machine. The different actions (machine states), each machine can take consists of: take
a primary action in the environment, call another machine as a subroutine, or terminate
the machine, and return control to the machine that invoked it. The stochastic transition
function is responsible for selecting actions depending on the environment state, and the
previously executed action.

A HAM needs to be provided by an expert, it acts as a sketch for the solution, constrain-
ing exploration that needs to be done by the agent. The HAM-Q learning algorithm was
proposed to transform the expert-provided HAM sketch into a policy capable of solving RL
problems. This algorithm extends Q-learning [78], to not only consider the environment
state in taking an action, but also includes the machine-state. While a HAM is a highly
interpretable and reusable model, hand-designing a HAM is often an infeasible task for
complex problems.

4.3. MAXQ

The MAXQ-framework [171,172] is a framework for representing decomposed value
functions. A decomposition of the value function answers the question: what factors
contribute to the overall expected cumulative future reward? The proposed MAXQ decom-
position is hierarchical: solving the root-task solves the entire control problem. MAXQ is
able to model both temporal and spatial abstractions. A MAXQ decomposition consists of
two different types of nodes:

• Max-nodes define different sub-behaviors in the decomposition, and are context-
independent

• Q-nodes are used to represent the different actions that are available for each sub-
behavior, and are specific to the task at hand.
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The distinction between max and Q nodes allow max nodes to be shared by different
tasks. For example, in the Taxi benchmark environment [172], in which the agent needs to
pick up, and transport customers to their destinations, a navigate max node can be used by
both a refuel and get-passenger sub-behavior.

Similar to the HAM-Q algorithm, a MAXQ-Q learning algorithm [172] has been
proposed to learn policies for the different nodes.

A major difference between the HAM-model, and the MAXQ framework is its ability
to handle stochastic environments. While the proposed method of executing a HAMQ-
Q policy hierarchically (committing to sub-behaviors until termination), an alternative
polling executing approach is proposed. In this alternative execution mode each level of the
hierarchy is evaluated on each time step. This allows the MAXQ-Q algorithm to operate
more efficiently in highly stochastic environments.

The MAXQ-Q learning algorithm provides a way to learn how to use a decomposed
value function. However, this approach is limited applicable, because the decomposition
needs to be provided by an external expert.

Hengst [173] proposed a method for automatically decomposing a value function
within the MAXQ framework. Instead of relying on an expert to provide the decomposition,
HEXQ is able to learn a hierarchy from scratch.

In the HEXQ algorithm a different hierarchical level is considered for each dimension
of the state-space. The construction of the hierarchy starts by observing which dimension of
the state-space has the highest change frequency. In order to determine this, a random policy
is used for an arbitrary amount of time steps. The experience gathered from this random
policy is then used by the HEXQ algorithm to build a graph of state transitions. Extra
attention is paid to transitions not following a stationary distribution. States that exhibit
such special transitions are called exit states. In these cases, the information provided
by the current state dimension is not enough to make a decision and other parts of the
hierarchy will need to decide how to handle these situations. States that are reached using
these exit states are called entry-states. In order to build usable state-abstractions, the
transition-graph can be split into multiple regions. A region is defined, so each exit state
should be reachable from each entry-state assigned to the region. A different MDP can thus
be considered for each region.

One limitation of the HEXQ approach is that it only considers a single state dimension
on each level. The ordering heuristic might not sufficiently be capable of detecting what
state-features depend upon each other efficiently. While this approach works in a lot of
simple domains, it might not find good solutions for more complex control problems with
higher dimensional state-spaces.

Another approach of automatically learning a MAXQ decomposition is called Vari-
able Influence Structure Analysis (VISA) [174]. VISA uses a Dynamic Bayesian Network
(DBN), capable of modeling causal relationships between actions and state dimensions.
Combinations of state dimensions and actions that cause important value function changes
are considered sub-behaviors.

Hierarchy Induction via Models And Trajectories (HI-MAT) [175] is also capable of
discovering a MAXQ-decomposition. HI-MAT differs from VISA in that it also requires
at least one single successful trajectory. Causal and temporal relationships among ac-
tions in this trajectory are analyzed in order to decompose the trajectory into multiple
sub-behaviors. This leads to a decomposition that is more compact than those typically
discovered using VISA.

5. Options

The problem-specific models presented in the previous section are difficult to automat-
ically discover because of their non-generic nature, and complex architectures. The options
framework [137] provides an alternative framework to model temporally extended actions
in a more generic way so that automatically learning sub-behaviors and their composition
becomes more feasible in multiple settings, using the same learning algorithm. However,
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the ideas introduced by the reviewed problem-specific frameworks, also remain relevant in
the options framework. This is due to the fact that most problem-specific frameworks can
be represented as options.

In the options framework, the action-space of the agent is extended with temporally
extended actions called options. The SMDP formalism is used in order to model control
problems that utilize options. An option is considered to be semi-Markov if its policy does
not only depend on the current state of the MDP, but also depends on the set of observed
states and rewards since the option was invoked. This set could for example be used to
terminate an option if it failed to satisfy the termination condition within a number of steps.

Options represent closed-loop sub-behaviors (Figure 6), which are carried out for multiple
timesteps until they trigger their termination condition. Options are considered closed-
loop systems because they adapt their behavior based on the current state. This is in
contrast to open-loop systems, which do not adapt their behavior once initialized when
confronted with a new state. It is often more realistic to model sub-behaviors as closed-loop
systems than using open-loop sub-behaviors. For example, while driving a car, if we would
be committed to an open-loop option, we would not deviate if we encounter danger, a
closed-loop option will alter its action based on the current state.

Using a well-defined set of options will require the agent to make fewer decisions
when solving problems [176–178]. The usage of options in a RL setting has been shown
to speed up learning. For example, [61,179] demonstrated options as a way to summarize
knowledge as an essential building block in a lifelong-learning setting. Guo et al. [180]
demonstrated the increased performance of using temporally extended actions using
importance sampling.

Various algorithms make use of the options framework, in the remainder of this
section we first discuss the different components of the framework. Additionally, we
review various algorithms capable of automatically discovering options by interacting with
the environment, and how a policy-over-options can be found in order to compose options
appropriately.

5.1. Framework

An option can be defined as a tuple ω = (I , π, β):

• I ⊆ A is the initiation set, containing all states in which the option can be initiated.
• π : S → P(A) is the intra-option policy, determining the action-selection of the

option based on the current state (and optionally the set of states, since the option was
invoked).

• β : S → [0, 1] makes up the termination condition, which determines when the option
will halt its execution.

In Figure 7 an example option is represented. In this example the initiation set
and termination condition are represented as single states, and the intra-option policy
is represented by the arrows. This type of option with a single initiation- and termination-
state is often called a point option.
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Figure 7. An example option, which takes the agent from the initiation state S0 located in one room,
to the termination state Sg in another room.

5.1.1. Initiation Set

The initiation set of an option defines the states in which the option can be initiated.
Different approaches are typically used to define the initiation set. A commonly used
approach defines the initiation set as all states from which the agent is able to reliably
reach the option its termination condition when following the intra-option policy, within a
limited amount of steps. It is also usual to assume that for all states in which the policy
of the option can continue, it can also be initiated. For example, [154,181] uses a logistic
regression classifier to build an initiation set. States that were observed up to 250 time steps
before triggering the option termination were labeled as positive initiation states for the
selected option, states further away in the trajectory were used as negative examples.

An alternative approach consists of defining the initiation set of an option as the
complete state-space. Instead of using the initiation set in order to determine which option
to activate, a policy-over-options [137] is used to determine which option to initiate.

In the continuous state-space it does not make sense to use individual states as the
initiation set. Reaching a single specific state in a continuous state-space is very unlikely, so
in this case the initiation set can be defined as a region [181,182].

5.1.2. Termination Condition

The termination condition decides when an option will halt its execution. Similarly to
the initiation set, a set of termination states is often used. Reaching a state in this set will
cause the option to stop running. Termination states are better known as subgoal-states.
Finding good termination states is often a matter of finding states with special properties
(e.g., a well-connected state or states often visited on highly rewarded trajectories).

The most common termination condition is to end an option when it has reached
a subgoal-state. However, this can lead to all kinds of problems. The option could for



Mach. Learn. Knowl. Extr. 2022, 4 189

example run forever when it is not able to reach the subgoal-state. To solve this, a limitation
of the allowed number of steps taken by the option policy is often also added to the
termination condition.

A termination condition has also been considered when the agent is no longer active in
its initiation set [183]. In addition, gradient-based approaches have been proposed, capable
of maximizing long-term return, given a set of options [184] or while simultaneously also
learning the option policies [140].

Similar to the initiation set, if the state-space is continuous, the termination condition
should be defined as a function, or as a region inside the state-space. This region will decide
when the option-policy is leaving the state-space it was assigned to by the initiation set.

5.1.3. Intra-Option Policy

If the initiation- and termination-set are specified, the internal policy of the option can
be learned by using any RL method. The intra-option policy can be seen as a control policy
over a region of the state-space.

An important question that needs to be addressed when learning intra-option policies
from experience, is how these policies should be rewarded. The extrinsic reward signal
is often not suitable in this case, because the overall goal does not necessarily align with
the termination condition of the option. Alternatively the intra-option policy could solely
be rewarded when triggering its termination condition. However, various denser intrinsic
rewards signals could also be used. For example, if the termination condition is based
upon a special characteristic of the environment, this property might serve as an intrinsic
reward signal.

Intra-option policy learning can both happen on-policy and off-policy. With on-policy
learning, only the policy of the invoked option is updated. Sutton et al. [185] explores
off-policy option learning methods that are able to improve the policy of an option, even if
it is currently not active.

5.1.4. Policy-over-Options

A policy-over-options π(ω|st) selects an option ω ∈ Ω given a state st. This additional
policy can be useful to select the best option, when the current state belongs to multiple
option initiation sets. It can also be used as an alternative to defining an initiation set for
each option.

The most often used execution model is the call-and-return model. This approach
is also often called hierarchical-execution. In this model a policy-over-options selects an
option according to the current state. The agent follows this option, until the agent triggers
the termination condition of the active option. After termination, the agent samples a new
option to follow.

An alternative model called the one-step-options model, or also sometimes called
non-hierarchical execution model, queries the policy-over-options on each single timestep,
allowing switching options, even if the option is not fully terminated yet. For example,
Mankowitz et al. [186] suggests switching options when the expected total future value of an
option other than the current executing option has become higher. However, options should
mostly be able to run for a certain amount of steps in order to be useful. Harb et al. [187]
incorporated a termination deliberation cost in order to prevent options switching on each
time step.

When considering a policy-over-options, we can identify different forms of optimality:

• Hierarchical-optimal: a policy that achieves the maximum highest cumulative reward
on the entire task.

• Recursive-optimal [172]: the different sub-behaviors of the agent are optimal individually.

A policy which is recursive-optimal might not be hierarchical-optimal. It is possible
that there exists a better hierarchical policy, where the policy of a sub-task, might be locally
suboptimal, in order for the overall policy to be optimal. For example, if a sub-task consists
of navigating to the exit of a room, the policy is recursive-optimal when the agent only
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fixates on this sub-task. However, a hierarchical-optimal solution might also take a slight
detour to pick up a key, or charge its battery. These diversions negatively impact the
performance of the sub-task, but improve the performance of the overall task.

5.2. Option Subgoal Discovery

The most common approach of automatically discovering options is focused on finding
good termination conditions consisting of reaching a single state. These subgoal states
often exhibit special characteristics. For example, a doorway of an elevator is a special
state because it provides access to otherwise impossible to reach areas. This approach also
significantly helps efficient exploration. Easy access to these important states, facilitated by
the intra-option policy, will allow the agent to explore further.

What makes a state a good subgoal? This is a difficult question to answer as there are
a lot of often conflicting interesting properties of states that can be used to identify subgoals
states. In the following section we review some properties that have successfully been used
to identify useful subgoal states from collected experience in the environment.

5.2.1. Landmark States

A landmark state is a cognitive reference point. It is common for people to organize
spatial information hierarchically using such landmarks. Landmarks used by humans, in
order to come up with complex plans, are often stored in a low-dimensional representation
(e.g., a rough outline of the shape of the Eiffel-tower, instead of a detailed picture).

The Hierarchical Distance to Goal (HDG) algorithm [188] is capable of navigating a
complex environment by navigating between landmarks. These landmarks are cluster-
centers of regions. These regions need to be specified up front. The agent will first transition
between landmarks to navigate to the region which also contains the goal. Once successfully
transitioned to the goal region, primitive actions will be used to navigate to the goal state.
In order to efficiently navigate between landmarks, or within a single region, the amount of
steps required to navigate from one state to another, the distance to goal (DG) is estimated.

Landmarks provide an interesting way to navigate between vastly different areas of the
state-space. However, because these areas need to be provided by an expert, this approach
does not scale well to large state-spaces and does not allow transfer of sub-behaviors to
different environments.

5.2.2. Reinforcement Learning Signal

Digney [189] used the reinforcement learning signal in order to identify useful subgoal
states. States with a high reinforcement signal gradient are non-typical states, and are
considered useful states used in more complex navigation tasks. This approach is however
limited because it is only applicable in environments with a dense enough reward signal.

5.2.3. Bottleneck States

Besides the reinforcement learning signal Digney [189] also considered using a history
of the visitation frequencies in order to discover subgoal-states. Bottleneck states are states
that are frequently visited on successful trajectories, but not on unsuccessful trajectories.

An example of a bottleneck state could be a state where the agent picks up a key, or
utilizes a door. These states are essential in trajectories that reached the overall goal, while
trajectories of failed attempts might not contain these states. Bottlenecks discovered near
the initial position of the agent are especially interesting, as they greatly benefit exploration
of areas further away from the initial position.

Automatically discovering bottleneck states can be done by keeping track of the
visitation counts of states in successful trajectories. However, when using this approach,
states near the starting position of the agent will be more often selected as potential
bottleneck states, because more exploration is often done near the starting position of the
agent. To avoid this bias, McGovern and Barto [154] suggested only counting the first visits
of states over a set of successful trajectories.
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Trajectories are often considered in multiple instances of the same environment with
different goals. For example, Stolle and Precup [190] proposed instantiating multiple
instances of the same environment with different goal states. States visited on successful
trajectories across instances are considered to be bottleneck states.

McGovern and Barto [154] described the problem of discovering bottleneck states, as
an application of multiple-instance learning [191]. Individual trajectories are considered
bags, when a trajectory is successful it is considered a positive bag, when it is unsuccessful
it is considered a negative bag. Diverse density [192] was used to discover individual
subgoal states.

Kulkarni et al. [193] introduced a method also capable of discovering bottleneck states
in high-dimensional state-spaces. The introduced algorithm used a learned approximate
successor map. Such a map represents a state in terms of its expected future state occupancy,
called the successor representation (SR) [194]. When sufficiently developed by following a
random policy, a large set of samples from the SR can be used to discover bottleneck states.

Bottleneck states are an interesting way of discovering subgoal states because they
provide easy access to key states in the environment. However, this approach cannot be
utilized in all environments. Bottleneck states often correspond with doors, hallways or
elevators. However, some environments naturally lack bottleneck states (e.g., joint positions
of a robot-arm).

5.2.4. Access States

Access states allow the agent to transition to regions of the state-space which are
otherwise difficult to reach. Example access states include: a doorway between two rooms
or an elevator. Access states are natural in navigation tasks, but can also be found in
other state-spaces: for example picking up a screwdriver will unlock all kinds of attaching
possibilities. Access states are similar to bottleneck states but do not require successful
trajectories, which are often difficult to collect. Instead of relying on the reward signal
(bottleneck states), access states rely on a measurement of novelty.

Relative novelty [183] can be used to identify access states. Relative novelty considers
the novelty of the predecessor states, and the successor states. Subgoal candidates have a
different novelty score than regular states. For a regular state the novelty of neighbor states
will be more or less the same. However, for a difficult to reach door or elevator state, the
novelty of states that can be reached from this state will be very different.

Goel and Huber [195] proposed a similar approach where funnel states are identified,
these states have a significantly larger number of predecessor states that lead to them, while
they only have a limited number of known successor states.

5.2.5. Graph Partitioning

The MDP model, represents the RL problem as a graph. Techniques used to partition
graphs in general have also been utilized to discover options.

The Q-Cut algorithm [196], models trajectories utilized by an agent in a graph-
structure. The nodes in this graph represent the different states, edges are concerned
with modeling state transitions. A min-cut approach [197], will try to discover a set of
edges that if we would remove them, the graph would be split into two unconnected graphs.
This procedure can be applied iteratively, resulting in multiple detached graphs. Detecting
such edges in the learned state-transition graph-structure can lead to the discovery of
bottleneck states.

Şimşek et al. [198] introduced a similar approach called L-Cut. This method partitions
local state transition graphs, in order to discover access states that can be utilized as useful
subgoal-states. The difference with Q-Cut is that L-Cut does not rely on the entire transition-
graph, but utilizes a local view of the graph, making it less computationally demanding,
and better scalable to larger state-spaces.

Machado et al. [153] demonstrated that a learned representation with Proto-Value
Functions (PVF) [199] can be used in order to discover options. By utilizing the transition
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matrix of the underlying MDP, PVFs can be obtained. A PVF tries to capture the topology
of the state-space, facilitating structural decomposition of large state-spaces. The options
found in the eigen-options framework [153] each can be seen as traversing one of the
dimensions found in the learned representation. The intrinsic-reward linked to traversing
such a dimension is defined as the eigenpurpose of the option. The intra-option policy
which is derived when following the eigenpurpose is called the eigenbehavior.

Machado et al. [200] extended the eigen-option framework to also be applicable when
a linear representation is not available by using a successor representation (SR) [194], to
estimate a topology of the state-space. This extension also allows discovery of eigen-options
in stochastic environments, and allows discovery without the necessity of a handcrafted
feature representation. The successor representation can be approximated using deep
neural networks [193], which allows eigen-options to be discovered in a high-dimensional
state-space.

5.2.6. State Clustering

Similar states can also be grouped using clustering techniques. States that facilitate
navigating between different clusters are natural bottlenecks. Lakshminarayanan et al. [201]
proposed using a spectral clustering algorithm PCCA+, that is capable of simultaneously
partitioning the state-space, and return connectivity info between different partitions from
sample trajectories.

5.2.7. Skill Chaining

Previously described methods for automatically discovering subgoals are often limited
to work only in a discrete state-space. In a continuous-space, single states are often
never visited multiple times. Konidaris and Barto [181] proposed an algorithm capable of
discovering option-based sub-behaviors in a continuous state-space. Instead of utilizing
termination-states in the options framework, skill chaining defines termination regions for
the different options. Similarly, the initiation condition is also defined as a region.

Given a termination-region, the initiation-region of the options can be considered a
classification problem. Given a set of sample-trajectories following a learned flat-policy,
states that are capable of reaching the termination region within a limited amount of steps
are positively classified.

The first option will have the environment-goal as its termination region. Once
the initiation set of this option has been learned, a second option can be learned. The
termination-region of this option will be the initiation-region of the previously learned
option. This procedure is repeated until a chain of options is discovered up to the agent’s
starting position. A more complex skill tree could be learned similarly, allowing the
discovery of multiple solution-paths.

However, in order to build a skill chain, or tree, a policy first needs to be trained which
is capable of reaching the end-goal, in order to generate meaningful trajectories. Because
of the requirement of such a policy, the usefulness of skill chaining remains limited to the
transfer learning case.

5.3. Motion Templates

Motion templates [182] are options that can be parameterized in order to adapt the
behavior of its intra-option policy. This is often useful in a continuous state-space. A motion
template could for example be discovered for throwing a ball. The exhibited force and angle
might be parameters of this template. Learning a single policy for each possible combination
of force-angle would be infeasible. Using motion templates allows generalization of sub-
behaviors. da Silva et al. [202] proposed a method for learning motion templates from
experience using classifiers, and non-linear regression models.
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5.4. Macro-Actions

Another approach for discovering temporally extended actions consists of trying to
discover interesting sequences of actions, called macro-actions. This approach differs from
the options framework, in that macro-actions are often open-loop. The intra-option policy
most commonly consists of a fixed set of actions, and does not depend on the current state.

The STRategic Attentive Writer (STRAW) architecture [203] is capable of discovering
macro-actions as commonly occurring sequences of actions (multi-step plans) directly from
the extrinsic reward-signal. Once activated, STRAW follows the macro-action for a variable
number of steps, without updating it. Instead of the traditional policy, which selects actions
one at the time, STRAW selects sequences of actions, and learns when to shift course. The
problem thus becomes finding out when decisions need to be made, and finding macro-
actions that an agent can follow between decision-points. Attentive writing [204] is used to
determine what part of a plan is relevant to determine further sequences of actions. The
differentiable of this algorithm makes it possible to learn when to commit to the current
action-plan or when to re-evaluate.

An adapted architecture called STRAWe [203] was proposed with added noise, en-
couraging exploration.

Macro-actions discovered by STRAW, in a set of Atari benchmark games [118], corre-
sponded to interpretable sub-behaviors such as avoiding enemies, and navigating between
game-elements. The commitment plan efficiently showed a preference for shorter macro-
actions when faced with fast-paced games, or when agility is required (e.g., when directly
facing an enemy).

Fine Grained Action Repetition (FiGAR) [205] is similar to STRAW in that it selects
multiple actions based on a single observation. FiGAR however decides on an action, and
the amount of times it should be repeated. FiGAR works as an extension to another RL
algorithm. While showing that this method can improve the performance of an already
well performing agent, a limitation is its inability to respond to sudden changes while
committed repeating actions.

5.5. Using Options in High-Dimensional State-Spaces

Research on automatic option discovery has mostly been focused on low-dimensional
state-spaces. However, the options framework has also been demonstrated to be capable of
learning options when using function approximation in high-dimensional state-spaces.

Kulkarni et al. [156] studied the construction of option-based hierarchical agents,
given a set of expert-provided termination conditions, in the form of the pixels of subgoal
states. The resulting Hierarchical-DQN (h-DQN) algorithm uses a two-layered approach,
in which the low-level controller uses DQN [8] in order to learn a different intra-option
policy for each of the provided termination states. A pre-training phase is used first in
which sub-behaviors are randomly activated. This will allow the options with easier to
reach termination conditions to become sufficiently developed.

During a second training-phase a higher-level controller learns a composition of the
different sub-behaviors, also using the DQN algorithm, while also jointly further training
the individual sub-behavior policies. Because of the pre-training phase, the agent is now
capable to explore harder to reach subgoal states. This two-layered approach was able to
achieve progress, on hard exploration navigation tasks, in high-dimensional state-spaces,
in which previously no progress had been made.

Tessler et al. [61] proposed a similar architecture called Hierarchical Deep Reinforce-
ment Learning Network (H-DRLN), which utilizes a form of curriculum learning [144].
The agent first learns to solve simpler sub-tasks, and successfully re-uses this knowledge
as sub-behaviors in more complex tasks. This was demonstrated in the game Minecraft.
Different Deep Skill Networks (DSN) were trained to solve different sub-problems, such
as navigation tasks, or objects pick-up tasks. In a second phase the H-DRLN agent can
solve combinations of slight variations of the sub-problems, in a more sample efficient
way than DQN [8]. Additionally, a form of policy distillation [206] is proposed in order to
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merge multiple skills into a single network. This Distilled Multi-Skill Network requires
less computing resources than the individual skill networks.

While this approach is limited because of its heavy dependency on an expert who
needs to design individual problems to train the sub-behaviors, this approach demonstrates
the capability of a hierarchical-agent to be capable of transferring knowledge between tasks,
paving the way for a lifelong learning framework [62].

5.6. Option Discovery as Optimization Problem

Previous discussed approaches separated the issue of discovering options, and learn-
ing a policy-over-options. This approach of bottom-up learning risks wasting time learning
sub-behaviors which might not be required in order to solve the problem at hand. For-
mulating option development and discovery as part of an optimization problem tasked
with optimizing total future reward is an alternative approach which allows options and a
policy-over-options to be learned end-to-end.

The Hierarchical Relative Entropy Policy Search (HiREPs) algorithm [207] extends the
Relative Entropy Policy Search (REPS) algorithm [208] to the hierarchical setting. The REPS
algorithm addresses the problem of maximizing the expected reward of a policy while
bounding the information loss (relative entropy) due to policy updates.

HiREPs uses the same information theoretic regularizer as REPS, but also includes
learning options as a latent variable estimation problem. HiREPs learns options which
are separable in the action space, minimizing overlap. This is achieved by estimating the
probabilities that actions have been sampled by the different options, and updating the
weight according to these probabilities. This should lead to options that generate different
actions in similar states.

Daniel et al. [209] proposed a framework capable of inferring option components from
sampled data using expectation maximization (EM). All components of the options are
represented as distributions. HiREPs was utilized in this framework to sample data.

The Option-Critic (OC) algorithm [140] is an end-to-end framework capable of jointly
discovering and developing options without using prior knowledge. This approach was
inspired by the Actor-Critic framework [210]. The actor-part in the OC framework consists
of multiple intra-option policies. The critic-part is capable of assessing discounted future
value of options and actions. An option is selected by a policy-over-options, and runs
until the agent triggers the stochastic option termination condition. The gradient of the
termination conditions uses the advantage [211] regarding the future value of the option,
compared to other options. Options which exhibit a high advantage over other options are
updated using this gradient to run longer.

Harb et al. [187] proposed to add a deliberation cost to this gradient-update, in order
to avoid options collapsing into single-step options. This deliberation can be interpreted as
how much better an option needs to be in order to switch. Unfortunately, this deliberation
parameter needs careful tuning.

Klissarov et al. [212] introduced the Proximal Policy Option-Critic (PPOC) archi-
tecture. Extending option-critic to become applicable on continuous tasks, by incorpo-
rating the Proximal Policy Optimization (PPO) algorithm [11]. PPOC uses a stochastic
policy-over-options.

Harutyunyan et al. [213] proposed the Actor-Critic Termination Critic (ACTC) which,
similarly to option-critic, focuses on the termination part of the options. By concentrating
the termination probabilities of options around a small set of states, higher quality options
in terms of learning performance, and intuitive meaning, can be discovered.

The option-critic algorithm is capable of learning options end-to-end, even in high-
dimensional state-spaces, without any expert knowledge, or additional intrinsic reward
structures. Option-critic has shown similar results to DQN [8] in the Atari benchmark [118].
While this is an important stepping stone in further advancing the applicability of the
options framework, additional research is required in order to further stabilize automatic
end-to-end option-learning.
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5.7. Options as a Tool for Meta-Learning

In a meta-learning approach [214–216], we search for adaptability. An agent is not
trained to solve a single problem, but rather optimized to quickly solve unseen, similar
problems. This method is often presented as learning to learn. Options learned, using
meta-learning techniques, allow options to become less focused on a single problem, and
should facilitate transfer of options to novel problems.

For example, the Meta Learning Shared Hierarchies (MLSH) [217] algorithm, learns
a set of sub-behaviors, by utilizing a distribution of different tasks. For each specific task
a policy-over-options is learned. Individual options are optimized in order to learn a
good policy-over-options on a new task as quickly as possible. MLSH uses an incremental
approach, in which a single task is sampled first. In this initial stage, the existing options
are challenged as-is to solve this task. In a second stage, both the intra-option policies and
the policy-over-options are updated jointly. Afterwards a new task is sampled, and the
procedure is repeated until convergence.

HiPPO [218], similarly focuses on how sub-behaviors can be made more robust to
changes in the environment by utilizing a random runtime of the different options. HiPPO
does not require a complex training scheme and a single task can be used as the base for a
different task.

Sohn et al. [219] proposed a method capable of learning an adaptation policy by
inferring the underlying subtask graph from a limited number of sample trajectories.

6. Goal-Conditional

It has been deemed difficult to propose learning methods for the presented problem-
specific frameworks. The options framework provided a powerful generic language that
spurred the development of various learning algorithms. However, the biggest disad-
vantage of the options framework is that it is difficult to scale to support numerous sub-
behaviors. In addition, training options is often inefficient, because most commonly only
one option is trained at the time, no components are shared between options, and options
are often developed independently of the upstream tasks.

The goal-conditional framework models sub-behaviors differently. In order to support
a large amount of sub-behaviors a goal-vector z ∈ Z is utilized to express different sub-
behaviors. This goal-vector is utilized to communicate a sub-behavior, activated by a
higher-level manager, to a lower-level worker. This idea is illustrated in Figure 8. This goal
vector can be discrete in order to express a limited number of abstractions, but it is also
possible to use a continuous vector to express an infinite number of possible abstractions.

Manager

Sub-behavior

1  0   1   0
Goal vector

Environment

State, reward

Actions

Figure 8. Goal-conditional framework.

In this framework experience used pursuing one goal will also be useful for other
related subgoals. This is due to the fact that goal-conditional algorithms often share com-
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mon components such as a state-representation. This makes goal-conditional algorithms
capable of generalizing sub-behaviors, even for previously unseen states and untested
sub-behaviors. Expressing sub-behaviors using a goal-vector, makes it possible to simul-
taneously learn a large amount of sub-behaviors. Once the temporal abstractions are
sufficiently developed, solving RL control problems in a goal-conditional context becomes
a matter of sequencing appropriate goal-vectors. This new problem (π(s) : S→ Z) should
be considerably less difficult than solving the original problem (π(s) : S→ A).

When designing goal-conditional algorithms, two important questions need to be
addressed. The first question relates to the way goals are represented. Multiple ways of
representing goals have been proposed ranging from utilizing the full state-space [149],
to smaller latent-spaces [150,155]. When the dimensionality of the goal space Z becomes
too large, it will be difficult to train sub-behaviors capable of expressing all possible sub-
behaviors, however when utilizing a smaller goal-space than the original state-space Z,
some behaviors are, possibly not expressible with the chosen goal-space.

Once a decision has been made on how to represent sub-behaviors, a second major
design decision needs to be made on how to sample various sub-behaviors in order to
facilitate efficient training.

Similar to how options provided a more generic template to model the reviewed
problem-specific frameworks, the goal-conditional framework can also be used to model
options. Thus, ideas on discovering and developing abstractions, introduced in the previous
frameworks, are also relevant in the goal-conditional framework.

In the following subsections we provide an overview of different proposed goal-
conditional techniques which decompose the state or the reward function, or rely on
unsupervised entropy to discover abstractions.

6.1. General Value Functions

In the classic RL approach a value function Vπ(st) is often learned to determine the
total future expected reward starting in state st, while following policy π. The idea of a
General Value Function (GVF) [220] is to apply the same learning ideas used to learn a
single value function, to a discrete multitude of different prediction targets, besides the
extrinsic reward signal. Examples of such targets are, learning how many steps there are
before an episodic control problem terminates, or learning the distance before hitting a wall.
Learning different value functions, can be seen as a way to build general knowledge about
how different aspects of the environment can be manipulated. The intuition behind this
idea is that if we know how our environment works, we should be able to easier achieve
goals in this environment. Different value functions can essentially be utilized as temporal
abstractions, allowing the agent to reason on a higher level of abstraction.

In order to develop these different value functions, off-policy learning is often used so
that an agent can learn multiple targets simultaneously using the same experience while
not necessarily maximizing for all different targets.

The Horde algorithm [220] is an example, of an algorithm capable of learning different
targets. Horde utilizes a large number of independent sub-agents called demons. Each
demon is responsible for learning a single predictive target about the world. Each demon
has a policy, reward-function, termination-function and termination-reward-function. For
the termination-function and termination-reward, termination refers to an interruption
in the normal flow. A termination-condition for a specific hydration-management value
function could for example be: ran out of water.

Similar to Horde, Bengio et al. [221] uses an autoencoder [112,222] to disentangle
various factors of variation in the state-space. For each discovered factor of variation a
different policy is learned that maximizes change on a single factor of variation.

The Horde architecture should be seen as a non-trivial exercise in knowledge repre-
sentation and scalable abstraction learning. However, it only hints at how the discovered
abstractions can be utilized together in order to solve entire RL control problems.
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The Universal Value Function Approximation architecture (UVFA) learns a single
value function V(s, z) where the goal-state z is a parameter. Because learning a different
value-function for each state would be infeasible in a high-dimensional state-space, UVFA
uses factorization techniques and function approximation in order to develop V(s, z). This
architecture can be trained using supervised learning, by factoring observed values into
an embedding for the state, and a separate embedding for the goal state. UVFA has also
been demonstrated to work in a RL setting, by using Horde [220]. UVFA allows Horde to
generalize to unseen goal-state predictive targets.

While the UVFA framework is capable of efficiently generalizing navigation to dif-
ferent subgoal states, it does not provide a way of addressing the issue of which subgoal
should be targeted given the current state, or which subgoal states should be used to train
the Horde, these still need to be provided by an expert. Levy et al. [223] developed a
learning algorithm which is capable of automatically selecting subgoal states, by utilizing a
multi-level architecture in which each level (besides the lowest level) outputs subgoal-states.
By limiting the amount of steps the agent has to reach a subgoal, the agent learns which
subgoal-states are reachable from the current state.

The Hybrid Reward Architecture (HRA) [224] takes as input a decomposed reward-
function similarly to the MAXQ algorithm [172] and learns a separate value function for
each of these functions. Because each part of the reward-function only depends on a subset
of all features, approximating these individual value functions becomes more feasible.

A separate agent (and corresponding value function) is assigned to each separate
reward-function, similar to the Horde architecture. Each agent can have its own Q-function,
or one Q-function with multiple heads can be learned, so that a shared state representation
can be utilized. The output of the individual value functions is combined to estimate a
single value for each state/action-pair, which can be used to solve the original control
problem. However, for training the agent does use the individual outputs of the different
reward functions.

The original research leading up to the UVFA architecture focused on the development
of a goal-conditional framework to guide further research. Next to the question of how
multiple predictive targets can be learned from a stream of experience, also different
possible types of auxiliary targets have been studied. For example, Jaderberg et al. [225]
introduced two types of unsupervised auxiliary predictive targets: pixel-control and feature-
control.

Using pixel-control, the agent learns a separate policy which is capable of maximizing
observed pixel-change in cells of a non-overlapping grid that is placed over the original
state observation. Such a cell in a grid could for example contain a door, by opening it, the
agent will drastically change the pixels of this cell.

Similarly, feature-control learns a separate policy that aims to activate neurons in the
network of the behavioral policy. The intuition behind this idea is that, when sufficiently
developed, these neurons should represent some useful features which impact the policy
of the agent. Thus, if the agent learns to manipulate these neurons, it should be able to
change the environment in meaningful ways.

The UNsupervised REinforcement and Auxiliary Learning (UNREAL) architecture [225]
uses pixel-control and feature-control as auxiliary rewards which can be optimized together
with an A3C agent [226].

Auxiliary rewards have also been used to drive exploration. For example, the Sched-
uled Auxiliary Control (SAC-X) architecture [227] uses auxiliary tasks such as minimiz-
ing/maximizing distance between objects, maximizing velocity, or activating a touch-sensor
in order to actively drive scheduled exploration. They demonstrated that complex robotic
manipulation behavior can be learned from sparse extrinsic reward signals.

Modelling multiple value functions capable of effectively representing different tem-
poral and state abstractions proves to be an efficient way to integrate expert knowledge
into a RL agent. This method effectively allows the agent to reason on a higher level of
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abstraction. However, the often, very domain-specific required expert knowledge, required
to build the architectures, is also the biggest limitation of this approach.

6.2. Information Hiding

Information hiding [168] was a popular early approach for training problem-specific
frameworks. However, more recently information hiding has also been used to facilitate
training goal-conditional agents. As no single part of the architecture has access to all
available information, different parts need to collaborate. While the GVF framework
focuses on decomposing the reward function, information hiding focuses on decomposing
the state-space.

Heess et al. [141] proposed an algorithm in which the lower-level components only
have access to task-independent proprioceptive information (e.g., joint angles, velocities
or haptic information), the higher-level component has access to all available information,
including exteroceptive observations (e.g., vision and audio). This approach draws inspi-
ration from biology in which the brain typically composes plans utilizing exteroceptive
observations. While the lower-level systems like for example the spinal-cord, controls
task-independent sub-behaviors, which only utilizes task-independent proprioceptive
information.

In this architecture the high-level policy is recurrent, and the low-level policy utilizes
a feedforward network. The high-level module utilizes a modulator control signal which
is updated every k-frames. This signal is used to activate different sub-behaviors. A pre-
training phase is utilized in which the low-level controller acquires generic locomotion
sub-behaviors first, using a shaped reward signal (e.g., move in all available directions).
Once sub-behaviors have been developed they are frozen, and a higher-level policy can be
trained to modulate sub-behaviors in order to maximize extrinsic reward.

Using information hiding is similar to providing a decomposed reward function, an
interesting way of incorporating expert knowledge. However, decomposing the state-space
has often the additional benefit of being task-agnostic, which should facilitate transfer of
the learned abstractions.

6.3. Unsupervised Learning in HRL

In various RL sequential decision problems, feedback received from the environment
through the reward signal is often very sparse, and denser reward signals are difficult to
construct [48]. Unsupervised learning is a subfield of machine learning, concerned with
discovering patterns without any feedback-signal. The typical example being clustering
data elements in coherent groups.

Unsupervised learning methods have also been proven useful in a RL context. Un-
supervised learning allows our agent to learn sub-behaviors without utilizing informa-
tion hiding or the reward signal. For example, a popular unsupervised method is to
maximize entropy H(π(·|st)) as an intrinsic-reward in addition to the extrinsic reward
r(st, at) [228,229]:

J(π) = Eτ∼ρπ(τ)

[
∑

t
r(st, at) + αH(π(·|st))

]
(16)

RL solutions that only optimize for cumulative future expected reward, often risk
finding a policy which is only locally optimal. By optimizing an agent for future value,
while also being as random as possible, the agent becomes less likely to be stuck in a local
optimum, more robust to permutations and often manages to explore more efficiently [230].

In HRL, acting as random as possible is utilized to find a diverse set of sub-behaviors.
Because this method often results in a large amount of discovered sub-behaviors, the
goal-conditional framework is an ideal candidate to model this kind of sub-behaviors.

Besides entropy, other forms of unsupervised learning can be utilized to discover
sub-behaviors. For example, Nachum et al. [231], considered how well a learned goal
representation is capable of expressing a near-optimal policy as an additional optimization
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objective. Another example is Sukhbaatar et al. [232], which utilizes unsupervised self-play
for learning goal-embeddings.

Florensa et al. [233] used Stochastic Neural Networks (SNN) [234,235] combined with
an information-theoretic regularizer during a pre-training phase in order to discover diverse
sub-behaviors. SNNs are able to model stochastic processes, by integrating stochastic units
in the computation graph. These stochastic units are used to model a diverse set of sub-
behaviors, while non-stochastic units are used to share information across sub-behaviors.

The various sub-behaviors can be activated by feeding an additional extra input to
the policy. Different latent codes generate different interpretable sub-behaviors. After
pre-training sub-behaviors, a high-level policy is trained, keeping the weights of the sub-
behaviors frozen. The higher-level selects a sub-behavior through the latent variable, and
commits to it for a fixed amount of steps. TRPO [128] is used to train both the manager and
the lower-level.

The Variational Intrinsic Control (VIC) [236] algorithm tries to discover as many sub-
behaviors as possible, while simultaneously maximizing the diversity of sub-behaviors.
VIC optimizes an empowerment objective [237]. Empowerment optimizes sub-behaviors
to reach states where the agent expects to achieve the most control after learning. This is
an unsupervised method to sub-behavior discovery, because empowerment is not directly
related to the overall intention (maximizing extrinsic reward) of the agent.

E
s0∼µ

[
E

τ∼π(·|s0)
[log PD(c|s0, sT)] + H(G(·|s0))

]
(17)

Diversity of VIC sub-behaviors is achieved by maximizing the number of different
states an agent can easily reach. This can be measured by the mutual information between
the set of action-choices of a sub-behavior, and the set of termination states. The intuition
used is that we should be able to tell intrinsically different sub-behaviors apart, if we can
infer them from final states.

VIC however is difficult to use in a high-dimensional state-space, because function
approximation is difficult due to the unstable empowerment intrinsic reward. In addition,
exploration is complex, if a new state is discovered, there is probably not yet a sub-behavior,
which takes the agent to this new state, so inferring what sub-behavior leads to this state is
not yet possible.

Diversity is All You Need (DIAYN) [148] also maximizes an information theoretic
objective using a maximum entropy policy. This objective is used to create a set of sub-
behaviors that are as diverse as possible. The objective can be interpreted as maximizing
the discriminability between different sub-behaviors. This is achieved by maximizing
the mutual information between all states of a single trajectory, and the sub-behavior.
According to DIAYN, a sub-behavior should control which states the agent visits. Thus, it
should be possible to infer the sub-behaviors from the states visited. The behaviors that
emerge in this way have been shown to represent various sub-behaviors such as walking
and jumping.

E
c∼G

[
E

τ∼π,c

[
T

∑
t=0

(log PD(c|st)− log G(c))

]
+ βH(π|c)

]
(18)

DIAYN extends upon VIC in order to be applicable in more complex high-dimensional
environments. The distribution of sub-behaviors is fixed in DIAYN rather than learned.
This is done in order to prevent a collapse of diversity. VIC learns the distribution over
sub-behaviors, which leads to oversampling of already diverse sub-behaviors. Because
DIAYN utilizes a uniform distribution, training time is better divided.

Once discovered, sub-behaviors are used for the entire episode. Solving a problem
consists of selecting the right sub-behavior. When presented with a problem, DIAYN tests
all sub-behaviors, and picks the one resulting in the largest reward. Experimentally DIAYN
finds sub-behaviors that are able to solve sparse complex benchmark tasks. It even is able
to learn multiple alternative solutions for solving a single task.
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Achiam et al. [238] proposed an algorithm that combined option discovery methods
with variational autoencoders [239]. The result is the Variational Autoencoding Learning
of Options by Reinforcement (VALOR) architecture. VALOR samples random vectors
called contexts from a noise distribution. These contexts are used as additional input to
the policy to form trajectories. Secondly an autoencoder is trained to decode contexts from
trajectories. Contexts should become associated with trajectories as a result of training. The
VALOR approach was able to distinguish between trajectories meaningfully. Curriculum
learning [144] is used, by increasing the amount of possible contexts, when the performance
on the current set of contexts is strong enough.

E
c∼G

[
E

τ∼π,c
[log PD(c|τ)] + βH(π|c)

]
(19)

VIC and DIAYN can be considered specific instances of VALOR. VIC, DIAYN and
VALOR all achieved similar performance [238], however VALOR is able to qualitatively
discover better sub-behaviors because of its trajectory focus.

The Latent space policies (LSP) [155] architecture is a multi-level architecture, in which
a latent variable of a lower-level layer acts as the action-space for a higher-level layer. The
intuition is that a layer should either directly try to solve the overall problem, or make
the problem easier solvable for the next layer. The higher layer can always undo any
transformation of the lower layer. This is possible because each layer has access to the state
observation, and the usage of bijective transformations.

Each layer is trained in turn starting from the lowest level, after training a lower-level
the weights of this lower level are frozen. Additional layers can then be iteratively trained,
using the latent variable of the level below it, as its action-space. Each layer is trained using
a maximum entropy intrinsic reward. However, for more challenging tasks, this approach
also allows incorporating prior information, in the form of a shaping reward. For example,
an additional reward for movement could be used in a lower-level, in combination with
the entropy intrinsic reward. This will lead to movement in all directives. It is possible to
use a different reward-function for each layer. Training within a layer is done using Soft
Actor-Critic (SAC) [55]. This approach achieved best results when trained in a bottom-
up fashion by pre-training sub-behaviors, and stacking additional layers on top of the
developed sub-behaviors. Training multiple layers, simultaneously end-to-end, reduced
overall performance.

Unsupervised methods have proven to be capable of discovering diverse sets of
sub-behaviors without the dependency of any expert knowledge. However, as the di-
mensionality of the state-space increases, purely using information-theoretic objectives
often leads to trivial encoding of the context [150,238]. It remains an open question how
information theoretic methods can be diverse in more meaningful ways.

6.4. End-to-End Algorithms

Unsupervised discovery of sub-behaviors allows goal-conditional algorithms to dis-
cover a wide range of diverse sub-behaviors. While this is especially interesting in a lifelong
learning setting [62], finding a solution to a single control problem might not require a large
set of diverse sub-behaviors.

Algorithms such as FeUdal Networks (FuN) [150] and HIRO [149] are capable of
learning diverse sets of sub-behaviors and their composition, end-to-end, in function of the
extrinsic reward.

FeUdal Networks (FuN) [150] is inspired by the Feudal-approach [168], in the sense
that a higher-level manager, working at a lower temporal resolution, selects a subgoal, and
a lower-level worker, is tasked to achieve this subgoal. Differently from the original Feudal
approach, FuN does not use reward hiding, and balances intrinsic and extrinsic rewards
through an environment-specific hyperparameter.

The communicated subgoals are defined in a latent space, and they are directional
rather than absolute in nature. It is much more feasible for a worker to move the agent
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in a certain direction, than to navigate directly to a subgoal state. Thus, a directional
subgoal-specification allows a much denser intrinsic reward signal. It was demonstrated
that directions in a latent space allow the representation of diverse sub-behaviors. The
worker can be trained to maximize this intrinsic-reward using any deep RL algorithm.
Advantage Actor Critic (A3C) [226] was used by the authors.

The manager learns to select latent goal directions, directly maximizing the extrinsic-
reward using an approximate transition policy gradient. This form of policy gradient
learning exploits the fact that the behavior demonstrated by the worker will ultimately
align with the goal set. The manager learns to set advantageous goal directions.

Both manager and worker use recurrent networks. The worker uses a standard LSTM
network [107] while the manager uses a novel dilated-LSTM, which efficiently allows the
manager to operate at a lower temporal resolution.

The HIRO [149] architecture takes a similar approach as FuN, in that it communicates
subgoals between layers in a directional fashion. However, HIRO does not use a latent
space to represent the subgoal, but is able to actually use the state-space to select different
sub-goals. Similarly to FuN, the lower-level is densely rewarded for moving towards this
subgoal-state. Using a low-dimensional latent space in order to represent sub-behaviors
reduces the amount of sub-behaviors that can be expressed. An examination of the impact
of the goal-representation in terms of impact of expected reward has been conducted by
Nachum et al. [231], Dibya et al. [240].

The HIRO approach focuses on sample efficiency by supporting off-policy learning.
In the case of HIRO, off-policy corrections are used to make up for combinatorial effects
introduced by simultaneously learning a lower-level policy and a high-level policy. This
correction re-labels past experience with a high-level action, in order to maximize the
probability of the past lower-level actions.

A combination of the off-policy correction, and a representation of subgoals in the
raw state-space experimentally showed significant increased performance over FuN [150],
and state-of-the art hierarchical bottom-up approaches [233]. However, stabilizing end-
to-end goal-conditional algorithms such as HIRO and FuN remains difficult, and requires
additional research.

7. Benchmarks

In order to compare performance of different architectures, various benchmark en-
vironments have been proposed throughout research. In order to qualify as a suitable
benchmark, a problem needs to be [118] varied and interesting enough in order to claim
generality and represent a real-world problem. Ideally benchmark tasks are created unre-
lated to specific algorithms or research directions in order to avoid experimenter’s bias. In
this section we present a representative subset of such environments.

7.1. Low-Dimensional State-Space Environments

A set of exemplar control problems has been heavily used in order to demonstrate
the capabilities of HRL systems. These low-dimensional environments often act as a first
testing ground during experimentation. Because of their limited low-dimensional state and
action spaces, algorithms often converge quickly, which allows fast iteration.

For example, the four-room gridworld [137] is a popular benchmark task for hierar-
chical systems. In this environment the agent needs to navigate to different locations in
four rooms connected by narrow hallways. Often different sub-behaviors are learned to
efficiently navigate between different rooms. An example is presented in Figure 9.
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Figure 9. Example four-room gridworld. The agent needs to navigate through the different rooms in
order to reach a goal-state. Navigation between rooms in this example is done by the yellow and
green sub-behaviors. In order to reach the goal state, the agent also needs to use primitive actions,
which are displayed in gray.

Another classic discrete action-space task is the Taxi-domain proposed by Dietterich [172].
In this domain a virtual taxi needs to pick-up customers, and drop them off at the right
locations. More recently an escape-room [241] environment has been proposed in order to
test hierarchical agents. The objectives in these environments are configurable in difficulty.
This configurability allows to gradually advance to more complex problems than the
Taxi-domain, without taking too big steps.

Classical continuous state-space environments such as the Cartpole environment [242],
and the Pinball-domain [181] are often used to demonstrate algorithms capable of handling
a continuous action-space.

7.2. High-Dimensional State-Space Environments
7.2.1. Discrete Action Spaces

Video games are an ideal environment for testing HRL algorithms. Gathering large
amounts of data from game-environments, is in most cases inexpensive, and safe. Classic
well-known games are often used, because they represent various difficult tasks, and
do not suffer from experimenter bias, because they were not explicitly built as a HRL
benchmark task.

A set of Atari games (e.g., Asteroids, Breakout, Pong) [118] has been the most widely
used benchmark to demonstrate capabilities of hierarchical algorithms. Especially Atari
2600 games which are considered hard-exploration games such as Montezuma’s Revenge,
Pitfall and Private Eye are considered suitable HRL benchmarks, as non-hierarchical
methods often struggle to find control behaviors for these environments. HRL algorithms
have made significant progress [150,156] on these problems.

While HRL algorithms often score well in some types of games, they are rarely able
to score well on all types of games simultaneously. Generalization over multiple games
remains an ongoing challenge. In order to reduce overfitting, procedural generated game
environments are often used [243]. By using generated environments the agent has not
seen before, we can test whether the agent really mastered the problem, or relied on very
specific problems of the environment.

Semi-realistic 3D worlds are also often considered when reporting on the performance
of HRL algorithms. For example, ViZDoom [244], is based on the first-person shooter
Doom. The DeepMind Lab [245] platform provides various challenging 3D navigation and
puzzle-solving tasks.

The open-world game of Minecraft [143] is another environment often used to demon-
strate complex behaviors of various hierarchical systems. Navigating this environment
requires both visual cognition of a high-dimensional environment, and planning actions on
a higher-level of abstraction.
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Real-time strategy (RTS) games have also been used a lot in AI research. Especially,
the StarCraft (II) game, has been heavily used as a platform to demonstrate progress of AI
systems [246,247]. While classic Atari-games often only have a low branching factor, RTS
games typically exhibit very high branching.

7.2.2. Continuous Control

In order to demonstrate the capabilities of HRL algorithms in control problems with
continuous action-spaces, three major virtual environments are commonly used: the closed-
source MuJoCo [248] framework, the DeepMind Control Suite [249] and the open-source
PyBullet simulator [250].

In these virtual environments the agent is tasked with learning locomotion of different
bodies. The action-space typically consists of the amount of torque the agent can apply on
various motors. The state-space is often made up of different positions in a 3D space. A
commonly adopted benchmark in this area is the set of benchmark tasks defined by Duan
et al. [251]. Especially interesting are the two tasks which are hierarchical in nature. In
these tasks the agent is required to learn locomotion of a body with numerous degrees of
freedom, together with navigating various environments. In these control problems the
agent simultaneously needs to be capable of reasoning where to go in the environment,
and how to control the actuators in order to move at all. This requires the agent to make
decisions at various temporal scales.

8. Comparative Analysis

In the following two sections, we provide a comparative analysis. We start this analysis
by summarizing the reviewed frameworks first (Section 8.1). In the second subsection
(Section 8.2), we go deeper, and compare core features of key HRL algorithms.

8.1. Frameworks Summary

In Table 1, we provide a short overview of the capabilities and challenges of the
different frameworks.

Problem-specific models demonstrated the capabilities of HRL, but proved to have
only limited application, mainly due to their dependency on expert knowledge.

The options framework provides a generic and comprehensive way to model and
train a limited number of reusable temporal abstractions. This framework allows various
ways to incorporate expert knowledge (e.g., intrinsic reward, termination condition or
state abstractions), while also being generic enough to support automatic development of
sub-behaviors.

The goal-conditional framework in turn, provides an answer on how to efficiently
scale to a larger number of expressible sub-behaviors. Unfortunately, this scalability makes
training more unstable, is more difficult to re-use, and produces less interpretable results.
It also remains mainly unclear how to efficiently sample different goal-vectors in the
goal-conditional framework.

As seen on the timeline, presented in Figure 10, problem-specific models were mostly
used in the early days of HRL. The ability of deep neural networks, to allow RL agents
to directly work on high-dimensional state-spaces, inspired the rise of a goal-conditional
approach. While the options framework has managed to stay relevant throughout the
entire short history of HRL, problem-specific models somewhat lost their appeal.

It however should be noted, that most problem-specific frameworks can be mod-
elled using the options framework. And similarly, options can be modelled using a goal-
conditional approach. For example, options can be modelled in the goal-conditional
framework, by utilizing a discrete goal-vector.



Mach. Learn. Knowl. Extr. 2022, 4 204

Table 1. Summary table of the reviewed HRL frameworks.

Problem-Specific Models Options Goal-Conditional

Sub-behaviors
Problem-specific sub-behaviors that
work together in order to solve a
very specific task.

A more generic system of
modules that work together
to tackle a limited set of simi-
lar sub problems.

A generic system that is capable
of expressing a wide range of sub-
behaviors.

Capabilities Intuitive way of modeling hierar-
chies of sub-behaviors.

- Generic framework capable
of modeling sub-behaviors.
- Transfers well in similar envi-
ronments.
- Various learning algorithms
available.

- Generalization of sub-behaviors.
- Capable of supporting a large
amount of sub-behaviors.
- Various learning algorithms avail-
able.

Challenges
- Not generally applicable.
- Requires a lot of expert knowledge.
- Lack of learning algorithms.

- Learning is often sample in-
efficient.
- Difficult to share knowledge
between options.
- Limited scalable: only a few
options at the same time are
feasible.

- Efficient representation of sub-
goals.
- How to efficiently sample goal-
vectors during training, in order to
maximize generalization over sub-
behaviors.
- Often suffers from instability.
- Scaling to more than two levels re-
mains difficult.

Required priors Almost entirely hand-crafted.

Some expert knowledge re-
quired in the form of termina-
tion conditions, and intrinsic
reward signals.

None, however intrinsic reward has
been demonstrated to speed up
training [155].

Interpretability High High, however often due to
introduced priors Low, often uses latent-spaces.
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Figure 10. Timeline of common HRL algorithms. The problem-specific models (blue) have started
interest in the area, but have somewhat lost interest. Goal-conditional (θ, red) algorithms are cur-
rently the most common approach, while the options framework (∗, green) has remained a popular
framework throughout the whole HRL history.

8.2. Algorithms

Unfortunately it is very challenging to compare different HRL algorithms on a quanti-
tative basis. This is often caused by the wide range of different used benchmark tasks, and
the difficulty of reproducing RL results [252,253].

In Tables 2–4 we qualitatively evaluate our selection of key HRL algorithms using the
following criteria:

• Training method: how is the algorithm trained? Can it be trained end-to-end, or is a
staged pre-training phase required?

• Required priors: how much additional domain knowledge is required, external to the
gathered experience in the environment?
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• Interpretable elements: what parts of the resulting policies can be interpreted by
humans?

• Transferrable policy: are the abstractions proposed by the algorithm transferable to
other problems, or are they task-specific?

• Improvement: what is the main improvement of the algorithm over the previous state
of the art?

Table 2. Evaluation of problem-specific algorithms.

Algorithm Training
Method

Required Pri-
ors

Interpretable
Elements Transferrable Policy Improvement

Feudal-Q End-to-end State-space
division None No, problem-specific solution More comprehensive explo-

ration than flat Q-learning

HAM-Q End-to-end HAM Trained
HAMs

HAM language can be used
to transfer knowledge

Significant improvement over
flat Q-learning

MAXQ-Q End-to-end MAXQ
decomposition

MAXQ
decomposition MAX-nodes Faster training, compared to flat

Q-learning

HEXQ Staged None MAXQ
decomposition MAX-nodes Automatic discovery of MAXQ

decompositions

VISA End-to-end DBN model MAXQ
decomposition MAX-nodes More complex decomposition

than HEXQ

HI-MAT End-to-end a successful
trajectory

MAXQ
decomposition MAX-nodes More compact hierarchies than

VISA

Table 3. Evaluation of option algorithms.

Algorithm Training
Method Required Priors Interpretable

Elements Transferrable Policy Improvement

Diverse density Staged
Number of options,
successful trajecto-
ries

Subgoal states Same environment
Automatic subgoal detection
learns faster compared to us-
ing only primitive actions

h-DQN Staged Subgoals as pixel
masks Subgoals Same environment

First HRL approach to
hard-exploration in high-
dimensional state-spaces

HiREPs End-to-end Number of options None No, problem-specific
solutions

Improved performance over
non-hierarchical REPS algo-
rithm

STRAW End-to-end None Macro-actions No, problem-specific
solutions

Improved performance in
some Atari games

H-DRLN Staged Task curriculum None Same environment,
similar tasks

Demonstrates building blocks
for lifelong learning frame-
work

Eigen-Options Staged Number of options Subgoals Same environment
Discovered options allow
better exploration then
bottleneck-based options

MLSH Staged Number of options None
Transfer possible to
tasks different from
previously seen tasks

Faster training performance
when applied on new tasks

DDO Staged Demonstrations None Solutions are task spe-
cific

Faster training in Atari RAM
environments.

Option-Critic End-to-end Number of options Termination
probabilities Same environment First end-to-end algorithm
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The algorithms discussed in previous sections have addressed important issues of RL.
Currently, no single algorithm is capable to completely satisfy all our proposed evaluation
criteria. In the following subsections we discuss some trade-offs that exist among current
algorithms.

Table 4. Evaluation of goal-conditional algorithms.

Algorithm Training
Method Required Priors Interpretable

Elements Transferrable Policy Improvement

VIC Staged None None Same environment Demonstrated capabilities of un-
supervised learning in HRL

SNN Staged Proxy reward Sub-behaviors Same environment Increased expressiveness and
multimodality of sub-behaviors

FuN End-to-end None None Task-specific solu-
tions

Significant improvement over
Option-Critic

DIAYN Staged None None Same environment Discovers more diverse sub-
behavior than VIC

SAC-LSP Staged and
End-to-end

None, however re-
ward shaping is
supported

None Same environment
Outperforms previously pro-
posed non-hierarchical algo-
rithms

HIRO End-to-End None None Same environment Outperforms FuN, especially in
sample efficiency

VALOR Staged None

None, sub-
behaviors are
encoded by a
latent vector

Similar environments
Qualitatively better sub-
behaviors than DIAYN and
VIC

8.2.1. Training Method

Deep neural networks have proven to be capable of learning task-specific input
features in vision and audio tasks [3]. This data-driven approach outperformed previous
approaches that rely on a human expert to design input features. Reinforcement learning
(RL) uses this same data-driven approach to end-to-end learn task-specific input features
that will influence the effective behavior of the agent.

One of the goals of HRL is to extend this data-driven approach for RL problems, and
to provide a temporal module that can be trained end-to-end. Such an approach allows
sub-behaviors to be discovered solely in function of the reward-signal.

Currently, in all frameworks there have been algorithms proposed that can be trained
end-to-end such as the problem-specific Feudal model [168], Option-Critic [140] in the
options framework, and FeUdal Networks [150] in the goal-conditional setting. Unfortu-
nately, it remains challenging for current end-to-end algorithms to discover non-trivial
solutions. Solutions often degrade into single-action sub-behaviors, or end up solving the
entire task [150]. In order to tackle this issue various regularizations have been proposed,
such as focusing sub-behavior termination on a small and limited number of states [213],
or to add a cost when switching sub-behaviors [187].

Alternative to this end-to-end approach, is a staged approach in which sub-behaviors
are developed independently of the extrinsic reward-signal, using a separate pre-training
phase. In this approach typically an additional intrinsic objective is used to develop
sub-behaviors. This is the most common approach used when developing options. This
intrinsic reward signal could for example be positive when the agent reaches a special
termination-state [154].

In the goal-conditional framework, a staged training approach is commonly used.
Because algorithms using the goal-conditional framework are capable of discovering a
large amount of sub-behaviors, a more scalable information theoretic objective is often used
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as an additional intrinsic reward signal. This could for example entail a pre-training phase
to discover various sub-behaviors leading to a diverse set of states [148,238].

Additionally, a pre-training technique often used, especially when dealing with a large
amount of sub-behaviors, is curriculum learning [144]. This technique consists of utilizing
a curriculum of different tasks, with increasing difficulty. By compounding knowledge,
agents can learn to solve increasingly more difficult tasks [61].

While current end-to-end approaches often lead to trivial solutions, staged approaches
are often less sample efficient. In a staged approach, environment interaction is allocated
to learning sub-behaviors independently of the extrinsic reward signal, so useless sub-
behaviors in terms of the extrinsic reward signal will also be developed.

Some algorithms [155] are capable of end-to-end training, but support pre-training as
an optional step.

8.2.2. Required Priors

A long-standing trade-off that exists in machine learning, is how much prior knowl-
edge we should incorporate into our algorithms. Incorporating prior knowledge from a
domain expert might greatly improve performance, however it might also lead to unex-
pected side effects [48]. Additionally, the environment might be so complex, that it is not
possible for a domain expert to specify a formal control policy.

Training agents, using a problem-specific framework, often requires a large amount of
prior information. This often includes the entire hierarchical architecture. Unfortunately,
hierarchical architectures are often very difficult to be designed by a human expert.

In the options framework, the amount of required prior information is somewhat
reduced because of the generic nature of the framework. Typical prior information, required
when using option-based algorithms, is the number of options. This value is typically
found by conducting a hyperparameter search. Additional forms of prior knowledge that
are often required by algorithms which use the option framework include: intrinsic reward
signals, examples of successful trajectories, or a curriculum of tasks with different levels
of difficulty.

The goal-conditional framework, typically does not require any priors, besides the
definition of the goal-space. Because this framework is commonly used to discover a
large set of sub-behaviors, it would not be feasible to rely on expert knowledge. The
goal-conditional framework thus, is the framework that most closely matches the goal of
being entirely data-driven. Unfortunately, research has shown that being completely data
driven often leads to trivial solutions in complex state-spaces [238].

8.2.3. Interpretable Elements

One of the benefits of HRL is that a composition of sub-behaviors might be more
transparent than one big policy. In the problem-specific setting, algorithms are highly
interpretable by nature, however, as discussed before, this expressiveness is often only due
to prior expert knowledge.

In the options framework, the sub-behaviors are often interpretable by a human agent
because options tend to terminate in states with special properties such as doors or elevators.
However, the interpretable elements in an options-based approach, are most often also the
elements provided by a human expert.

As the number of sub-behaviors increases, and the amount of utilized expert knowl-
edge decreases, it becomes increasingly difficult to make them transpicuous. A technique
which is often used to demonstrate the capacity of an algorithm to discover meaningful
sub-behaviors is to plot a number of sampled trajectories from the different sub-behaviors.
This rollout-technique is often used in order to explain discovered sub-behaviors in the
goal-conditional framework.

There however remains a lot of room for further examining the potential of HRL
methods, to make RL interpretable. In order to do this, inspiration might be found in how
convolutional neural networks are often visualized [254].
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8.2.4. Transferrable Policy

Because current HRL algorithms are generally less sample efficient than non-hierarchical
algorithms, HRL algorithms are often advertised as being able to transfer a control policy
well to similar tasks, while non-hierarchical algorithms often need to start from scratch for
every new task.

The ability of a HRL algorithm, to efficiently solve multiple tasks, is largely linked to
the method used to train it. Algorithms that use a pre-training stage are better equipped
to be used in a multi-tasking setting. This is due to the fact that the lower levels of the
hierarchy are trained independently of the task.

Because this staged approach is a popular training approach in both the problem-
specific framework and the options-framework, these frameworks are currently the most
suitable to support an agent with a transferrable policy (e.g., [172,217]). In these frameworks
the often pre-trained sub-behaviors can be re-used to solve different tasks by learning new
higher-level controllers.

The algorithms that fit into the goal-conditional framework unfortunately are cur-
rently less capable of transferring their abstractions to new problem settings. This is
often due to the problem-specific design of the goal-space. Especially when trained
end-to-end [140,149,150], the learned abstractions are fully in function of the problem
at hand.

9. Open Research Challenges

Our comparative analysis (Section 8) demonstrates, that while great progress has been
made in a lot of key areas, there still remain a lot of unanswered questions. In this section,
we list some key open challenges in HRL. In order to further advance HRL, we also identify
possible moves forward.

9.1. Top-Down Hierarchical Learning

Currently, most algorithms in HRL work bottom-up. The agent first learns some
sub-behaviors, while exploring the environment. Once these sub-behaviors are suffi-
ciently developed, an agent learns how to compose these sub-behaviors in order to solve
complex problems.

This approach however is limited, because it wastes time, learning sub-behaviors,
which the agent possibly does not need to solve the task at hand. A top-down approach,
which decomposes the problem first, and learns different sub-behaviors in function of
this decomposition, is more sample efficient. However, this approach currently tends to
lead to unstable learning [140,150,155]. Because the transition-function of the higher-level
becomes non-stationary, the higher-level will need to take into account that outcomes of
sub-behaviors might change, while in a bottom-up approach the sub-behaviors are typically
frozen after development.

Algorithms capable of dealing with non-stationary transition functions could make
HRL more sample efficient by enabling top-down learning. A model-based approach
could help the agent to test out various subgoals without having to worry about how
to reach each subgoal. However, how to efficiently learn such a model from experience
remains an open question. Other possibilities in order to tackle top-down learning have
been proposed under the form of transition policy gradient [150], in which the higher-level
can be trained without the lower level, and the usage of off-policy corrections [149,223].
However, additional research in order to stabilize and scale these methods is required.

9.2. Subgoal Representation

An important open problem in the framework of goal-conditional hierarchical learning
is the issue of goal representation. Various forms of representation have been researched,
ranging from the full state-space [149], to more compact representations [150], learned
end-to-end. Using the full state-space, will allow all states to be reached by at least a single
sub-behavior, but this approach is difficult to scale. While alternatively, using smaller
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representations will reduce the amount of different sub-behaviors which can be expressed.
Nachum et al. [231] examined the relationship between the representation and its ability
to represent an optimal policy as a reward-driven optimization problem. This resulted in
impressive performance on some hard high-dimensional, continuous-control tasks.

Another issue regarding representation learning, is its ability to generalize over dif-
ferent environments. An effective goal-representation should be capable of expressing
subgoals in multiple similar environments. When drawing inspiration from human intelli-
gence, we do not plan in the raw state-space of the world, but use meaningful abstractions.
An optimal goal representation will most likely also be lower-dimensional than the full
state-space, and make use of meaningful abstractions. However, how to learn these mean-
ingful state abstractions, only using interaction gathered from the environment is an
open question.

9.3. Lifelong Learning

One of the main promises of HRL is that it should be capable of facilitating re-use of
sub-behaviors. This re-usability of sub-behaviors should both facilitate transfer-learning
new tasks, and should allow the agent to solve more challenging issues by extending upon
its existing knowledge.

Utilizing sub-behaviors in order to solve similar problems in the same environment
is often experimentally demonstrated in research [140,217]. However, transferability of
sub-behaviors in order to tackle similar problems in different environments, is often beyond
the current capabilities of agents. It also remains unclear how sub-behaviors can be utilized
in order to extend and manage knowledge, and to become more efficient at solving ever
more complex problems, without suffering from catastrophic forgetting [255].

The options framework seems a promising direction to handle lifelong learning. This
can be implemented by adapting the options framework to allow knowledge management,
so that the agent can make deliberate decisions about which options to keep, which ones to
remove, and which are suitable candidates to be extended. This idea has been explored
before [61,179], however an automated approach remains beyond current capabilities.

The generalization capabilities of the goal-conditional framework would also be a
great candidate to be facilitated in a lifelong learning context, however how to incorpo-
rate knowledge management in the goal-conditional framework has not been sufficiently
studied yet.

9.4. HRL for Exploration

The options framework has received a lot of research attention, and a lot of automatic
subgoal-discovery methods have been proposed [140,154]. However, these methods suffer
from two major limitations. They often only work in certain types of environments, and
they are often very sample inefficient, requiring an extensive pre-training phase.

Option-learning can be made more efficient by, instead of using a long pre-training
phase, to instead use an incremental exploration approach. After a short exploration phase,
options can be formulated which will allow the agent to jump-start the quest to find even
better options, by exploring the state-space, in a more structured way.

Additionally, alternative forms of intrinsic reward signals, which are not specific to
certain environments, such as (episodic) exploration bonuses [51,256], have not yet been
fully researched in the context of automatic option-discovery, but could lead to more
sample-efficient option-discovery methods because of their often more dense nature.

The empirical study of Nachum et al. [54], demonstrated that current HRL algorithms
achieve their improved performance on complex tasks, mainly due to temporal explo-
ration (e.g., instead of exploring the outcome of a single random action, take multiple
random actions when exploring). They hint at further researching temporal exploration,
as exploration strategies for both flat and hierarchical RL agents. An example of such
an approach is [257] which focuses on using options in order to speed up exploration in
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high-dimensional state-spaces by discovering underexplored regions of the state space and
developing options that reach those regions.

9.5. Increasing Depth

Currently, most HRL approaches [140,148–150], make use of a two-layered approach.
In this approach a manager chooses what sub-behavior to activate, and sub-behaviors are
responsible for deciding on primary actions. These two layers work on different levels of
temporal abstraction. This is similar to how small companies operate: the owner defines
the vision of the company, while the staff executes this vision. However, in order to scale a
company, additional management layers are often introduced, allowing different levels to
focus on different levels of business abstraction. This architecture is also similar to how
multi-level convolutional neural networks are capable of learning complex hierarchies of
discovered features.

Algorithms in HRL will also benefit from scaling up to using more than two lev-
els of temporal abstraction, in order to perform planning on a longer horizon. Existing
research [155,162,223] hints at the benefits of using multiple levels. However, these ap-
proaches have been hindered by the extra complexities that are induced by having multiple
non-stationary transition-functions, when using a top-down approach, and decreased
sample inefficiencies when using bottom-up approaches.

An end-to-end approach, capable of learning multiple levels of temporal abstractions,
in a sample efficient way, without using any expert knowledge, will allow HRL to tackle
problems which require complex long term planning. However, these kinds of algorithms
are beyond the current capabilities.

9.6. Interpretable RL

One way to address AI safety, [39] is to dissect the agent in order to make sure that it
is incapable of executing harmful behavior. Unfortunately, current RL policies are often
completely opaque to researchers. Greydanus et al. [258] developed a method in order to
assess what parts of the state-space a RL agent considers when taking decisions. This is
a useful exploratory instrument in order to assess whether the agent is not overfitting on
environmental elements. However, as it is dependent on the evaluation of policy rollouts, it
is non-trivial to interpret behavior for complex high-dimensional environments [259]. An al-
ternative approach consists of Rupprecht et al. [260], which utilized a generative model over
the state-space in order to generate example states that adhere to user-specified behaviors.

HRL will be helpful to further advance this relative under-explored area [261], as a
single complex behavior, might be too incomprehensive to safely deploy in the real world.
HRL techniques could potentially be used to develop sets of sub-behaviors which can be
comprehensive by themselves. Alternatively HRL algorithms might be used to split an
existing policy into multiple smaller, more comprehensive parts.

9.7. Benchmark

As discussed in Section 7, a lot of different benchmarks are used today, when pre-
senting HRL research. Additionally, researchers often have trouble reproducing presented
results [253], due to the complex nature of many RL algorithms.

This often makes it difficult to assess presented results in terms of their predecessors.
A novel benchmark, or a standardized set of tasks using existing benchmark environments
(such as those proposed in [251]), capable of assessing the qualities of algorithms, to learn
sub-behaviors, in a sample efficient way, in order to solve a range of different tasks, will
allow better comparability of reported results. As curriculum learning [144], seems to be
an important element of many HRL approaches, the difficulty of this novel environment
should be tunable. While current benchmark tasks often require a mix of different capabili-
ties, it might benefit the field to propose tasks, which zone in on a single capability (e.g.,
memory or exploration) [262].
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Additionally, a suite of open-source high-quality baseline implementations of HRL al-
gorithms, similar to the OpenAI baselines library [263], will allow researchers to benchmark
their own algorithms reliably.

9.8. Alternative Frameworks

Early models, such as MAXQ and HAM, have somewhat lost interest in the research
community due to the lack of automatic learning methods, and their dependence on expert
knowledge. Interest has shifted to more generic frameworks, for which different learning
algorithms have been proposed. However, due to this shift, to more generic frameworks,
algorithms have become opaque to humans again.

It might be interesting to revisit these early models, and incorporate knowledge gained
while researching other frameworks, in order to come up with automated learning algo-
rithms for these methods. It might for example be interesting to research their ability to
handle high-dimensional state- and actions-spaces using approximation methods. An
example of such serendipity, is the recent, goal-conditional, FeUdal Networks architec-
ture [150], which has been inspired by, Feudal-Q [168], one of the earliest problem-specific
frameworks.

Alternatively, novel ways of incorporating expert knowledge in the goal-conditional
framework have emerged. A noteworthy example [264] utilizes the compositional nature
of natural language instructions.

As the options and goal-conditional frameworks also have significant limitations,
these frameworks might not be the final answer on how to model hierarchical learning
agents. Increasing the depth will allow agents to use more levels of abstractions, but this
approach might only be limited scalable.

In order to scale to problems, which require very long-horizon planning, without
dense feedback, it might be required to look at radical alternative approaches, such as
representing sub-behaviors in a graph-structure [219,265] or taking into account relations
between objects [83,266,267].

10. Conclusions

In this survey, we provided RL researchers with the necessary insights to understand
the fundamentals of HRL. We provided an overview of the most common frameworks
in use today. For each framework we reviewed algorithms, we deem essential to the
framework. Intuitively, HRL is a viable option, to allow RL to tackle problems, in envi-
ronments with very delayed, and sparse reward structures. This intuition is supported
by various research conducted on each of the frameworks. HRL has been able to make
significant progress in various RL benchmarks, in which previously no progress had been
made. However, each framework currently also suffers from its limitations: they are either
too dependent on structure present in the environment, not sample efficient, difficult to
learn end-to-end without expert knowledge or unable to scale and generalize. In order to
address these limitations, we concluded this survey with some ideas on how to tackle these
open challenges.
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