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Abstract: As a substantial amount of multivariate time series data is being produced by the complex
systems in smart manufacturing (SM), improved anomaly detection frameworks are needed to reduce
the operational risks and the monitoring burden placed on the system operators. However, building
such frameworks is challenging, as a sufficiently large amount of defective training data is often not
available and frameworks are required to capture both the temporal and contextual dependencies
across different time steps while being robust to noise. In this paper, we propose an unsupervised
Attention-Based Convolutional Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic
Thresholding (ACLAE-DT) framework for anomaly detection and diagnosis in multivariate time
series. The framework starts by pre-processing and enriching the data, before constructing feature im-
ages to characterize the system statuses across different time steps by capturing the inter-correlations
between pairs of time series. Afterwards, the constructed feature images are fed into an attention-
based ConvLSTM autoencoder, which aims to encode the constructed feature images and capture the
temporal behavior, followed by decoding the compressed knowledge representation to reconstruct
the feature images’ input. The reconstruction errors are then computed and subjected to a statistical-
based, dynamic thresholding mechanism to detect and diagnose the anomalies. Evaluation results
conducted on real-life manufacturing data demonstrate the performance strengths of the proposed
approach over state-of-the-art methods under different experimental settings.

Keywords: anomaly detection; deep learning; unsupervised learning; Industrial Internet of Things;
time series

1. Introduction

Artificial intelligence (AI), predictive analytics, big data, and Internet of Things (IoT)
have become widely recognized for equipping existing systems with highly complex intel-
ligent technologies, smarter services, and advanced applications in various domains, such
as data networks [1–5], wireless sensor networks [6], manufacturing [7], and ubiquitous
environments [8]. More specifically, the manufacturing domain has advanced massively
in recent years and has become more computerized, complex, and automated, driving
the emergence of smart manufacturing (SM) [9]. SM is a technology-driven approach that
harnesses sensor data and automation for improving the manufacturing performance. As
quality control is an indispensable part of the production process in all manufacturing
industries around the globe, SM enables higher-quality products to be manufactured, while
reducing costs and improving safety [10].

SM encompasses complex systems of interconnected sensors and computer compo-
nents with diverse types that generate a substantial amount of multivariate time series
data. As a result, potential system or production failures might occur, rendering anomaly
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detection at certain time periods a vital task in order for the operators to solve the under-
lying issues. Anomalies within a sequence of data are broadly defined as observations
that are unusual and signify irregular behavior. These irregular and unusual events have a
very low probability of occurring, meaning that manual detection processes are a meticu-
lous assignment that often requires more manpower than is generally available. Broken,
cracked, and other imperfect products may result in costly returns, imposing operational
and financial difficulties [11]. It is estimated that a 1% productivity improvement across the
manufacturing industry worldwide can result in an annual savings of USD $500 million,
whereas a breakdown in the production line can cost up to USD $50 thousand per hour [12].
Furthermore, predicting anomalies on time can decrease the number of breakdowns by up
to 70%, maintenance costs by up to 30%, and scheduled repairs by up to 12% [12]. As a
result, machine learning (ML) has been utilized in recent years to detect anomalies [1,6,13],
particularly deep learning (DL) algorithms [14–16].

Automated anomaly detection algorithms leverage DL due to the latter’s data-driven
nature, efficiency, and ability to perform data analysis without explicitly programming
the application [17]. Moreover, DL is able to learn higher-level features from data in a
hierarchical fashion, which can aid in continuously improving the system’s accuracy and
automated decision-making processes. The aforementioned features make DL one of the
main contributors to the fast growth of SM, as it reduces operating costs and improves
operations visibility [18].

A basic requirement for building a supervised learning-based automated system to
detect anomalies on a classification objective is the accessibility of a sufficient amount of
training data for each class [19]. However, efficient supervised learning methods are often
infeasible, as, with well-optimized processes, there is often an abundance of non-anomalous
data and a relatively small or no amount of anomalous data. To address this data imbalance
challenge, a substantial amount of unsupervised anomaly detection methods have been
developed in recent years, as these methods are trained on unlabeled input data with
no output variables. An additional advantage of this approach is potentially detecting
anomalies in novel classes that are not part of the training data set, providing a general
solution to the surface quality manufacturing process task [20].

Some previous approaches in the literature use defective samples for training [21,22],
not solving the anomaly detection task described in this work. Other approaches utilize
classical methods, such as probabilistic, distance-based, clustering, ensemble, and predic-
tive approaches to detect anomalies in an unsupervised fashion, but all fail to capture
complex structures in the data without the input of domain experts [20]. Unsupervised ML
approaches were then proposed to capture these complex structures; however, they start
failing to deal with the high dimensionality of the data feature space and the varying data
aggregation as the data volume increases, requiring human expertise for feature extrac-
tion [18]. Various DL architectures, such as Convolutional Neural Networks (CNNs), Long
Short-Term Memory (LSTM) neural networks, Convolutional LSTM (ConvLSTM) [23],
neural networks, and autoencoders, have emerged in the recent literature to solve the
aforementioned challenges. Furthermore, when a production failure is occurring, it is
important to localize the anomaly root causes to plan adequate countermeasures and fix the
production system [9]. This is done by pinpointing the sensors with anomalous readings,
assisting the system operators to perform the system diagnosis and repair the system
accordingly.

In this paper, we propose the ACLAE-DT framework, an unsupervised attention-
based ConvLSTM autoencoder with dynamic thresholding to detect anomalies and identify
anomalies’ root cause in a manufacturing process multivariate time series. ACLAE-DT is a
DL-based framework that is able to capture both the temporal and contextual dependencies
across different time steps in the multivariate time series data, while being robust to noise.
The framework starts by normalizing the input data via Min-Max scaling to scale the
values to a fixed range. Post pre-processing, the data are then enriched using sliding
windows to be able to capture more temporal behavior via the lagged values, followed
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by the incorporation of contextual manufacturing process data via an embedding layer
to capture the contextual information. Afterwards, ACLAE-DT constructs feature images
based on the processed and enriched data, which are matrices of inner products between
a pair of time series within the sliding window segments. Feature images characterize
the system statuses across different time steps by capturing shape similarities and inter-
correlations between two time series across different time steps, while being robust to
noise. Subsequently, an attention-based ConvLSTM autoencoder is employed to encode
the constructed feature images and capture the temporal behavior, followed by decoding
the compressed knowledge representation to reconstruct the feature image input. The
structures that exist in the data are learned and consequently leveraged when forcing
the input through the autoencoder’s bottleneck. Attention is added to the autoencoder
to sustain a constant performance as the input time series sequences increase, reducing
model errors [24]. Furthermore, several hyperparameters are optimized via random search
in order to enhance the model’s performance [25]. A dynamic thresholding mechanism
is then utilized against the computed reconstruction errors to detect and diagnose the
anomalies, where the threshold is dynamically updated based on statistical derivations
from the reconstructed normal data errors. The intuition is that ACLAE-DT will not
be able to reconstruct the feature images well if it has never observed similar system
statuses before, resulting in anomalous processes to be flagged as it crosses the computed
threshold. ACLAE-DT underwent rigorous empirical analysis, where results demonstrated
the superior performance of the proposed approach over state-of-the-art methods.

The work presented in this paper is able to capture both the temporal and contextual
dependencies across different time steps in the multivariate time series data in a manu-
facturing process to detect anomalies and identify the anomalies’ root cause. The main
contributions of this paper include:

• A novel framework that consists of pre-processing and enriching the multivariate
time series, constructing feature images, and an attention-based ConvLSTM network
autoencoder to reconstruct the feature image input. Moreover, the framework consists
of a dynamic thresholding mechanism to detect anomalies and identify anomalies’
root cause in multivariate time series.

• A generic, unsupervised learning framework that utilizes state-of-the-art DL algo-
rithms and can be applied for various different multivariate time series use cases
in SM.

• An attention-based, time-distributed ConvLSTM encoder–decoder model that is capa-
ble of sustaining constant performance as the rate of input time series sequences from
the manufacturing operations increases.

• A nonparametric and dynamic thresholding mechanism for evaluating reconstruction
errors that addresses non-stationarity, noise, and diversity issues in the data.

• A robust framework evaluated on a real-life public manufacturing data set, where
results demonstrate its performance strengths over state-of-the-art methods under
various experimental settings.

The remainder of this paper is structured as follows. Section 2 presents the motivations
behind the use of DL in SM and explores related work. Section 3 discusses the technical
preliminaries of the key concepts used in this paper. Section 4 details the methodology and
implementation of the ACLAE-DT framework. Section 5 describes the data set used, the
different experimental setups, and the comparison benchmarks. Section 6 discusses the
obtained results and performance evaluation. Finally, Section 7 concludes the paper and
discusses opportunities for future work.

2. Motivation and Related Work

Robotic finishing is one of the most important applications in SM. The goal of robotic
finishing is to manufacture products without any defects and with an adequate amount of
surface roughness, in order to ensure smooth functional and financial operations. However,
potential system or production failures might occur at any point in time, demonstrating
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the importance of having an efficient anomaly detection algorithm in place to detect and
mitigate any manufacturing malfunctions.

Let us consider a robotic finishing system designed and calibrated to produce a
finished metal car part. Multiple sensors are mounted on the system to gather different
types of readings, such as the feed rate, spindle rate, and torque. As the robotic machine is
manufacturing the car part, sensor readings are being processed to monitor the system’s
performance. In the case of an imperfect finished car part or anomalous system behavior,
the anomaly detection algorithm will trigger an alarm and ideally locate the anomalous
system behavior. Subsequently, the triggered alarm would notify and enable the system
operators to solve the underlying issues.

Many classical methods have been used to detect anomalies, such as probabilistic ap-
proaches [26], distance-based approaches [27], clustering approaches [28], and predictive
approaches [29]. These approaches may be computationally non-complex; however, their per-
formance is sub-optimal as they fail to capture complex structures in the data without the input
of domain experts [20]. Furthermore, as the data volume increases, traditional approaches
can fail to scale up as required to maintain their anomaly detection performances [20].

Moreover, ML algorithms were proposed to resolve the limitations in classical methods
for anomaly detection. ML algorithms include K-Nearest Neighbors (K-NNs) [30], Support
Vector Machines (SVMs) [31], and neural networks [32]. These algorithms are all supervised
learning-based, meaning they rely on labeled normal and anomalous historical data for
training [33]. However, collecting labeled anomalous data is often infeasible, as, with
well-optimized processes, there is a often high imbalance in the training data due to the
abundance of non-anomalous samples and a relatively small or no amount of anomalous
samples. Furthermore, ML approaches often require human input for feature extraction,
where they start to fail in dealing with the dimensionality and variety of the data as the
data volume and velocity increase [18].

DL techniques have emerged in the recent literature to solve the aforementioned chal-
lenges. Although ML is a data-driven AI technique to model input and output relationships,
DL has distinctive advantages over ML in terms of feature learning, model construction,
and model training. DL integrates model construction and feature learning into a single
model and trains the model’s parameters jointly, creating an end-to-end learning structure
with minimal human interference. Moreover, DL models have the capability to learn deep
feature representations from the data, enabling discriminative features to be extracted and
potentially eliminating the need for manual feature engineering by domain experts.

There has been an increase in available types of sensory data collected from various
distinct aspects across the operational system in SM. As a result, data modeling and analysis
are vital tasks in order to handle the large data volume increase and the real-time data
processing to detect any system anomalies, tasks that DL excels in [34]. Different DL archi-
tectures were used in the literature to detect anomalies in SM, such as CNNs [35], LSTM
neural networks [36], and autoencoders [37]. Leveraging the complementary strengths
of CNNs and LSTMs, ConvLSTMs [23] emerged to accurately model the spatio-temporal
information by having convolutional structures in both the input-to-state and state-to-state
transitions. Furthermore, different DL approaches were used in the literature to detect
anomalies in multivariate time series. In [38], a general anomaly detection framework
was proposed via residual analysis, where time series observation residuals were used to
identify and detect anomalies in an unsupervised manner and without prior knowledge
of anomalies. In [39], an unsupervised DL model based on a variational autoencoder and
a CNN architecture was proposed, allowing temporal correlations and spatial features to
be captured in multivariate time series. In [40], a convolutional autoencoding memory
network was proposed to characterize the spatial dependence of the data with a maxi-
mum mean discrepancy to distinguish between the noisy, normal, and abnormal data.
Afterwards, a memory network consisting of an autoregressive model and a bidirectional
LSTM with attention was used to capture temporal dependence from time series data and
detect anomalies.
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3. Technical Preliminaries
3.1. Convolutional Neural Network (CNN)

A CNN is a feedforward deep neural network that is most commonly applied to
analyzing visual imagery [41], having a wide range of applications such as image and video
recognition, image classification, and recommender systems. A CNN uses convolution in
place of general matrix multiplication in at least one of the layers, and reduces the number
of parameters very efficiently without compromising the quality of models.

The network continues learning new higher dimensionality and more complex features
with every layer. The input data layer takes an input vector with shape (N × H ×V × D),
where N is the number of images, H is the height, V is the width, and D is the number of
channels. The input is then passed to the convolutional layer, which convolves the input
and abstracts it to a feature map based on a set of weights.

3.2. Long Short-Term Memory (LSTM) Neural Network

An LSTM deep neural network is a special variant of Recurrent Neural Networks
(RNNs) that excels in modeling temporal behavior, such as time series, language, audio, and
text, due to the feedback loops used for learning and the extra parameter metric available
for connections between time steps. An LSTM’s main components are the memory cells
and the input, forget, and output gates. These components allow the LSTM network to
have connections from previous time steps and layers, where every output is influenced by
the input as well as the historical inputs. Usually, there are multiple LSTM layers, where
each layer comprises many LSTM units, and each unit comprises input, forget, and output
gates. The equations for the input, forget, and output gates, as well as the candidate cell
state, the cell state, and the LSTM cell output, are described as, respectively,

it = σ
(
Whiht−1 + Wxixt + bi

)
(1)

ft = σ
(
Wh f ht−1 + Wx f xt + b f

)
(2)

ot = σ
(
Whoht−1 + Wxoxt + bo

)
(3)

C̃t = tanh
(
WhCht−1 + WxCxt + bC

)
(4)

Ct = ftCt−1 + (1− ft)C̃t (5)

ht = ottanh
(
Ct
)

(6)

where i is the input gate, f is the forget gate, o is the output gate, C̃t is the candidate cell
state, C is the cell state, h is the hidden state and cell output, σ denotes a logistic sigmoid
function, W is the weight matrix, and b is the bias vector. Figure 1 visualizes the structure
of an LSTM memory cell.

Figure 1. Structure of an LSTM memory cell.
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3.3. Convolutional LSTM (ConvLSTM)

ConvLSTMs [23] are a special kind of LSTMs that emerged to accurately model the
spatio-temporal information, by leveraging the strengths of a CNN and an LSTM. Similar
to the LSTM, the ConvLSTM is able to decide what information to discard or retain from the
previous cell state in its present cell state. However, convolutional structures are utilized in
both the input-to-state and state-to-state transitions, which basically exchanges the internal
matrix multiplications with convolution operations. The input vector to the ConvLSTM is
fed as a series of 2D or 3D images, as the convolution operations allows the data that flow
through the ConvLSTM cells to keep their input dimension instead of being a 1D vector
with features. To describe the ConvLSTM operations, Equations (1)–(6) are rewritten as:

it = σ
(
WCi ◦ Ct−1 + Whi ∗ ht−1 + Wxi ∗ xt + bi

)
(7)

ft = σ
(
WC f ◦ Ct−1 + Wh f ∗ ht−1 + Wx f ∗ xt + b f

)
(8)

ot = σ
(
WCo ◦ Ct + Who ∗ ht−1 + Wxo ∗ xt + bo

)
(9)

C̃t = tanh
(
WhC ∗ ht−1 + WxC ∗ xt + bC

)
(10)

Ct = ft ◦ Ct−1 + (1− ft) ◦ C̃t (11)

ht = ot ◦ tanh
(
Ct
)

(12)

where ◦ represents the Hadamard product, ∗ represents the convolutional operator, WCi,
Whi, Wxi, WC f , Wh f , Wx f , WCo, Who, Wxo, WhC, WxC ∈ Rn×T represent the convolutional
kernels within the model, and bi, b f , bo, bC are the bias parameters. Figure 2 visualizes the
structure of a ConvLSTM, where the red lines indicate the extra connections found in a
ConvLSTM cell over an LSTM cell, which come from the current and previous cell states.

Figure 2. Structure of a ConvLSTM memory cell.

3.4. Autoencoder

An autoencoder is an unsupervised feedforward neural network that imposes a
bottleneck in the network, forcing a compressed knowledge representation of the original
input. More specifically, an autoencoder learns how to efficiently compress and encode data,
before learning how to reconstruct the data back from the reduced encoded representation
to an output representation that is as close to the original input as possible. An autoencoder
consists of three main parts: the encoder, which learns how to reduce the input dimensions
and compress the input data into an encoded compressed representation; the compressed
representation itself; and the decoder, which learns how to reconstruct the compressed
representation to be as close to the original input as possible. The network is trained to
minimize the reconstruction error, L(x, x̂), which measures the differences between the
original input and the consequent reconstruction. By design, autoencoders reduce data
dimensionality by learning to ignore noise in the data.
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4. ACLAE-DT Framework

The following section details the ACLAE-DT framework’s design, methodology, and
implementation. First of all, the problem statement addressed in this work is discussed,
before detailing each module in ACLAE-DT. The framework starts off by pre-processing
and enriching the input raw time series, before constructing feature images across the
different time steps. Afterwards, the attention-based ConvLSTM autoencoder aims to
reconstruct the feature image input by minimizing the reconstruction errors. Hyperparam-
eter optimization is conducted to improve the model’s performance. Lastly, a dynamic
thresholding mechanism is applied against the computed reconstruction errors for anomaly
detection and diagnosis. Figure 3 visualizes a flowchart of the ACLAE-DT framework.

Figure 3. ACLAE-DT Framework.

4.1. Problem Statement

The historical raw multivariate time series is represented as

X = (x1, x2, . . . , xn)
T ∈ Rn×T (13)

where xi is a single time series, n is the number of time series, T is the length of the time
series, and X is the entire time series. Assuming that there are no anomalies in the training
data, ACLAE-DT aims to detect anomalies by computing an anomaly score for each time
step in xi after T, such that a score outside of the threshold boundaries is flagged as an
anomaly, indicating an anomalous time step. Moreover, given the anomaly detection results,
ACLAE-DT aims to identify the anomalies’ root cause by quantitatively and qualitatively
analyzing the time series that are most likely to be the causes of the flagged anomalous
time step.

4.2. Pre-Process Time Series

Each input raw multivariate time series, xi, is normalized individually via Min-Max
scaling to rescale their values between 0 and 1. Min-Max scaling normalization can be
implemented as:

x′i =
xi −min(xi)

max(xi)−min(xi)
(14)

where x′i is the normalized input time series value. As each time series is considered a
feature, feature scaling eliminates large-scaled features to be dominating, while preserving
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all relationships in the data [42]. Furthermore, it allows gradient descent to converge much
faster when training the attention-based ConvLSTM autoencoder model [42].

4.3. Enrich Time Series
4.3.1. Utilizing Sliding Windows

Each pre-processed time series is then converted to a larger, more enriched time series
of multivariate subsequences through the use of a sliding window. A sliding window
indicates performing calculations on data within a specified window size, before sliding
to the next window based on the step size specified, till the entire set of data has been
covered in at least a single window. This means that data overlaps can occur across the
different sliding windows when creating these extra sub-periods and incorporating the
lagged values, which can assist the attention-based ConvLSTM autoencoder to extract
richer features from the constructed feature images [43]. A more formal definition of a
sliding window is specified as follows: given a time series xi of length T and a user-defined
subsequence length of d, all possible subsequences can be extracted by a sliding window of
size d across xi with a step size of step, and considering each subsequence s as t− d to t,
where t indicates the time position. The overlap rate is defined as [(d− step)/d].

4.3.2. Embedding Contextual Information

Changes in a time series may be due to contextual changes. For example, a surface-
finished material in a manufacturing process could end up being scratched or bent due
to the clamp pressure used to hold the workpiece in the vise rather than the x, y, and z
axis sensor values or the spindles. Therefore, taking contextual changes into consideration
when detecting anomalies can enhance the anomaly detection performance [44].

Contextual information is usually represented as text or categorical variables. How-
ever, DL-based models are only able to process numerical values. One method to achieve
the required numerical conversion includes the use of ordinal encoding, where each unique
category or text value is assigned an integer value. Nonetheless, this assumes that integer
values have a natural ordered relationship between each other, which is often not the
case. To resolve this shortcoming, one-hot encoding can be applied to remove the integer-
encoded variable and replace it with a new binary variable for each unique integer value.
However, one-hot encoding does not scale well with respect to the number of categories,
as the computation cost increases significantly as the categories increase, and it does not
capture the similarities between categories.

Entity embeddings [45] resolve the aforementioned limitations by using an additional
mapping operation that transforms and represents each category onto a low-dimensional
space. The entity embedding vector or layer is a matrix of weights represented as Wembedding
∈ Rq×p, where q indicates the number of categories and p indicates the number of dimen-
sions in the low-dimensional space. In this work, given a particular category v, a one-hot
representation method onehot(v) ∈ Rq×1 is used. Afterwards, an embedded representation
method embedded(v) = onehot(v) ×Wembedding is used for each category. It is important to
set p < q to ensure that as the number of categories increases, the dimensional value limits
the computational cost increase. As a result, the embedded representation is much smaller
than the one-hot representation and is able to capture similarities between the categories.

4.4. Construct Feature Images

In order to characterize the manufacturing system status accurately, it is critical to
calculate and pinpoint the correlations between the different pairs of time series [46]. Acting
as an extension to the work in [40], feature images are constructed in this paper to represent
the inter-correlations between the different pairs of sensor values and contextual entity
embedding time series in a multivariate time series. More specifically, an (n + p) × (n + p)
feature image Mt is constructed for each sliding window segment s based upon the pairwise
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inner product of two time series within this segment. The inter-correlation between two
time series in a single segment is calculated as:

mt
ij =

∑w
δ=0 xt−δ

i xt−δ
j

s
∈ Mt (15)

where i and j indicate two time series features, and δ indicates every single step in the
segment. A feature image matrix is produced for each experiment or multivariate time
series of length T, which consists of a feature image Mt for each segment s. In addition to
representing the inter-correlations and shape similarities between the pairs of time series,
feature images are robust to input noise, as instabilities at certain time steps have small
consequences. Figure 4 visualizes a single feature image example Mt.

Figure 4. Feature image visualization.

4.5. Attention-Based ConvLSTM Autoencoder Model

Once all feature images have been constructed, they are input into the ConvLSTM
autoencoder for reconstruction. More specifically, the autoencoder first encodes the con-
structed feature images and captures the temporal behavior via three alternating Con-
vLSTM encoding layers and MaxPool layers. Afterwards, the autoencoder decodes the
compressed knowledge representation to reconstruct the original feature images via three
alternating ConvLSTM decoding layers and UpSample layers. All MaxPool and UpSample
layers have a size of (2 × 2), whereas all the ConvLSTM layers have a kernel size of (3 × 3)
and the ’same’ padding. Moreover, all the ConvLSTM layers have 64 filters, except for the
last ConvLSTM encoder layer and the first ConvLSTM decoder layer, which have 32 filters.
Figure 5 visualizes the employed ConvLSTM autoencoder architecture.

Although ConvLSTMs have been developed to accurately model the spatio-temporal
information in a sequence, their performance may deteriorate as the sequence length
increases. To overcome this issue, the Bahdanau attention [24] is added to the model, which
can adaptively select relevant hidden states across different time steps and aggregate the
representations of the informative feature maps to form a refined output of feature maps.
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Constant model performance is achieved and model errors are reduced as the input time
series sequences increase. The additive Bahdanau attention is described as:

ct =
Tx

∑
t′=1

αt,t′ht′ (16)

αt,t′ =
exp(ut,t′)

∑Tx
k=1 exp(ut,k)

(17)

ut,t′ = a(st−1, ht′) (18)

where c is the context vector for the sequence of hidden state annotations and α denotes the
weights of each annotation. u is the alignment model of the feedforward neural network
described by function a. The function attempts to capture the alignment between the
attention-based ConvLSTM hidden state s of time step t− 1 and the t′-th annotation from
the hidden state h of the input sequence.

Figure 5. Proposed attention-based ConvLSTM autoencoder model.
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4.6. Model’s Hyperparameter Optimization

In order to enhance the performance of the model, several hyperparameters need to be
tuned and optimized [25]. Model hyperparameters are used in processes to help estimate
the model parameters, which are learned and estimated during the training process of
minimizing an objective loss function. Several hyperparameter optimization methods exist,
such as grid search, random search, and gradient-based optimization. Grid search is an
exhaustive search through a manually specified set of hyperparameter values, which is
time-consuming and impacted by the problem of dimensionality [47]. Gradient-based
optimization utilizes the gradient descent algorithm to compute the gradient with respect
to the hyperparameters, but they only support continuous hyperparameters and can only
detect a local optimum for non-convex hyperparameter optimization problems rather than
a global optimum [48]. Finally, random search randomly searches the grid space and
supports all types of hyperparameters, allowing a larger and more diverse grid space to be
explored. Hence, random search is used as the optimization method in this work as it is
more computationally efficient than grid search and gradient-based optimization.

Five hyperparameters are optimized in this work, as presented in Table 1 alongside
all the values under consideration and in which layer they lie, if applicable. The selected
hyperparameters are considered to be the most influential five hyperparameters on the
model’s performance, based on initial experiments. All hyperparameter value options
are based on initial experiments as well. Activation function values considered include
Rectified Linear Units (ReLU) [49], Leaky ReLU [50], Exponential Linear Units (ELU) [51],
and Scaled ELU (SELU) [52]. Optimization algorithms considered include Adam [53],
RMSProp [54], AdaDelta [55], and Stochastic Gradient Descent (SGD) [56]. Finally, the loss
functions considered include Mean Absolute Error (MAE), Mean Squared Error (MSE), and
Root MSE (RMSE).

Table 1. Model hyperparameters.

Layer Hyperparameter Values

ConvLSTM Activation Function ReLU, Leaky RELU, ELU, SELU
N/A Learning Rate 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5, 1 × 10−6

N/A Batch Size 16, 32, 64, 128, 256
N/A Optimizer Adam, RMSProp, ADADelta, SGD
N/A Loss Function MAE, MSE, RMSE

4.7. Compute Reconstruction Errors

The model’s loss objective in this work is to minimize the reconstruction errors of the
normal feature images during training, in order to accurately reconstruct the normal feature
images and inaccurately reconstruct the anomalous feature images during the testing phase.
The loss function used is dependent on the random search hyperparameter optimization
method output for the loss function hyperparameter.

4.8. Dynamic Thresholding Mechanism

At this stage, an efficient anomaly thresholding mechanism is needed in order to detect
anomalous reconstructed feature images. Often, the anomaly threshold is learned with
supervised methods. However, as the nature of the data in the manufacturing domain is
continuously changing and there exist insufficient labeled data for each class, supervised
methods would not be optimal for use here [57]. Hence, a nonparametric and dynamic
anomaly thresholding mechanism is proposed in this work, which calculates a different
threshold for each time series pair based on statistical derivations, achieving high anomaly
detection performance with low overhead. More specifically, a single threshold is set
against every single time series pair in the feature image, based on the mean and standard
deviation of that specific normal time series pair’s reconstruction errors. Any time series
pair value that surpasses the threshold at any time step during testing will be flagged as



Mach. Learn. Knowl. Extr. 2022, 4 361

anomalous and will flag the entire process at that time step as anomalous. Mathematically,
the method is described as:

εij =
(
µ(eij) + zσ(eij)

)T ∈ ε (19)

where εij indicates the threshold value for the i and j time series features pair across the
entire time series, ε is the (n + p) × (n + p) threshold matrix, eij is the set of reconstruction
errors for the normal i and j time series features pair, µ is the mean, σ is the standard
deviation, and z is an ordered set of positive values representing the number of standard
deviations. Values for z depend on context, with a range of two to five found to produce
the most accurate experimental results in this work. The presented dynamic thresholding
mechanism detects outliers, as well as localizing the anomaly root cause, by pinpointing
the sensors that are causing the detected outlier.

5. Experiments

The data set used in this paper is the Computer Numerical Control (CNC) Mill Tool
Wear data set provided by the University of Michigan [58] and found on Kaggle [59].
The data set consisted of a series of machining experiments run on 2 × 2 × 1.5 inch wax
blocks in a CNC milling machine in the System-level Manufacturing and Automation
Research Testbed (SMART). The utilized SMART machinery is technologically advanced,
resulting in more real-life SM data. Moreover, the data set provides a sufficient amount of
time series features to construct rich feature images for training and inference, as well as
providing many different experimental settings and tool wear conditions to empirically
test ACLAE-DT. The machining data were collected from a CNC machine for variations
in feed rate, tool condition, and clamping pressure, where each experiment produced a
finished wax part with an “S” shape. A total of 44 time series readings from the 4 motors
in the CNC machine, the X-axis, Y-axis, Z-axis, and spindle (S-axis), were collected at a
sampling rate of 10 Hz. The time series readings include the motor’s actual position, actual
velocity, actual acceleration, command position, command velocity, command acceleration,
current feedback, DC bus voltage, output current, output voltage, and output power. All
available attributes were used in this paper. The data set contained a total of 25,286 time
series measurements from the 18 experiments conducted, where 4 of these experiments
failed the visual inspection check. Data from each experiment were in a separate .csv file.

In this paper, every measurement is taken as an independent observation within a
sliding window to identify normal or anomalous behavior and to pinpoint the sensors that
flagged windows as anomalous. Any measurement that is part of the 4 experiments with a
failed visual inspection check contains at least a single anomalous time series reading.

In order to evaluate ACLAE-DT’s anomaly detection performance, the attention-based
ConvLSTM autoencoder model is compared with seven baseline methods. The baseline
methods comprise an ML classification method, a classical forecasting method, three state-
of-the-art DL methods, and two variants of ACLAE-DT. The classical and ML methods
are evaluated to demonstrate the effectiveness of using a DL model, and the baseline
DL methods are evaluated to demonstrate the effectiveness of a ConvLSTM autoencoder.
Moreover, the two variants of ACLAE-DT are evaluated to demonstrate the effectiveness
of each component within the model. The same numbers of layers, hyperparameters,
and components are used for each DL method, if applicable. The baseline methods are
as follows.

1. SVM: An ML method that classifies whether a test data point is an anomaly or not
based on the learned decision function from the training data.

2. Auto-Regressive Integrated Moving Average (ARIMA): A classical prediction model
that captures the temporal dependencies in the training data to forecast the predicted
values of the testing data.

3. LSTM Autoencoder: A DL method that utilizes LSTM networks in both the encoder
and decoder.
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4. ConvLSTM-LSTM Autoencoder: A DL method that utilizes ConvLSTM networks in
the encoder and LSTM networks in the decoder.

5. CNN-LSTM Autoencoder: A DL method that utilizes CNN-LSTM networks in both
the encoder and decoder.

6. ACLAE-DT Shallow: An ACLAE-DT variant that utilizes ACLAE-DT’s model with-
out the last MaxPool3D and ConvLSTM encoder components and without the first
UpSample3D and ConvLSTM decoder components.

7. ACLAE-DT No-Attention: An ACLAE-DT variant that utilizes ACLAE-DT’s model
without attention.

To empirically examine the models, three different experiments are conducted. The
models are tested using a window size of 10 with a step size of 2 in Experiment 1, a
window size of 30 with a step size of 5 in Experiment 2, and a window size of 60 with a
step size of 10 in Experiment 3. All DL-based models are trained for 250 epochs. More-
over, comparison metrics are employed to evaluate the models used and compare their
anomaly detection performance. In order to fully capture the values of the true and false
positives and negatives for each model, the precision, recall, and F1 score metrics are
utilized, as well as the time taken to train each model. An anomalous window is defined
as a poorly reconstructed feature image with a value that surpasses the corresponding
threshold. True positives in this work indicate anomalous windows correctly classified
as anomalous, and true negatives indicate non-anomalous windows correctly classified
as non-anomalous. All experiments are repeated five times and the average results are
computed for performance comparison.

Afterwards, ACLAE-DT’s results are analyzed to pinpoint the readings that flagged
windows as anomalous. It is important to localize the anomaly root cause during a produc-
tion failure to plan adequate countermeasures and fix the system.

All networks are built and implemented in Python 3.7.9, using the Tensorflow [60] and
Keras [61] libraries. All work is run on a machine comprising an NVIDIA GeForce GTX 1650
4 GB, a 16 GB DDR4 2666 MHz RAM, and a 9th Generation Intel Core i7-9750H Processor.

6. Performance Evaluation
6.1. Anomaly Detection Results

The anomaly detection performance for each model under the three different experi-
mental settings is illustrated in Tables 2–4, respectively. Note that the results for ARIMA
and SVM are the same across all three experiments, as they do not consider window sizes
and step sizes in their algorithmic calculations. Table 2 demonstrates the performance
evaluation of all eight models in Experiment 1. It can be observed that ARIMA detected
anomalies better than SVM, indicating that the data set had a temporal dependency feature
that could not be captured by the classification method. However, all the DL-based meth-
ods performed better than ARIMA, indicating DL’s strength in capturing more complex
structures and modeling a finer multivariate temporal dependency and correlation from
the data set. Furthermore, it can be observed that all variants of ACLAE-DT performed
better than the three baseline DL models based on every single evaluation metric used,
while taking less time to train. The full ACLAE-DT model performed at least 4.8% better in
every single evaluation metric, while taking at least 22.9% less time to train than the three
baseline DL models. Moreover, the full ACLAE-DT model performed either similarly to or
better than the two variant baseline models, while taking 6.7% less time to train than the
shallow model but 3.1% more time than the no-attention model.
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Table 2. Anomaly detection results using a window size of 10 with a step size of 2.

Method Precision Recall F1 Score Train Time (s)

SVM (Linear Kernel) 0.15 0.17 0.16 14
ARIMA (2,1,2) 0.52 0.59 0.56 98
LSTM Autoencoder 0.83 0.80 0.82 13,468
ConvLSTM-LSTM Autoencoder 0.80 0.84 0.82 11,914
CNN-LSTM Autoencoder 0.84 0.84 0.84 10,136
ACLAE-DT Shallow 0.94 0.87 0.90 8372
ACLAE-DT No Attention 0.95 0.87 0.91 7574
ACLAE-DT Full 0.95 0.88 0.92 7812

Similar observations can be drawn from Tables 3 and 4, which demonstrate the per-
formance evaluation of all eight models in Experiment 2 and Experiment 3, respectively.
As the window size and step size increased, the training time for all ACLAE-DT variants
decreased, whilst average performance improved. This was not the case with the DL
baseline models, however, as training time and performance did not follow a general trend
as window sizes and step sizes changed. In Experiment 2, the full ACLAE-DT model
performed at least 5.8% better in every single evaluation metric, while taking at least 65.8%
less time to train than the three baseline DL models. In Experiment 3, the full ACLAE-DT
model performed at least 16.5% better in every single evaluation metric, while taking at
least 196.7% less time to train than the three baseline DL models. In both experiments, the
full ACLAE-DT model performed better than the two variant baseline models, while taking
less time to train than the shallow model but more time than the no-attention model.

Table 3. Anomaly detection results using a window size of 30 with a step size of 5.

Method Precision Recall F1 Score Train Time (s)

SVM (Linear Kernel) 0.15 0.17 0.16 14
ARIMA (2,1,2) 0.52 0.59 0.56 98
LSTM Autoencoder 0.82 0.83 0.83 15,932
ConvLSTM-LSTM Autoencoder 0.79 0.84 0.81 8274
CNN-LSTM Autoencoder 0.83 0.85 0.84 5362
ACLAE-DT Shallow 0.91 0.89 0.90 3388
ACLAE-DT No Attention 0.95 0.88 0.90 3122
ACLAE-DT Full 0.96 0.90 0.93 3234

Table 4. Anomaly detection results using a window size of 60 with a step size of 10.

Method Precision Recall F1 Score Train Time (s)

SVM (Linear Kernel) 0.15 0.17 0.16 14
ARIMA (2,1,2) 0.52 0.59 0.56 98
LSTM Autoencoder 0.79 0.83 0.82 7462
ConvLSTM-LSTM Autoencoder 0.77 0.82 0.79 13,496
CNN-LSTM Autoencoder 0.84 0.85 0.85 5152
ACLAE-DT Shallow 0.96 0.99 0.97 2814
ACLAE-DT No Attention 0.97 0.99 0.98 1638
ACLAE-DT Full 0.99 1.00 1.00 1736

All the previous results demonstrate the strength of utilizing a DL-based anomaly
detection model in multivariate time series, as SVM and ARIMA failed to capture complex
relationships. Moreover, the results demonstrate the effectiveness of deploying ConvLSTM
networks compared to LSTM networks or CNNs in both the encoder and decoder, as
ACLAE-DT was capable of capturing the inter-sensor correlations and temporal patterns
of multivariate time series effectively. The results further demonstrate the effectiveness of
constructing a deeper model and adding attention to it, particularly for when the window
size is 30 and above, as performance constantly improved. The full ACLAE-DT model and
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its variants performed the best in Experiment 3, whilst taking the least amount of training
time. The full ACLAE-DT model had the best model performance out of all the compared
models in the aforementioned experimental setting, attaining a perfect recall and F1 score
and an almost perfect precision score, with an average training time of 1736 s.

Previous works in the manufacturing domain for tool wear prediction [62–66] utilized
different data sets, which either include one or a few time series features, making it difficult
for direct comparison with ACLAE-DT as it is tested against a richer data set with 44 time
series features. In the literature, no other work has utilized the entire data set in [59] to
simultaneously detect anomalies and identify the anomalous root causes while employing
ML or DL methods. Moreover, the accuracy metric was utilized in [62–66], potentially
being misleading since the metric can be heavily skewed towards finding non-anomalous
points, which usually dominate real-life data sets, and the accuracy metric was not used in
this paper for direct score comparisons.

6.2. Anomaly Root Cause Identification Results

If the reconstruction error of an inter-correlation between two time series crossed
the set threshold for a particular window, then the corresponding pair of sensors were
signified as contributors towards the anomalous window. The three sensor readings
that contributed the most towards the flagged anomalous windows in Experiment 3 are
visualized in Figure 6. The x-axis indicates the sensor reading features, and the y-axis
indicates the feature’s anomalous window appearance percentage. It can be observed from
the figure that the readings from the x-axis motor had the greatest influence on the success
of the visual inspection check, as they contributed the most towards flagging a window
as anomalous. The X1-OutputCurrent feature had the greatest influence as it passed its
threshold in 95.7% of the windows, followed by the X1-DCBusVoltage feature as it passed
its threshold in 88.2% of the windows, followed by the X1-ActualAcceleration feature as it
passed its threshold in 78.7% of the windows.

Figure 6. Anomaly root cause feature analysis.

X1-OutputCurrent was further analyzed in order to have a thorough understanding
of ACLAE-DT’s mechanism and results. Figure 7 visualizes three charts within a specific
time series cross-section: (a) X1-OutputCurrent original vs. reconstructed normal data,
(b) X1-OutputCurrent original vs. reconstructed anomalous data, and (c) X1-OutputCurrent
reconstructed normal vs. anomalous data errors with the calculated dynamic threshold
boundary in red. In chart (a), it can be observed that ACLAE-DT was able to reconstruct
the original normal data well for most data points, with a small margin of error. In chart
(b), it can be observed that ACLAE-DT was not able to reconstruct the original anomalous
data well, particularly for the reading peaks, as it had never observed similar system
statuses before. Finally, in chart (c), it can be realized that the reconstructed anomalous data
errors crossed the threshold frequently, whereas the reconstructed normal data errors never
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crossed the threshold. It is important to note that many of the reconstructed anomalous
errors were just shy of crossing the threshold, indicating that when the inter-correlation
between X1-OutputCurrent and another time series was computed, the results were bound
to cross the set threshold if the time series contained novel system behavior, contributing to
X1-OutputCurrent’s high anomalous correlation.

Figure 7. X1-OutputCurrent time series measurement analysis.
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6.3. Execution Time and Memory Requirements

To further evaluate ACLAE-DT against the baseline methods, the execution time and
memory requirements of each method for a single window in Experiment 3 were calculated,
as visualized in Figures 8 and 9, respectively. Ten experimental executions were conducted
and the average results were used. SVM and ARIMA were not included in the comparison
due to their poor anomaly detection performance, deeming both methods unsuitable for
use in real-life SM processes.

Figure 8. Execution time taken per window.

Figure 9. Execution memory consumption per window.
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It can be observed from Figure 8 that the LSTM autoencoder method took the shortest
execution time per window, with around 10 ms, followed by the ACLAE-DT shallow
method with around 11.25 ms. The ACLAE-DT full method took around 14 ms, 40%
more time than the LSTM autoencoder method and 24.4% more time than the ACLAE-DT
shallow method. Moreover, it can be drawn from Figure 9 that the ACLAE-DT shallow
method required the least amount of memory during execution, with around 0.14 MB.
ACLAE-DT no-attention and ACLAE-DT full required the largest amount of memory out
of all methods, with memory consumption of around 0.25 and 0.26 MB, respectively. From
the drawn observations, it is evident that the tradeoff of using the full ACLAE-DT method
with its superior anomaly detection performance, root cause detection identification, and
short training time is its greater execution time and memory consumption. If a method’s
execution time and memory consumption are of higher importance than the method’s
anomaly detection performance and training time during real-life production, then the
ACLAE-DT shallow method can be utilized as it performed very closely to the ACLAE-DT
full method and required the second least amount of execution time and the least amount
of execution memory out of all methods.

7. Conclusions

In this paper, a novel unsupervised attention-based deep ConvLSTM autoencoder
with a dynamic thresholding mechanism framework, ACLAE-DT, was proposed to detect
anomalies in a real-life manufacturing multivariate time series data set. The framework
first normalized and enriched the raw time series with contextual information and sliding
windows, before constructing feature images to capture system statuses across different
time steps. The feature images were then input into an attention-based deep ConvLSTM
autoencoder to be reconstructed, with an aim to minimize the reconstruction errors. The
computed reconstruction errors were then subjected to a dynamic, nonparametric threshold-
ing mechanism that utilized the mean and standard deviation of the normal reconstruction
errors to compute a specific threshold for each time series pair, in order to detect and
diagnose the anomalies.

Results demonstrated the effectiveness of ACLAE-DT, as it outperformed a classical
approach, an ML approach, and three state-of-the-art DL approaches in detecting anoma-
lous windows, while requiring less time to train than the latter approaches. Results further
illustrated how ACLAE-DT was able to effectively diagnose the anomalies and locate the
contributing features towards the anomalous windows. Moreover, the shallow variation
of ACLAE-DT consumed the least amount of execution memory and the second least
amount of execution time out the three state-of-the-art DL methods. All these results
indicated the practicality and suitability of adopting ACLAE-DT for anomaly detection in
produced robotic surface finishes and in real-life smart manufacturing processes. Further-
more, ACLAE-DT can be extended to detect anomalies in robotic processes within other IoT
domains, such as data networks, wireless sensor networks, ubiquitous environments, and
advanced healthcare. However, to fully ensure that ACLAE-DT is ready to be deployed in
production for real-life smart manufacturing processes, further experiments with differ-
ent data structures, behaviors, and features need to be conducted to assess the method’s
anomaly detection effectiveness in a variety of environments. Moreover, if the ACLAE-DT
networks require retraining often in a production environment, a reduction in training time
is required to maintain the anomaly detection effectiveness. As a future extension to this
work, ACLAE-DT can be applied to another public data set to benchmark its performance
with the conventional anomaly detection algorithms, and a reduction in the execution time
and memory consumption of the full ACLAE-DT model while maintaining the superior
anomaly detection and anomaly root cause identification performances can be explored.
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