
����������
�������

Citation: Kurniawan, K.; Ekelhart, A.;

Kiesling, E.; Winkler, D.; Quirchmayr,

G.; Tjoa, A.M. VloGraph: A Virtual

Knowledge Graph Framework for

Distributed Security Log Analysis.

Mach. Learn. Knowl. Extr. 2022, 4,

371–396. https://doi.org/10.3390/

make4020016

Academic Editor: Ján Paralič

Received: 25 February 2022

Accepted: 3 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

VloGraph: A Virtual Knowledge Graph Framework for
Distributed Security Log Analysis

Kabul Kurniawan 1,2,* , Andreas Ekelhart 3,4 , Elmar Kiesling 1 , Dietmar Winkler 5 , Gerald Quirchmayr 2

and A Min Tjoa 5

1 Institute for Data, Process and Knowledge Management, Vienna University of Economics and Business,
1020 Vienna, Austria; elmar.kiesling@wu.ac.at

2 Research Group Multimedia Information Systems, University of Vienna, 1090 Vienna, Austria;
gerald.quirchmayr@univie.ac.at

3 Research Group Security and Privacy, University of Vienna, 1090 Vienna, Austria;
andreas.ekelhart@univie.ac.at

4 SBA Research, 1040 Vienna, Austria
5 Information and Software Engineering, Vienna University of Technology, 1040 Vienna, Austria;

dietmar.winkler@tuwien.ac.at (D.W.); a.tjoa@tuwien.ac.at (A.M.T.)
* Correspondence: kabul.kurniawan@wu.ac.at

Abstract: The integration of heterogeneous and weakly linked log data poses a major challenge in
many log-analytic applications. Knowledge graphs (KGs) can facilitate such integration by providing
a versatile representation that can interlink objects of interest and enrich log events with background
knowledge. Furthermore, graph-pattern based query languages, such as SPARQL, can support rich
log analyses by leveraging semantic relationships between objects in heterogeneous log streams.
Constructing, materializing, and maintaining centralized log knowledge graphs, however, poses
significant challenges. To tackle this issue, we propose VloGraph—a distributed and virtualized
alternative to centralized log knowledge graph construction. The proposed approach does not
involve any a priori parsing, aggregation, and processing of log data, but dynamically constructs a
virtual log KG from heterogeneous raw log sources across multiple hosts. To explore the feasibility
of this approach, we developed a prototype and demonstrate its applicability to three scenarios.
Furthermore, we evaluate the approach in various experimental settings with multiple heterogeneous
log sources and machines; the encouraging results from this evaluation suggest that the approach can
enable efficient graph-based ad-hoc log analyses in federated settings.

Keywords: semantic log analysis; virtual log graphs; dynamic log extraction; decentralized logquerying;
forensics

1. Introduction

Log data analysis is a crucial task in cybersecurity, e.g., when monitoring and audit-
ing systems, collecting threat intelligence, conducting forensic investigations of incidents,
and pro-actively hunting threats [1]. Currently available log analysis solutions, such as
Security Information and Event Management (SIEM) systems, support the process by
aggregating log data as well as storing and indexing log messages in a central relational
database [2]. With their strict schemas, however, such databases are limited in their ability
to represent links between entities [3]. This results in a lack of explicit links between
heterogeneous log entries from dispersed log sources in turn makes it difficult to integrate
the partial and isolated views on system states and activities reflected in the various logs.
Furthermore, the central log aggregation model is also bandwidth-intensive and compu-
tationally demanding [2,4,5], which limits its applicability in large-scale infrastructures.
Without a dedicated centralized log infrastructure, however, the process necessary to ac-
quire, integrate and query log data are tedious and inefficient, which poses a key challenge
for security analysts who often face time critical tasks.

Mach. Learn. Knowl. Extr. 2022, 4, 371–396. https://doi.org/10.3390/make4020016 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make4020016
https://doi.org/10.3390/make4020016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-5353-7376
https://orcid.org/0000-0003-3682-1364
https://orcid.org/0000-0002-7856-2113
https://orcid.org/0000-0002-4743-3124
https://orcid.org/0000-0003-2998-742X
https://orcid.org/0000-0002-8295-9252
https://doi.org/10.3390/make4020016
https://www.mdpi.com/journal/make
http://www.mdpi.com/2504-4990/4/2/16?type=check_update&version=2


Mach. Learn. Knowl. Extr. 2022, 4 372

To illustrate the issue, consider the example in Figure 1. It is based on log data
produced by multi-step attacks as described in [6]. These log data sets will also be used in
a scenario in Section 7. The various steps of the attack are reflected in a large number of
log messages in a diverse set of log sources dispersed across multiple hosts and files (e.g.,
Syslog, ApacheLog, AuthLog, MailLog etc.). Vulnerability Scan, for instance—which scans a
system for known vulnerabilities—leaves some traces in multiple log sources such as Syslog
and ApacheLog on Host1 and Host3, respectively. User Enumeration—an activity that aims to
guess or confirm valid users in a system—also leaves some traces in (AuthLog, MailLog etc.)
stored on Host1 and Host2. As this example shows, a single attack step typically results in a
large number of log events that capture comprehensive information. This information can
be used for log analysis and attack investigation, but correlating, tracing, and connecting
the individual indicators of compromise—e.g., through timestamps, IP addresses, user
names, processes and so forth—is typically a challenging and often time-consuming task.
This is partly due to the weak structure of log sources and their inconsistent format and
terminologies. Consequently, it is difficult to get a complete picture of suspicious activities
and understand what happened in a given attack—particularly in the face of fast evolving,
large volume, and highly scattered log data.

Figure 1. Motivating example illustrating that attack steps leave traces in various log sources across
multiple hosts, making it difficult to reconstruct what happened.

To tackle these challenges, we propose VloGraph, a decentralized framework to contex-
tualize, link, and query log data. We originally introduced this framework in [7]; in this
paper, we extend this prior work with a detailed requirements specification, evaluation
with two additional application scenarios, and a section reflecting upon graph-based log
integration and analysis, decentralization and virtualization, and discussing applications
and limitations.

More specifically, we introduce a method to execute federated, graph pattern-based
queries over dispersed, heterogeneous raw log data by dynamically constructing virtual
knowledge graphs [8,9]. This knowledge-based approach is designed to be decentralized,
flexible and scalable. To this end, it (i) federates graph-pattern based queries across end-
points, (ii) extracts only potentially relevant log messages, (iii) integrates the dispersed log
events into a common graph, and (iv) links them to background knowledge.

All of these steps are executed at query time without any up-front ingestion and
conversion of log messages.

Figure 2 illustrates the proposed approach; the virtual log knowledge graph at the
center of the figure is constructed dynamically from dispersed log sources based on analysts’
queries and linked to external and internal knowledge sources.



Mach. Learn. Knowl. Extr. 2022, 4 373

Figure 2. Concept overview.

A key advantage of the graph-based model of this virtual knowledge graph is that
it provides a concise, flexible, and intuitive abstraction for the representation of various
relations such as, e.g., connections in networked systems, hierarchies of processes on
endpoints, associations between users and services, and chains of indicators of compromise.
These connections automatically link log messages that are related through common
entities (such as users, hosts, and IP addresses); such links are crucial in cybersecurity
investigations, as threat agent activities typically leave traces in various log files that are
often spread across multiple endpoints in a network, particularly in discovery, lateral
movement, and exfiltration stages of an attack ATT&CK Matrix for Enterprise [10].

In contrast to traditional workflows that store log messages in a centralized repos-
itory, VloGraph shifts the log parsing workload from ingestion to analysis time. This
makes it possible to directly access and dynamically integrate the most granular raw log
data without any loss of information that would occur if the logs were pre-filtered and
aggregated—typical steps performed before transferring them to a central archive.

VloGraph tackles a number of pressing challenges in security log analysis (discussed
in Section 4) and facilitates (i) ad-hoc integration and semantic analyses on raw log data
without prior centralized materialization, (ii) the collection of evidence-based knowledge
from heterogeneous log sources, (iii) automated linking of fragmented knowledge about
system states and activities, and (iv) automated linking to external security knowledge
(such as, e.g., attack patterns, threat implications, actionable advice).

The remainder of this paper is organized as follows: Section 2 introduces background
knowledge as conceptual foundation, including semantic standards and virtual knowledge
graphs. Section 3 provides an overview of related work in this area, and in Section 4, we
discuss challenges in log analysis and derive requirements for our approach. Section 5
introduces the proposed VloGraph architecture and describes the components for virtual
log knowledge graph construction in detail. In Section 6 we present a prototypical im-
plementation of the architecture and illustrate its use in three application scenarios. We
evaluate our approach on a systematically generated log dataset in Section 7 and discuss
benefits and limitations of the presented approach in Section 8. Finally, we conclude with
an outlook on future work in Section 9.

2. Background

In this section, we first provide a brief background on log files and formats and then
introduce knowledge graphs as a conceptual foundation of our approach.

Log File Formats

Typically, software systems (operating systems, applications, network devices, etc.)
produce time-sequenced log files to keep track of relevant events. These logs are used by
roles such as administrators, security analysts, and software developers to identify and
diagnose issues. Various logging standards are in use today, often focused on a specific
application domain, such as operating system logs (e.g., syslogd [11] and Windows Event
Logs [12]), web server logs (e.g., W3C Extended log file format [13], NGINX logging [14]),
database logs, firewall logs, etc.



Mach. Learn. Knowl. Extr. 2022, 4 374

Log entries are often stored as semi-structured lines of text, comprising structured
parts (e.g., timestamp and severity level) and unstructured fields such as a message. While
the structured parts are typically standardized, the content of the unstructured fields
contains context specific information and lacks uniformity. Before plain text log lines
can be (automatically) analyzed, they must be split into their relevant parts, e.g., into a
key-value based representation. This pre-processing step often relies on predefined regular
expressions. Other standards, such as the Windows Event Log (EVTX), are already highly
structured and support XML or JSON. Despite standardization attempts, heterogeneous
log formats are still often an impediment to effective analysis. Current research also strives
to automatically detect structure in log files [15] and to establish a semantic understanding
of log contents such as [16,17].

Knowledge Graphs

A knowledge graph is a directed, edge-labelled graph G = (V, E) where V is a set of
vertices (nodes) and E is a set of edges (properties). A single graph is usually represented
as a collection of triples T = < s p o > where s is a subject, p is a predicate, and o is an object.

RDF, RDF-S, OWL

Resource Description Framework (RDF) is a standardized data model that has been
recommended by the W3C [18] to represent directed edge-labelled graphs. In RDF, a subject
is a resource identified by a unique identifier (URI) or a blank-node, an object can be a
resource, blank-node or literal (e.g., String, number), and predicate is a property defined in
an ontology and must be a URI.

Figure 3 shows an excerpt of a log knowledge graph that expresses a single Apache log
event in RDF. To the left, it shows a graphical representation of this log event and to the right
a representation of the same graph in TURTLE [19] serialization. The subject :logEntry-24e is
characterized by a number of properties that specify its type (cl:ApacheLog), the timestamp
of creation, the originate host of the log event, the client that made the request, and the
request string. Furthermore, the highlighted IP-Address (in the visualization) indicate that
the objects link to other entities in the graph.

Figure 3. Excerpt of an RDF log graph generated from an Apache log event.

RDF-S (Resource Description Framework Schema) [20] is a W3C standard data model
for knowledge representation. It extends the basic RDF vocabulary with a set of classes
and RDFS entailment (inference patterns) [21]. OWL (Ontology Web Language) [22] is also
a W3C standard for authoring ontologies.

SPARQL

SPARQL [23] is a W3C query language to retrieve and manipulate data stored in RDF.
It offers rich expressivity for complex queries such as aggregation, subqueries, and negation.
Furthermore, SPARQL provides capabilities to express queries across multiple distributed
data sources through SPARQL query federation [24]. In the security context, this is a major
benefit, as security-relevant information is typically dispersed across different systems
and networks and requires the consideration of e.g., different log sources, IT repositories,
and cyberthreat intelligence sources [25].



Mach. Learn. Knowl. Extr. 2022, 4 375

Virtual Knowledge Graphs

The Virtual Knowledge Graph (VKG) paradigm for data integration is typically used
to provide integrated access to heterogeneous relational data. The approach—also known
in the literature as Ontology-based Data Access—aims to replace the rigid structure of
tables in traditional data integration layers with the flexibility of graphs. This makes it
possible to connect data silos by means of conceptual graph representations that provide
an integrated view on the data. To this end, VKGs integrate three main ideas [9]:

• Data Virtualization (V), i.e., they provide a conceptual view that avoids exposing end
users to the actual data sources. This conceptual view is typically not materialized in
order to make it possible to query the data without paying a price in terms of storage
and time for the data to be made accessible.

• Domain Knowledge (K), i.e., the graphs can be enriched and contextualized with domain
knowledge that makes it possible to derive new implicit knowledge from the asserted
facts at the time a query is executed.

• Graph Representation (G), i.e., the data are represented as graph where object and data
values are represented as nodes, and properties of those object are represented as
edges. Compared to traditional relational integration tables, the graph representation
provides flexibility and through mapping and merging makes it easier to link and
integrate data.

In this paper, we follow these principles and generalize the VKG paradigm to weakly
structured log data.

3. Related Work

In this section, we organize the related literature—from general to specific—into
three categories:

Log Management and Analytics

The rising number, volume and variety of logs has created the need for systematic
computer security log management [26] and motivated the development of a wide range
of log-analytic techniques to derive knowledge from these logs [27], including anomaly
detection [28,29], clustering [30], and rule-base intrusion detection [31].

In the context of our work, approaches that aim to integrate and analyze log data across
multiple sources are particularly relevant. Security Information and Event Management
(SIEM) are widely used to provide a centralized view on security-relevant events inside an
organization and focus on data aggregation, correlation, and typically rule-based alerting.
These ideas are outlined in numerous guidelines and industrial best practices such as the
NIST Cybersecurity Framework [32] and NIST SP 800-92 Guide to Computer Security Log
Management [33]. In this current state of practice, various commercial offerings provide
centralized solutions e.g. Gartner Magic Quadrant for SIEM 2021 [34].

Whereas SIEMs facilitate centralized log aggregation and management, however, they
lack a semantic foundation for the managed log data and consequently typically do not
make it easy to link, contextualize, and interpret events against the background of domain
knowledge. To tackle these challenges, Ref. [35] creates a foundation for semantic SIEMs
that introduces a Security Strategy Meta-Model to enable interrelating information from
different domains and abstraction levels. In a similar vein, Ref. [2] proposes a hybrid
relational-ontological architecture to overcome cross-domain modeling, schema complexity,
and scalability limitations in SIEMs. This approach combines existing relational SIEM
data repositories with external vulnerability information, i.e., Common Vulnerabilities and
Exposures (CVE) [36].

Graph-Based Log Integration and Analysis

More closely related to the VloGraph approach proposed in this paper, a stream of
literature has emerged that recognizes the interrelated nature of log data and conceives log



Mach. Learn. Knowl. Extr. 2022, 4 376

events and their connections as graphs—i.e., labeled property graphs (LPGs) or semantically
explicit RDF knowledge graphs.

In the former category, LPGs are stored in graph databases and queried through
specialized graph query languages. For network log files, for instance, Ref. [37] proposes
an approach that materializes the log in a Neo4J graph database and makes it available
for querying and visualization. The approach is limited to a single log source and focuses
exclusively on network log analysis. Similar to this, CyGraph [38] is a framework that
integrates isolated data and events in a unified graph-based cybersecurity model to assist
decision making and improve situational awareness. It is based on a domain-specific
language CyQL to express graph patterns and uses a third-party tool for visualization.

Another stream of literature transforms logs into RDF knowledge graphs that can
be queried with SPARQL, a standardized query language. Early work such as [39] has
illustrated that the use of explicit semantics can help to avoid ambiguity, impose meaning
on raw log data, and facilitate correlation in order to lower the barrier for log interpretation
and analysis. In this case, however, the log source considered is limited to a firewall
log. Approaches like this do not directly transform log data into a graph, but impose
semantics to existing raw log data or log data stored in a relational database. More recently,
approaches have been developed that aim to transform log data from multiple sources into
an integrated log knowledge graph.

For structured log files, Ref. [40] discusses an approach that analyzes their schema to
generate a semantic representation of their contents in RDF. Similar to our work, the ap-
proach links log entities to external background knowledge (e.g., DBPedia), but the log
source processed is limited to a single log type. Ref. [41] leverages an ontology to correlate
alerts from multiple Intrusion Detection Systems (IDSs) with the goal of reducing the num-
ber of false-positive and false-negative alerts. It relies on a shared vocabulary to facilitate
security information exchange (e.g., IDMEF, STIX, TAXII), but does not facilitate linking to
other log sources that may contain indicators of attacks.

LEKG [42] provides a log extraction approach to construct knowledge graphs using
inference rules and validates them from a background knowledge graph. It uses local
inference rules to create graph elements (triples) which can later be used to identify and
generate causal relations between events. Compared to VloGraph, the approach does not
aim to provide integration and interlinking over multiple heterogeneous log sources.

To facilitate log integration, contextualization and linking to background knowledge,
Ref. [17] proposes a modular log vocabulary that enables log harmonization and integration
between heterogeneous log sources. A recent approach proposed in [25] introduces a
vocabulary and architecture to collect, extract, and correlate heterogeneous low-level file
access events from Linux and Windows event logs.

Compared to the approach in this paper, the approaches discussed so far rely on a
centralized repository. A methodologically similar approach for log analysis outside of the
security domain has also been introduced in [43], which leverages ontology-based data
access to support log extraction and data preparation on legacy information systems for
process mining. In contrast to this paper, the focus is on log data from legacy systems in
existing relational schemas and on ontology-based query translation.

Decentralized Security Log Analysis

Decentralized event correlation for intrusion detection was introduced in early work
such as [44], where the authors propose a specification language to describe intrusions in a
distributed pattern and use a peer-to-peer system to detect attacks. In this decentralized
approach, the focus is on individual IDS events only. To address scalability limitations
of centralized log processing, Ref. [4] distributes correlation workloads across networks
to the event-producing hosts. Similar to this approach, we aim to tackle challenges of
centralized log analysis. However, we leverage semantic web technologies to also provide
contextualization and linking to external background knowledge. In the cloud environment,
Ref. [45] proposes a distributed and parallel security log analysis framework that provides
analyses of a massive number of systems, networks, and transaction logs in a scalable



Mach. Learn. Knowl. Extr. 2022, 4 377

manner. It utilizes the two-level master-slave model to distribute, execute, and harvest
tasks for log analysis. The framework is specific to cloud-based infrastructures and lacks the
graph-oriented data model and contextualization and querying capabilities of our approach.

4. Requirements

Existing log management systems typically ingest log sources from multiple log-
producing endpoints and store them in a central repository for further processing. Before
they can be analyzed, such systems typically parse and index these logs, which typically
requires considerable amounts of disk space to store the data as well as computational
power for log analysis. The concentrated network bandwidth, CPU, memory, and disk
space needs limit the scalability of such centralized approaches.

Decentralized log analysis, by contrast, (partly) shifts the computational workloads
involved in log pre-processing (e.g., acquisition, extraction, and parsing) and analysis to the
log-producing hosts [4]. This model has the potential for higher scalability and applicability
in large-scale settings where the scope of the infrastructure prohibits effective centralization
of all potentially relevant log sources in a single repository.

Existing approaches for decentralized log processing, however, primarily aim to
provide correlation and alerting capabilities, rather than the ability to query dispersed
log data in a decentralized manner. Furthermore, they lack effective means for semantic
integration, contextualization, and linking, i.e., dynamically creating connections between
entities and potentially involving externally available security information. They also
typically have to ingest all log data continuously on the local endpoints, which increases
continuous resource consumption across the infrastructure.

In this paper, we tackle these challenges and propose a distributed approach for
security log integration and analysis. Thereby, we facilitate ad-hoc querying of dispersed
raw log sources without prior ingestion and aggregation in order to address the following
requirements (R):

• R.1—Resource-efficiency Traditional log management systems, such as SIEMs, per-
form continuous log ingestion and preprocessing, typically from multiple monitoring
endpoints, before analyzing the log data. This requires considerable resources as all
data needs to be extracted and parsed in advance. A key requirement for distributed
security log analysis is to avoid unnecessary ex-ante log preprocessing (acquisition,
extraction, and parsing), thus minimizing resource requirements in terms of central-
ized storage space and network bandwidth. This should make log analysis both more
efficient and more scalable.

• R.2—Aggregation and integration over multiple endpoints As discussed in the context
of the motivating example in Section 1, a single attack may leave traces in multiple
log sources, which can be scattered across different systems and hosts. To detect
sophisticated attacks, it is therefore necessary to identify and connect such isolated
indicators of compromise [17]. The proposed solution should therefore provide the
ability to execute federated queries across multiple monitoring endpoints concurrently
and deliver integrated results. This makes it possible to detect not only potential attack
actions, but also to obtain an integrated picture of the overall attack (e.g., through
linking of log entries).

• R.3—Integration, Contextualization & Background-Linking the interpretation of log
information for attack investigation depends highly on the context; isolated indicators
on their own are, however, often inconspicuous in their local context. Therefore,
the proposed approach should provide the ability to contextualize disparate log
information, integrate it, and link it to internal background knowledge and external
security information.

• R.4—Standards-based query language The proposed approach should provide an
expressive, standards-based query language for log analysis. This should make it
easier for analysts to formulate queries (e.g., define rules) during attack investigation
in an intuitive and declarative manner.



Mach. Learn. Knowl. Extr. 2022, 4 378

5. VloGraph Framework Architecture

Based on the requirements set out in Section 4, we propose VloGraph, an approach and
architecture for security log analytics based on the concept of Virtual Knowledge Graphs
(VKGs). The proposed approach leverages Semantic Web Technologies that provide (i) a
standardized graph-based representation to describe data and their relationships flexibly
using RDF [46], (ii) semantic linking and alignment to integrate multiple heterogeneous
log data and other resources (e.g., internal/external background knowledge), and (iii)
a standardized semantic query language (i.e., SPARQL [23]) to retrieve and manipulate
RDF data.

To address R.1, our approach does not rely on centralized log processing, i.e., we only
extract relevant log events based on the temporal scope and structure of a given query
and its query parameters. Specifically, we only extract lines in a log file that: (i) are within
the temporal scope of the query, and (ii) may contain relevant information based on the
specified query parameters and filters.

The identified log lines are extracted, parsed, lifted to RDF, compressed, and tem-
porarily stored in a local cache on the respective endpoint. This approach implements
the concept of data virtualization and facilitates on-demand log processing. By shifting
computational loads to individual monitoring agents and only extracting log entries that
are relevant for a given query, this approach can significantly reduce unnecessary log data
processing. Furthermore, due to the use of RDF compression techniques, the transferred
data are rather small; we discuss this further in Section 7.

To address R.2, we distribute queries over multiple log sources across distributed
endpoints and combine the results in a single integrated output via query federation [24].

To address R.3, we interlink and contextualize our extracted log data with internal
and external background knowledge—such as, e.g., IT asset information and cybersecurity
knowledge—via semantic linking and alignment. Finally, we use SPARQL to formulate
queries and perform log analyses, which addresses R.4. We will illustrate SPARQL query
federation and contextualization in multiple application scenarios for in Section 6.

Figure 4 illustrates the VloGraph virtual log graph and query federation architecture
for log analysis; (i) a Log Parser on each host, which receives and translates queries,
extracts raw log data from hosts, parses the extracted log data into an RDF representation,
compresses the resulting RDF data into a binary format, and sends the results back to
a (ii) Query Processor, which provides an interface to formulate SPARQL queries and
distributes the queries among individual endpoints; furthermore, it retrieves the individual
log graphs from the endpoints, integrates them, and presents the resulting integrated graph.

In the following, we explain the individual components in detail.

SPARQL Query Editor

This Sub-Component is Part of the Query Processor and allows analysts to define set-
tings for query execution, including: (i) Target Hosts: a set of endpoints to be included in the
log analysis, (ii) Knowledge bases: a collection of internal and/or external sources of back-
ground knowledge that should be included in the query execution (e.g., IT infrastructure,
cyber threat intelligence knowledge bases, etc.), (iii) Time Interval: the time range of interest
for the log analysis (i.e., start time and end time).



Mach. Learn. Knowl. Extr. 2022, 4 379

Figure 4. Virtual log graph and query federation architecture.

Query Parsing

The SPARQL query specification [47] provides a number of alternative syntaxes to
formulate queries. For uniform access to the properties and variables inside the query, we
therefore parse the raw SPARQL syntax into a structured format prior to transferring the
query to the monitoring hosts. The prepared SPARQL query is then sent as a parameter to
the Query Translator via the Web API in the Log Parser Component.

Query Translation

This sub-component decomposes the SPARQL query to identify relevant properties
for log source selection and log line matching. Algorithm 1 outlines the general query
translation procedure, which identifies relevant log sources and log lines based on three
criteria, i.e., (i) prefixes used in the query; (ii) triples; and (iii) filters.

Pre f ixes(P) is a set of log vocabulary prefixes that appear in a given query Q. In each
query, the contained prefixes will be used by the query translator to identify relevant log
sources. Available prefixes can be configured for the respective log sources in the Log Parser
configuration on each client, including, e.g., the path to the local location of the log file.
As an example, PREFIX auth: <http://w3id.org/authLog> is the prefix for AuthLog; its
presence in a query indicates that the AuthLog on the selected hosts will be included in the
log processing.

Triples (T) is a set of triples that appear in a query, each represented as Triple Pattern
or a Basic Graph Pattern (BGP) (i.e., <Subject> <Predicate> <Object>).

We match these triples to log lines (e.g., hosts and users) as follows: Function
getTriplePattern(Q) collects the triple patterns T contained within the query Q. For each
triple statement in a query, we identify the type of Object TiObject . If the type is Literal, we
identify the TiPredicate as well. For example, for the triple {?Subject cl:originatesFrom
"Host1"}, the function getLogProperty() identifies TiObject "Host1", and additionally, looks
up the property range provided in regexPatterns (RP).

regexPatterns (RP) links property terms in a vocabulary to the terms in a log entry and
the respective regular expression pattern. For example, the property cl : originatesFrom
is linked to the concept "hostname" in regexPattern (RP), which has a connected regex
pattern for the extraction of host names. The output of the getLogProperty() function is a
set of <logProperty, TiObject > key-value pairs.

Similar to triples, we also include Filters (F) that appear in a query Q for log-line match-
ing. Filter statements contain the term FILTER and a set of pairs (i.e., Variable and Value),
therefore each Filter statement Fi has the members Variable FiVariable and Value FiValue . Cur-
rently, we support FILTER clauses with simple pattern matching and regular expressions such
as FILTER (?variable = ”StringValue”), FILTER regex(str(?variable), ”StringValue”)).

 https://github.com/sepses/VloGParser/blob/hdt-version/experiment/pattern/regexPattern.ttl


Mach. Learn. Knowl. Extr. 2022, 4 380

Algorithm 1: Query translation.
size
Input: SPARQL Query (Q), Vocabulary (V), regexPatterns (RP)
Output: QueryElements (Qe)

1 Prefixes P = {P1,...,Pn} ε Q ;
2 Triples T = {Subject, Predicate, Object} ε Q ;
3 Filters F = {Variable, Value} ε Q;
4 Function translateQuery(Q,V,RP):
5 P← getPre f ix(Q);
6 T← getTriplePattern(Q);
7 foreach Triple Ti ε T do
8 if type(TiObject )=Literal then
9 logProperty← getLogProperty(TiPredicate ,V,RP);

10 keyValue← {logProperty, TiObject};
11 end
12 triplesKV += keyValue;
13 end
14 F← getFilterStatement(Q);
15 foreach Filter Fi ε F do
16 if type(FiValue )=Literal then
17 predicate← getPredicate(Q,FiVariable );
18 logProperty← getLogProperty(predicate,V,RP);
19 keyValue← {logProperty, FiValue};
20 end
21 f iltersKV += keyValue;
22 end
23 Qe← {P,triplesKV, f iltersKV};
24 return Qe;
25 End Function

The function getFilterStatement(Q) is used to retrieve these filter statements from
the query and to identify the type of Value FiValue . If it is a Literal, the getPredicate(Q)
function will look for the connected predicate. Similar to the technique used in triples,
we use getLogProperty() to retrieve the regular expression defined in regexPattern (RP).
Finally, the collected prefixes and retrieved key-value pairs, both from triples and filters,
will be stored in QueryElements (Qe) for further processing. Figure 5 depicts a SPARQL
query translation example.

Figure 5. SPARQL Query translation example.

Log Extraction This component is part of the Log Parser that extracts the selected raw log
lines and splits them into a key-value pair representation by means of predefined regular



Mach. Learn. Knowl. Extr. 2022, 4 381

expression patterns. As outlined in Algorithm 2, Log sources (Ls) are included based on
the prefixes that appear in the query.

Algorithm 2: Log Extraction and RDF Mapping.
size
Input: SPARQL Query (Q), TimeFrame (T f ), LogSources (Ls)
Output: Response (R)

1 TimeFrame T f = {startT, endT} ;
2 LogSources Ls = {Ls1, ..., Lsn};
3 LogLines Ln = {Ln1, ..., Lnn} ε Ls;
4 LogSourceOptions LsO = {vocabulary, regexPatterns} ε Ls;
5 LogLineOptions LnO = {logTime, logProperties} ε Ln ;
6 QueryElements Qe = {pre f ixes, triplesKV, f iltersKV};
7 Qe← translateQuery(Q, LsOvocabulary, LsOregexPatterns);
8 foreach LogSource Lsi ε Ls do
9 if Qepre f ixes contains LsOivocabulary then

10 foreach LogLines Lnj ε Ln do
11 lt← LnOjLogTime ;
12 if lt<T fendT = False then
13 break;
14 end
15 if lt>T fstartT && lt<T fendT then
16 ml← matchLog(LnOjlogProperties , QetriplesKV , Qe f iltersKV);
17 if ml=True then
18 parsedLine← parseLine(Lnj);
19 end
20 end
21 parsedData += parsedLine;
22 end
23 RDFData← RDFMapping(parsedData);
24 result← compressData(RDFData);
25 if result=True then
26 response← ”Success”;
27 end
28 end
29 return response;
30 end

For each log line (Lnj) in a log source, we check whether the log timestamp (LnOlogTime)
is within the defined TimeFrame (T f ). We leverage the monotonicity assumption that
is common in the log context by stopping the log parsing once the end of the temporal
window of interest is reached in a log file (i.e., we assume that log lines do not appear
out of order). This can be adapted, if required for a specific log source. If this condition
is satisfied, the matchLog() function checks the logline property (LnOlogProperties) against
the set of queried triples (QetriplesKV) and filters (Qe f iltersKV). If the log line matches the
requirements, the selected log line will be parsed using parseLine() based on predefined
regular expression patterns. The resulting parsed queries will be accumulated and cached
in a temporary file for subsequent processing.

RDF Mapping

This sub-component of the Log Parser maps and parses the extracted log data into RDF.
It uses the standard RDF mapping language to map between the log data and the vocabulary.
Different log sources use a common core log vocabulary (e.g., SEPSES coreLog [48]) for



Mach. Learn. Knowl. Extr. 2022, 4 382

common terms (e.g., host, user, message) and can define extensions for specific terms (e.g.,
the request term in ApacheLog). The RDF Mapping also maps terms from a log entry
to specific background knowledge (e.g., hosts in a log entry are linked to their host type
according to the background knowledge). Figure 6 provides an overview of the log graph
generation process.

Figure 6. Log graph generation overview.

RDF Compression

This sub-component is part of the Log Parser, which transforms the resulting RDF
output produced by the RDF Mapper into a compact version of RDF. This compression
results in a size reduction by an order of magnitude, which has significant advantages in
our VloGraph framework: (i) it enables fast data transfer to the Query Processor component
and thereby reduces latency; (ii) it makes the query execution itself more efficient as the
compressed RDF version enables query operations without prior decompression directly
on the binary representation [49].

We discuss the implementation of this component based on existing libraries in
Section 6 and evaluate the effect of compression on the query execution performance
on virtual log graphs in Section 7.

Query Execution

Once the pre-processing on each target host has been completed and the compressed
RDF data results have been successfully sent back to the Query Processor, a query engine
executes the given queries against the compressed RDF data. If multiple hosts were defined
in the query, the query engine will perform query federation over multiple compressed RDF
data from those individual hosts and combine the query results into an integrated output.

Furthermore, due to semantic query federation, external data sources are automatically
linked in the query results in case they were referenced in the query (cf. Section 6 for an
example that links IDS messages to the SEPSES-CSKG [50]).

Visualization

Finally, this component presents the query results to the user; depending on the SPARQL
query form [51], e.g.,: (i) SELECT—returns the variables bound in the query pattern,
(ii) CONSTRUCT—returns an RDF graph specified by a graph template, and (iii) ASK—
returns a Boolean indicating whether a query pattern matches.



Mach. Learn. Knowl. Extr. 2022, 4 383

The returned result can be either in JSON or RDF format, and the resulting data can be
presented to the user as an HTML table, chart, graph visualization, or it can be downloaded
as a file.

6. Implementation & Application Scenarios

In this section, we discuss the implementation of VloGraph framework Source code
available at Github and demonstrate its feasibility by means of three application scenarios.

6.1. Implementation

The VloGraph prototype relies on a number of existing open source tools and libraries.
Specifically, we implement the Log Parser component as a Java-based tool that is installed
and run on each monitoring host. It supports log parsing from multiple different OSs
(e.g., Windows, Linux, etc.) and heterogeneous log files (e.g., authlog, apachelog, IISlog,
IDSlog). For the Log Extraction component, we integrate Grok Patterns, a collection of
composeable regular expression patterns that can be reused across log sources. Furthermore,
we use CARML [52] as an RDF Mapping component based on RML mappings [53] to map
the extracted log data into RDF. For the RDF Compression component, we leverage the
HDT [49] library to efficiently compress the resulting RDF data into a compact, binary
format that allows query operations without prior decompression.

For the analysis interface, we implemented a Query Processor component as a web-
application that receives SPARQL queries, sends them to multiple target hosts, and presents
the resulting graph to the analyst. Figure 7 shows the user interface of the application,
which consist of (i) Query Options, including e.g., target hosts, background knowledge,
analysis timeframe, as well as predefined queries to select. (ii) SPARQL Query Input to
formulate and execute SPARQL queries, and (iii) Query Results to present the output of the
executed query.

The query execution is implemented on top of the Comunica [54] query engine that
supports query federation over multiple linked data interfaces including HDT files and
SPARQL endpoints.

Figure 7. SPARQL query editor interface.

6.2. Application Scenarios

We demonstrate the feasibility of the VloGraph framework by means of three applica-
tion scenarios i.e., (i) Web access log analysis; (ii) Network monitoring that demonstrates

https://github.com/sepses
https://github.com/sepses/VloGParser
https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns
https://github.com/sepses/VloGraphQueryProcessor


Mach. Learn. Knowl. Extr. 2022, 4 384

the use of internal background knowledge; and (iii) Threat detection based on existing
community rules and integration with the ATT&CK knowledge graph.

Scenario I—Web Access Log Analysis

In this scenario, we simulated two hosts (Windows10 and Ubuntu) with different web
servers (Apache and IIS) and analyze their access logs together. In order to identify access
from a specific IP address (e.g., 192.168.2.1), we formulate the SPARQL query depicted in
Listing 1. We specify the client’s IP address with access:hasClient res:ip-192.168.2.1
and filter for “GET” requests via accs:hasRequestVerb res:GET. In the query options, we
selected the timeframe (from 11 November 2021 10:00:04 to 11 November 2021 10:10:04) as
well as the two target hosts.

PREFIX cl: <https://w3id.org/sepses/vocab/log/coreLog#>
PREFIX accs: <https://w3id.org/sepses/vocab/log/accessLog#>
PREFIX res: <https://w3id.org/resource/access#>

SELECT ?logType ?hostOS ?hostIp ?verb ?request
WHERE {

?logEntry cl:originatesFrom ?host.
?host cl:hostOS ?hostOS.
?logEntry cl:hasLogType ?logType.
?host cl:ipAddress ?hostIp.
?logEntry accs:hasRequestVerb res:GET.
?logEntry accs:hasRequest ?request.
?logEntry accs:hasClient res:ip-192.168.2.1.

} LIMIT 4

Listing 1. Web access query.

The query results in Table 1 show the access information with their log sources and
types (cl:IIS and cl:apache), the host OS (Win10 and ubuntu) with their IPs, the request
method, and request paths. Figure 8 depicts the graph visualization of the result.

Table 1. Web access query result (excerpt).

logType hostOS hostIp Verb Request

IIS Win10 192.168.0.113 GET /employee.asp&id=12345 . . .

apache Ubuntu 192.168.0.111 GET /admin.php?userid=bob. . .

apache Ubuntu 192.168.0.111 GET /salary.php

IIS Win10 192.168.0.113 GET /global/lwb.min.js . . .

Figure 8. Web access query result visualization (excerpt).



Mach. Learn. Knowl. Extr. 2022, 4 385

Scenario II—Network Monitoring

In this scenario, we illustrate how our prototype provides semantic integration, gener-
alization, and entity resolution. We simulated SSH login activities across different servers
(e.g., DatabaseServer, WebServer, FileServer) with multiple demo users (e.g., Bob and Alice)
and then queried the authlog files with our federated approach.

Typically, atomic information on the log entry level is not explicitly linked to se-
mantic concepts. Hence, we added extractors to, e.g., detect specific log events from log
messages and map them to event types from our internal background knowledge (e.g.,
event:Login, event:Logout). Furthermore, we added concept mappings for program
names, IP addresses etc. (cf. Section 5).

Now, an analyst can formulate a SPARQL query as shown in Listing 2 to extract
successful login events from SSH connections. The query results in Table 2 and Figure 9
show successful logins via SSH over multiple hosts in the specified time range (from 11
Decmeber 2021 13:30:23 to 11 Decmeber 2021 14:53:06). The host type and target IP address
come from internal background knowledge, as the host name is connected to a specific
host type.

This information can be a starting point for security analysts to explore the rich context
of the events in the virtual knowledge graph.

Table 2. SSH connections query result (excerpt).

Timestamp User sourceIp targetHostType targetIp

Dec 10 13:30:23 Bob 172.24.66.19 DatabaseServer 192.168.2.1

Dec 10 13:33:31 Alice 172.24.2.1 WebServer 192.168.2.2

Dec 10 13:38:16 Alice 172.24.2.1 DatabaseServer 192.168.1.3

Dec 10 14:53:06 Bob 172.24.66.19 FileServer 192.168.2.4

PREFIX cl: <https://w3id.org/sepses/vocab/log/core#>
PREFIX auth: <https://w3id.org/sepses/vocab/log/authLog#>
PREFIX sys: <https://w3id.org/sepses/resource/system#>
PREFIX ev: <https://w3id.org/sepses/resource/event#>

SELECT ?timestamp ?user ?sourceIp ?targetHostType ?targetIp
WHERE {

?logEntry cl:timestamp ?timestamp.
?logEntry auth:hasUser ?user.
?logEntry auth:hasSourceIp ?sourceIp.
?logEntry auth:hasTargetHost ?th.
?logEntry auth:hasAuthEvent ?ae.
?ae sys:partOfEvent ev:Login.
?th sys:hostType ?targetHostType.
?th cl:IpAddress ?targetIp.

} LIMIT 4

Listing 2. SSH connections query.

https://w3id.org/sepses/knowledge/eventKnowledge.ttl


Mach. Learn. Knowl. Extr. 2022, 4 386

Figure 9. SSH connections query result visualization (excerpt).

Scenario III—Threat Detection and ATT&CK Linking

In this scenario, we demonstrate how the VloGraph framework leverages existing
threat detection rules to identify Indicators of Compromise (IoCs) from log sources and
link them to the respective attack techniques and tactics. For this scenario, we used an
existing log dataset [6] as described in the motivation example in Section 1. To define our
rule-based threat detection queries, we relied on existing community-based threat detection
rules such as Sigma [55] and transformed them into RDF/SPARQL. Furthermore, we used
the ATT&CK-KG [56], a continuously updated cybersecurity knowledge graph generated
from the MITRE ATT&CK Matrix [10] in order to link cyber attacks to adversary techniques
and tactics.

Listing 3 shows an example query for this scenario. Using the transformed Sigma rule
as internal knowledge, we can list suspicious keywords defined in the rules (i.e., via ?sigma
sigma:keywords ?keywords) and use them to filter messages from the targeted log sources.
In this case, we target request messages in Apache log (see ?logEntry apache:hasRequest
?req) and filter them against the keywords (FILTER regex(str(?req), ?keywords)). Next,
we link the detected log entries to the respective attack techniques (note that Sigma typically
provides tags that associate its rules with ATT&CK techniques). This can be performed
via ?sigma rule:hasAttackTechnique ?techn. The query leverages linked data princi-
ples to include external background knowledge from the ATT&CK-KG, which makes it
possible to further link the identified attack technique detailed knowledge such as tech-
nique description (via ?techn dcterm:description ?desc), attack tactic (via ?techn at-
tack:accomplishesTactic ?tactic), CAPEC [57] attack patterns (?techn attack:hasCAPEC
?capec), and so forth.

Table 3 and Figure 10 show the query results and visualization from this scenario. Sev-
eral log entries from a particular host (mail.cup) are associated with suspicious keywords.
For example, according to a Sigma rule (Webshell Keyword), included as background
knowledge, the “whoami” keyword is considered indicative of a Web Shell attack technique
(T1505.003). This technique in turn is an instance of the tactic Persistence and of attack
pattern CAPEC-650.

https://github.com/SigmaHQ/sigma/blob/eb382c4a59b6d87e186ee269805fe2db2acf250e/rules/web/web_webshell_keyword.yml
https://w3id.org/sepses/resource/attack/technique/T1505.003
http://w3id.org/sepses/resource/attack/tactic/persistence
http://w3id.org/sepses/resource/capec/CAPEC-650


Mach. Learn. Knowl. Extr. 2022, 4 387

PREFIX cl: <https://w3id.org/sepses/vocab/log/core#>
PREFIX apache: <https://w3id.org/sepses/vocab/log/apache#>
PREFIX sigma: <http://w3id.org/sepses/vocab/rule/sigma#>
PREFIX rule: <http://w3id.org/sepses/vocab/rule#>
PREFIX attack: <http://w3id.org/sepses/vocab/ref/attack#>
PREFIX dcterm: <http://purl.org/dc/terms/>

SELECT ?logEntry ?timestamp ?host ?keywords ?techn ?desc ?tactic ?capec
WHERE {

?logEntry apache:hasRequest ?req ;
cl:originatesFrom ?host;
cl:timestamp ?timestamp.

FILTER regex(str(?req),?keywords)
{ SELECT ?keywords ?techn ?tactic {

?sigma sigma:keywords ?keywords.
OPTIONAL {

?sigma rule:hasAttackTechnique ?techn.
?techn dcterm:description ?desc.
?techn attack:accomplishesTactic ?tactic.
?techn attack:hasCAPEC ?capec.

}
}}

} LIMIT 4

Listing 3. Rule-based threat detection and ATT&CK linking query.

Figure 10. Threat detection and ATT&CK linking visualization (excerpt).

Table 3. Scenario 4 Query Results (Excerpt).

logEntry Timestamp Host Keywords Techn Desc Tactic Capec

5f4a32. . . Mar 04 19:18:43 cup “whoami” T1505.003 "Web Shell" persistence CAPEC-650

468226. . . Mar 04 14:05:41 insect “whoami” T1505.003 "Web Shell" persistence CAPEC-650

7cff1d1. . . Mar 04 19:18:46 cup “curl” T1190 "Exploit Pub.." initial-access -

600a59. . . Mar 04 19:18:43 insect “wget” T1190 "Exploit Pub.." initial-access -

7. Evaluation

We evaluated the scalability of our approach by means of a set of experiments in
non-federated and federated settings.

http://w3id.org/sepses/resource/attack/technique/T1505.003
http://w3id.org/sepses/resource/attack/tactic/persistence
http://w3id.org/sepses/resource/capec/CAPEC-650
http://w3id.org/sepses/resource/attack/technique/T1505.003
http://w3id.org/sepses/resource/attack/tactic/persistence
http://w3id.org/sepses/resource/capec/CAPEC-650
http://w3id.org/sepses/resource/attack/technique/T1190
http://w3id.org/sepses/resource/attack/tactic/initial-access
http://w3id.org/sepses/resource/attack/technique/T1190
http://w3id.org/sepses/resource/attack/tactic/initial-access


Mach. Learn. Knowl. Extr. 2022, 4 388

7.1. Evaluation Setup

The experiments were carried out on Microsoft Azure virtual machines with seven
hosts (4 Windows and 3 Linux) with 2.59 GHz vCPU and 16 GB RAM each. We reused the
log vocabularies from [17] and mapped them to the log data.

Dataset Overview

We selected the systematically generated AIT log dataset (V1.1) that simulates six days
of user access across multiple web servers including two attacks on the fifth day [6]. As
summarized in Table 4, the dataset contains several log sources from four servers (cup,
insect, onion, spiral).

To reduce reading overhead and improve log processing performance, we split large
log files from the data set into smaller files—this can easily be replicated in a running system
using log rotation mechanisms. Specifically, we split the files into chunks of 10k–100k log
lines each and annotated them with original filename and time-range information

Table 4. Dataset description.

LogType #Properties
mail.cup.com mail.insect.com mail.onion.com mail.spiral.com

Size #Lines Size #Lines Size #Lines Size #Lines

Audit 36 25 GB 123.6 M 22.7 GB 99.9 M 14.6 GB 68.8 M 12.4 GB 59.5 M

Apache 12 36.9 MB 148 K 44.4 MB 169.3 K 22.7 MB 81.9 K 24 .8 MB 100.4 K

Syslog 6 28.5 MB 158.6 K 26.9 MB 150.7 K 15 MB 86.6 K 15.1 MB 85.5 K

Exim 11 649 KB 7.3 K 567 KB 6.2 K 341 KB 3.9 K 355 KB 4 K

Authlog 11 128 KB 1.2 K 115 KB 1.1 K 102 KB 1 K 127 KB 1.2 K

7.2. Single-Host Evaluation

We measured the overall time for virtual log graph processing including (i) log reading
(i.e., searching individual log lines), (ii) log extraction (i.e., extracting the raw log line into
structured data), (iii) RDF Mapping (i.e., transforming json data into RDF), and (iv) RDF
compression (i.e., compressing RDF into Header, Dictionary, Triples (HDT) format).

In our scenarios, we included several log sources; for each log source, we formulated
a SPARQL query to extract 1k, 3k, 5k, and 7k log lines filtering by timestamp in the
query option. We report the average times over five runs for experiments with several log
sources—i.e., Auditlog (AD), Apache for web logs (AP), Exim for mail transfer agent logs
(EX), Syslog for Linux system logs (SY), and Authlog for authentication logs (AT)—for a
single host in Figure 11. We used the data set from the first web server (i.e., mail.cup.com)
in this evaluation. Note that we only extracted 1000k log lines from Authlog due to the
small original file size (less than 1.2k log lines).

Version April 1, 2022 submitted to Journal Not Specified 18 of 22

AD

AD

AD

AD

AP

AP

AP

AP

1,000 3,000 5,000 7,000
0

2

4

6

8

10

12

number of log lines

av
g.

ti
m

e
(s

ec
)

EX

EX

EX

EX

SY

SY

SY

SY

Reading

Extraction

RDF Mapping

Compression

AT

Figure 11. Average log graph generation time for n log lines with a single host (36 extracted properties)

host in Figure 11. We used the data set from the first web server (i.e., mail.cup.com) in this 549

evaluation. Note that we only extracted 1000k log lines from Authlog due to the small 550

original file size (less than 1.2 k log lines). 551

We found that the performance for log graph extraction differs across the log sources. 552

Constructing a log graph from Auditlog (AD) data resulted in the longest processing times 553

followed by Apache, Exim, Syslog and Authlog. The overall log processing time scales 554

linearly with the number of extracted log lines. Typically, the log extraction phase accounts 555

for the largest proportion (> 80%) of the overall log processing time. Furthermore, we 556

found that the increase in log processing time with a growing number of extracted log lines 557

is moderate, which suggests that the approach scales well to a large number of log lines. 558

Dynamic Log Graph Generation 559

As discussed in the first part of the evaluation, execution times are mainly a function 560

of the length of text in the log source and the granularity of the extraction patterns (i.e., 561

log properties). As can be seen in Table 4, the log sources are heterogeneous and exhibit 562

different levels of complexity. In our setup, Auditlog, for instance, has the largest number 563

of log properties (36), followed by Apache (12), Exim (11), Authlog (11), and Syslog (6). 564

3 6 12 18 24 30 36
0

2

4

6

8

10

12

number of extracted properties

av
g.

ti
m

e
(s

ec
)

1k lines
3k lines
5k lines
7k lines

Figure 12. Dynamic log graph generation time 38

Figure 12 shows an evaluation of log graph generation performance with respect to 565

the complexity of the log source. We use the Auditlog for this evaluation as it has the highest 566

number of log properties. Overall, the log graph generation performance grows linearly 567

with the number of extracted log properties. Hence, queries that involve a smaller subset 568

of properties (e.g., only user or IP address rather than all information that could potentially 569

be extracted) will typically have smaller generation times. 570

Graph Compression 571

Figure 13 shows the performance for log graph compression on the Auditlog dataset. 572

38 Experiments carried out on AuditLog data on a single host.

Figure 11. Average log graph generation time for n log lines with a single host (36 extracted
properties).

mail.cup.com
mail.insect.com
mail.onion.com
mail.spiral.com
https://github.com/sepses/VloGraphQueryProcessor/tree/hdt-client-version/public/queries
mail.cup.com


Mach. Learn. Knowl. Extr. 2022, 4 389

We found that the performance for log graph extraction differs across the log sources.
Constructing a log graph from Auditlog (AD) data resulted in the longest processing times
followed by Apache, Exim, Syslog and Authlog. The overall log processing time scales
linearly with the number of extracted log lines. Typically, the log extraction phase accounts
for the largest proportion (>80%) of the overall log processing time. Furthermore, we found
that the increase in log processing time with a growing number of extracted log lines is
moderate, which suggests that the approach scales well to a large number of log lines.

Dynamic Log Graph Generation

As discussed in the first part of the evaluation, execution times are mainly a function
of the length of text in the log source and the granularity of the extraction patterns (i.e.,
log properties). As can be seen in Table 4, the log sources are heterogeneous and exhibit
different levels of complexity. In our setup, Auditlog, for instance, has the largest number
of log properties (36), followed by Apache (12), Exim (11), Authlog (11), and Syslog (6).

Figure 12 shows an evaluation of log graph generation performance with respect to
the complexity of the log source. We use the Auditlog for this evaluation as it has the highest
number of log properties. Overall, the log graph generation performance grows linearly
with the number of extracted log properties. Hence, queries that involve a smaller subset
of properties (e.g., only user or IP address rather than all information that could potentially
be extracted) will typically have smaller generation times.

Version April 1, 2022 submitted to Journal Not Specified 18 of 22

AD

AD

AD

AD

AP

AP

AP

AP

1,000 3,000 5,000 7,000
0

2

4

6

8

10

12

number of log lines

av
g.

ti
m

e
(s

ec
)

EX

EX

EX

EX

SY

SY

SY

SY

Reading

Extraction

RDF Mapping

Compression

AT

Figure 11. Average log graph generation time for n log lines with a single host (36 extracted properties)

host in Figure 11. We used the data set from the first web server (i.e., mail.cup.com) in this 549

evaluation. Note that we only extracted 1000k log lines from Authlog due to the small 550

original file size (less than 1.2 k log lines). 551

We found that the performance for log graph extraction differs across the log sources. 552

Constructing a log graph from Auditlog (AD) data resulted in the longest processing times 553

followed by Apache, Exim, Syslog and Authlog. The overall log processing time scales 554

linearly with the number of extracted log lines. Typically, the log extraction phase accounts 555

for the largest proportion (> 80%) of the overall log processing time. Furthermore, we 556

found that the increase in log processing time with a growing number of extracted log lines 557

is moderate, which suggests that the approach scales well to a large number of log lines. 558

Dynamic Log Graph Generation 559

As discussed in the first part of the evaluation, execution times are mainly a function 560

of the length of text in the log source and the granularity of the extraction patterns (i.e., 561

log properties). As can be seen in Table 4, the log sources are heterogeneous and exhibit 562

different levels of complexity. In our setup, Auditlog, for instance, has the largest number 563

of log properties (36), followed by Apache (12), Exim (11), Authlog (11), and Syslog (6). 564

3 6 12 18 24 30 36
0

2

4

6

8

10

12

number of extracted properties

av
g.

ti
m

e
(s

ec
)

1k lines
3k lines
5k lines
7k lines

Figure 12. Dynamic log graph generation time 38

Figure 12 shows an evaluation of log graph generation performance with respect to 565

the complexity of the log source. We use the Auditlog for this evaluation as it has the highest 566

number of log properties. Overall, the log graph generation performance grows linearly 567

with the number of extracted log properties. Hence, queries that involve a smaller subset 568

of properties (e.g., only user or IP address rather than all information that could potentially 569

be extracted) will typically have smaller generation times. 570

Graph Compression 571

Figure 13 shows the performance for log graph compression on the Auditlog dataset. 572

38 Experiments carried out on AuditLog data on a single host.

Figure 12. Dynamic log graph generation time. Experiments carried out on AuditLog data on a
single host.

Graph Compression

Figure 13 shows the performance for log graph compression on the Auditlog dataset.
We performed full property extraction (i.e., all 36 identified properties) against 5k,

10k, 15k, and 20k log-lines, respectively, and compare the original size of raw log data,
the generated RDF graph in TURTLE [19] format (.ttl), and the compressed graph output in
the HDT format.

Version April 1, 2022 submitted to Journal Not Specified 19 of 22

We performed full property extraction (i.e., all 36 identified properties) against 5k, 573

10k, 15k, and 20k log-lines, respectively, and compare the original size of raw log data, the 574

generated RDF graph in TURTLE39 format (.ttl), and the compressed graph output in HDT 575

format. 576

For 5k log lines (1 MB raw log) compression results in approximately 0.4 MB compared 577

to 5.4 MB for the uncompressed RDF graph. 20k log lines (4 MB raw log) compresses to 578

about 1.87 MB from 21.4 MB uncompressed generated RDF graph. Overall, the compressed 579

version is typically less than half the size of the original raw log and 10x smaller than 580

the generated RDF graph. The resulting graph output would be even smaller for fewer 581

extracted properties, minimizing resource requirements (i.e. storage/disk space). 582

5k 10k 15k 20k
0

5

10

15

20

25

number of log lines

si
ze

(M
B

)

Original raw log data
Generated RDF Graph (.ttl)
Compressed RDF Graph (.hdt)

Figure 13. Graph compression

7.3. Multi-host evaluation 583

To evaluate the scalability of our approach, we measure the log processing time for 584

multiple hosts on the same network. This evaluation includes not only the log processing 585

but also the query federation performance. Federation means that the queries are not only 586

executed concurrently, but that they involve evaluating and combining individual query 587

results to achieve integrated results. 588

Table 5 summarizes the evaluation setup that consists of six experiments ranging from 589

30 minutes up to 5 hours. The timeframe describes the starting time and the end time of 590

analysis; log lines per host summarizes the range of log lines per host within the timeframe. 591

For this evaluation, we used the Apache log dataset described in Table 4 and conducted 592

the analysis within the log timeframe of March 2nd, 2020, starting from 8pm. Host 1 to 593

host 4 store the data from the original 4 servers in the dataset (host 1 mail.cup.com, host 2 594

mail.insect.com, and so on); for the 3 additional hosts in the evaluation, we replicated the 595

log files from mail.cup.com, mail.insect.com, and mail.spiral.com. Similar to the single-host 596

evaluation, for each experiment, we reported the average times over five runs. 597

Table 5. Multihost Experiment Timeframe

Experiment Duration Log lines per host Experiment Duration Log lines per host
E1 30min 0.7k - 1k E4 3h 3k - 5k
E2 1h 1k - 1.7k E5 4h 6k - 8k
E3 2h 2.8k - 4k E6 5h 8k - 10k

Figure 14 shows the average log processing times for each experiment. The 1 hour 598

experiment shows that log processing for two hosts takes approx. 4.7 seconds on average. 599

In the same experiment, the time slightly increases with an increasing number of hosts and 600

reaches a max. of 7.5 seconds. The log processing time for the 5 hours experiment with 601

two hosts takes approx. 19.01 seconds on average and reaches the max. average time of 602

39 https://www.w3.org/TR/turtle/
40 Evaluation of linking to background knowledge stored on external servers is out of scope.

Figure 13. Graph compression.



Mach. Learn. Knowl. Extr. 2022, 4 390

For 5k log lines (1 MB raw log) compression results in approximately 0.4 MB compared
to 5.4 MB for the uncompressed RDF graph. 20k log lines (4 MB raw log) compresses to
about 1.87 MB from 21.4 MB uncompressed generated RDF graph. Overall, the compressed
version is typically less than half the size of the original raw log and 10 times smaller than
the generated RDF graph. The resulting graph output would be even smaller for fewer
extracted properties, minimizing resource requirements (i.e., storage/disk space).

7.3. Multi-Host Evaluation

To evaluate the scalability of our approach, we measured the log processing time for
multiple hosts on the same network. This evaluation includes not only the log processing
but also the query federation performance. Federation means that the queries are not only
executed concurrently, but that they involve evaluating and combining individual query
results to achieve integrated results.

Table 5 summarizes the evaluation setup that consists of six experiments ranging from
30 min up to 5 h. The timeframe describes the starting time and the end time of analysis;
log lines per host summarizes the range of log lines per host within the timeframe. For this
evaluation, we used the Apache log dataset described in Table 4 and conducted the analysis
within the log timeframe of 2 March 2020, starting from 8 pm. Host 1 to host 4 store the data
from the original four servers in the dataset (host 1 mail.cup.com, host 2 mail.insect.com,
and so on); for the three additional hosts in the evaluation, we replicated the log files from
mail.cup.com, mail.insect.com, and mail.spiral.com. Similar to the single-host evaluation,
for each experiment, we reported the average times over five runs.

Table 5. Multihost Experiment Timeframe.

Experiment Duration Log Lines per Host Experiment Duration Log Lines per Host

E1 30 min 0.7k–1k E4 3 h 3k–5k

E2 1 h 1k–1.7k E5 4 h 6k–8k

E3 2 h 2.8k–4k E6 5 h 8k–10k

Figure 14 shows the average log processing times for each experiment. The 1 h
experiment shows that log processing for two hosts takes approx. 4.7 s on average. In
the same experiment, the time slightly increases with an increasing number of hosts and
reaches a max. of 7.5 s. The log processing time for the 5 h experiment with two hosts takes
approximately 19.01 s on average and reaches the maximum average time of 26.10 s with 7
hosts. Based on these results, we conclude that the growth of the log processing time as a
function of the number of hosts is moderate. Therefore, this approach scales well with a
growing number of hosts to monitor, as the log processing on each host is parallelized and
the query federation overhead is low.

Version April 1, 2022 submitted to Journal Not Specified 20 of 22

2 3 4 5 6 7
0

5

10

15

20

25

30

number of hosts

av
g.

ti
m

e
(s

ec
)

E1
E2
E3
E4
E5
E6

Figure 14. Query execution time in a federated setting for different time frames 40

26.10 seconds with 7 hosts. Based on these results, we conclude that the growth of the log 603

processing time as a function of the number of hosts is moderate. Therefore, this approach 604

scales well with a growing number of hosts to monitor, as the log processing on each host 605

is parallelized and the query federation overhead is low. 606

8. Discussion 607

In this section, we reflect upon benefits, limitations, and possible applications of the 608

proposed virtual log knowledge graph framework. 609

Graph-based Log Integration and Analysis 610

Representing log data in semantic graph structures opens up new possibilities, such as 611

handling log data in a uniform representation, exploring connections between disparate 612

entities, and applying graph-based queries to search for abstract or concrete patterns of log 613

events. Compared to text-based search, graph-pattern based queries are more expressive 614

and make it possible to link entities that appear in log lines to background knowledge. 615

Furthermore, the ability to provide query results as a graph enables new workflows for 616

analysts and may help them to be more efficient in exploring log data and ultimately 617

improving their situational awareness faster. 618

In our evaluation, we find that SPARQL as a standardized RDF query language pro- 619

vides powerful means for graph pattern-based ad-hoc log analyses. A challenge, however, 620

is that analysts are typically not familiar with the language and require some training. 621

This may improve in the future, as SPARQL is often already part of computer science 622

curricula and is increasingly being adopted in many industries41. Furthermore, intuitive 623

general-purpose visual query building and exploration tools such as [? ? ] could be used 624

and possibly adapted for security applications to abstract the complexity of writing queries 625

directly in SPARQL. 626

Decentralization and Virtualization 627

Decentralized ad-hoc extraction on the endpoints at query execution time is a particularly 628

useful approach in scenarios where log acquisition, aggregation, and storage are difficult 629

or impractical. This includes scenarios with a large number of distributed hosts and 630

log sources. Pushing log analysis towards the endpoints is also particularly interesting 631

in settings where bandwidth constraints do not permit continuous transmission of log 632

streams to a central log archive. 633

Whereas these considerations apply generally, the decentralized approach also has 634

benefits that are specific to our knowledge-graph based approach for log integration 635

and analysis. Specifically, the federated execution distributes the computational load of 636

extraction, transformation, and (partly) query execution towards the endpoints. This will be 637

useful in many practical settings where the scale of the log data that is constantly generated 638

in a distributed environment is prohibitively large and it is not feasible to transform 639

41 cf. http://sparql.club

Figure 14. Query execution time in a federated setting for different time frames. Evaluation of linking
to background knowledge stored on external servers is out of scope.

mail.cup.com
mail.insect.com
mail.cup.com
mail.insect.com
mail.spiral.com


Mach. Learn. Knowl. Extr. 2022, 4 391

8. Discussion

In this section, we reflect upon benefits, limitations, and possible applications of the
proposed virtual log knowledge graph framework.

Graph-Based Log Integration and Analysis

Representing log data in semantic graph structures opens up new possibilities, such
as handling log data in a uniform representation, exploring connections between disparate
entities, and applying graph-based queries to search for abstract or concrete patterns of log
events. Compared to text-based search, graph-pattern based queries are more expressive
and make it possible to link entities that appear in log lines to background knowledge.
Furthermore, the ability to provide query results as a graph enables new workflows for
analysts and may help them to be more efficient in exploring log data and ultimately
improving their situational awareness faster.

In our evaluation, we find that SPARQL as a standardized RDF query language pro-
vides powerful means for graph pattern-based ad-hoc log analyses. A challenge, however,
is that analysts are typically not familiar with the language and require some training.
This may improve in the future, as SPARQL is often already part of computer science
curricula and is increasingly being adopted in many industries [58]. Furthermore, intuitive
general-purpose visual query building and exploration tools such as [59,60] could be used
and possibly adapted for security applications to abstract the complexity of writing queries
directly in SPARQL.

Decentralization and Virtualization

Decentralized ad-hoc extraction on the endpoints at query execution time is a partic-
ularly useful approach in scenarios where log acquisition, aggregation, and storage are
difficult or impractical. This includes scenarios with a large number of distributed hosts
and log sources. Pushing log analysis towards the endpoints is also particularly interesting
in settings where bandwidth constraints do not permit continuous transmission of log
streams to a central log archive.

Whereas these considerations apply generally, the decentralized approach also has
benefits that are specific to our knowledge-graph based approach for log integration
and analysis. Specifically, the federated execution distributes the computational load of
extraction, transformation, and (partly) query execution towards the endpoints. This will
be useful in many practical settings where the scale of the log data that is constantly
generated in a distributed environment is prohibitively large and it is not feasible to
transform the complete log data into a Knowledge Graph (KG) presentation. In such
settings, the decentralized approach facilitates ad-hoc graph-based analyses without the
need to set up, configure and maintain sophisticated log aggregation systems.

Our evaluation showed that this ad-hoc extraction, transformation, and federated
query execution works efficiently for temporally restricted queries over dispersed log
data without prior aggregation and centralized storage. Consequently, the approach is
particularly useful for iterative investigations over smaller subsets of distributed log data
that start from initial indicators of interest. It supports diagnostics, root cause analyses etc.
and can leverage semantic connections in the graph that would otherwise make manual
exploration tedious. An inherent limitation, however, is that the computational costs
become exceedingly large for queries without any temporal restrictions or property-based
filters—i.e., the approach is less useful for large-scale exploratory queries over long time
intervals without any initial starting point.

Log Parsing and Extraction

The identification and mapping of relevant concepts in log messages is currently based
on regular expression patterns. Extracted log lines are filtered and only lines that potentially
match the query are transferred from the local endpoint, which minimizes bandwidth usage
and processing load at the querying client. A limitation of this approach is that for complex



Mach. Learn. Knowl. Extr. 2022, 4 392

queries, the execution of a large set of regular expression patterns on each log line raises
scalability issues.

An approach based on templates, similar to [16], could be applied to learn the structure
and content of common log messages and then only extract the expected elements from
those log messages. Furthermore, repeated application of regular expression patterns on
each log line could also be avoided by building a local index on each endpoint. Such
techniques should improve query performance, but these improvements have to be traded
off against the additional complexity and storage requirements they introduce.

Applications and Limitations

The illustrative scenarios in Section 6 highlighted the applicability of the approach
in web access log analysis, intrusion detection, network monitoring, and threat detec-
tion and ATT&CK linking.

In these settings, ad-hoc integration of dispersed heterogeneous log data and graph-
based integration can be highly beneficial to connect isolated indicators. Moreover, we
found that the virtual log knowledge graph is highly useful in diagnostic applications such
as troubleshooting or service management more generally and we are currently working
on a framework for instrumenting containers with virtual knowledge graph interfaces to
support such scenarios.

In the security domain—the focus in this paper—we found that virtual knowledge
graphs can complement existing log analytic tools in order to quickly gain visibility in
response to security alerts or to support security analysts in threat hunting based on an
initial set of indicators or hypotheses.

Key limitations, however, include that the virtual integration approach is not directly
applicable for (i) repeated routine analyses over large amounts of log data, i.e., in scenarios
where up-front materialization into a KG is feasible and amortizes due to repeated queries
over the same large data set or; (ii) continuous monitoring applications, i.e., scenarios
where log data has to be processed in a streaming manner, particularly in the context of
low latency requirements.

The latter would require the extension of the approach to streaming settings, which
we plan to address in future work.

Evasion and Log Retention

A typical motivation for shipping log data to dedicated central servers is to reduce
the risk of undetected log tampering when hosts in the network are compromised. This
reduces the attack surface, but makes securing the central log archive against tampering
all the more critical. Relying on data extracted at the endpoints, by contrast, comes with
the risk of local log tampering. File integrity features could help to spot manipulations of
log files, but for auditing purposes, the proposed approach has to be complemented with
secure log retention policies and mechanisms. Finally, the communication channel between
the query processor in the analytic user interface and the local log parsers also represents
an attack vector that has to be secured.

9. Conclusions

In this article, we presented VloGraph, a novel approach for distributed ad-hoc log
analysis. It extends the Virtual Knowledge Graph (VKG) concept and provides integrated
access to (partly) unstructured log data. In particular, we proposed a federated method to
dynamically extract, semantically lift and link named entities directly from raw log files.
In contrast to traditional approaches, this method only transforms the information that is
relevant for a given query, instead of processing all log data centrally in advance. Thereby,
it avoids scalability issues associated with the central processing of large amounts of rarely
accessed log data.

To explore the feasibility of this approach, we developed a prototype and demon-
strated its application in three log analysis tasks in security analytics. These scenarios
demonstrate federated queries over multiple log sources across different systems. Fur-



Mach. Learn. Knowl. Extr. 2022, 4 393

thermore, they highlight the use of semantic concepts inside queries and the possibility of
linking contextual information from background knowledge. We also conducted a perfor-
mance evaluation which indicates that the total log processing time is primarily a function
of the number of extracted (relevant) log lines and queried hosts, rather than the size of the
raw log files. Our prototypical implementation of the approach provides scalability when
facing larger log files and an increasing number of monitoring hosts.

Although this distributed ad-hoc querying has multiple advantages, we also discussed
a number of limitations. First, log files are always parsed on demand in our prototype. By
introducing a template-based approach to learn the structure of common log messages and
by building an index on each endpoint to store the results of already parsed messages, query
performance could be improved. Second, the knowledge-based ad-hoc analysis approach
presented in this article is intended to complement, but does not replace traditional log
processing techniques. Finally, while out of scope for the proof of concept implementation,
the deployment of the concept in real environments requires traditional software security
measures such as vulnerability testing, authentication, secure communication channels,
and so forth.

In future work, we plan to improve the query analysis, e.g., to automatically select
relevant target hosts based on the query and asset background knowledge. Furthermore,
we will explore the ability to incrementally build larger knowledge graphs based on a
series of consecutive queries in a step-by-step process. Finally, an interesting direction for
research that would significantly extend the scope of potential use cases is a streaming
mode that could execute continuous queries, e.g., for monitoring and alerting purposes.
We plan to investigate this aspect and integrate and evaluate stream processing engines in
this context.

Author Contributions: K.K.: Conceptualization, Methodology, Software, Investigation, Validation,
Visualization, Writing—Original draft preparation. A.E.: Conceptualization, Writing—Review & Edit-
ing. E.K.: Conceptualization, Writing—Review & Editing. D.W.: Supervision. G.Q.: Supervision.
A.M.T.: Supervision. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Netidee SCIENCE and Open Access Funding by the Austrian
Science Fund (FWF) under grant P30437-N31. The competence center SBA Research (SBA-K1)
is funded within the framework of COMET—Competence Centers for Excellent Technologies by
BMVIT, BMDW, and the federal state of Vienna, managed by the FFG. Moreover, the financial
support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital
and Economic Affairs and the National Foundation for Research, Technology and Development is
gratefully acknowledged (Christian-Doppler-Laboratory for Security and Quality Improvement in
the Production System Lifecycle).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The prototype and scenario data presented in this article are openly
available on GitHub https://github.com/sepses/VloGParser (accessed on 24 February 2022). In
the evaluation we also use the publicly available AIT Log Data Set V1.1 from Zenodo [10.5281/zen-
odo.4264796].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chuvakin, A.; Schmidt, K.; Phillips, C. Logging and Log Management: The Authoritative Guide to Understanding the Concepts

Surrounding Logging and Log Management. Available online: https://www.perlego.com/book/1809940/logging-and-log-
management-the-authoritative-guide-to-understanding-the-concepts-surrounding-logging-and-log-management-pdf (accessed
on 24 February 2022).

2. Kotenko, I.; Polubelova, O.; Chechulin, A.; Saenko, I. Design and Implementation of a Hybrid Ontological-Relational Data
Repository for SIEM Systems. Future Internet 2013, 5, 355–375. [CrossRef]

3. Oliner, A.; Ganapathi, A.; Xu, W. Advances and Challenges in Log Analysis. Commun. ACM 2012, 55, 55–61. [CrossRef]

https://github.com/sepses/VloGParser
https://www.perlego.com/book/1809940/logging-and-log-management-the-authoritative-guide-to-understanding-the-concepts-surrounding-logging-and-log-management-pdf
https://www.perlego.com/book/1809940/logging-and-log-management-the-authoritative-guide-to-understanding-the-concepts-surrounding-logging-and-log-management-pdf
http://doi.org/10.3390/fi5030355
http://dx.doi.org/10.1145/2076450.2076466


Mach. Learn. Knowl. Extr. 2022, 4 394

4. Grimaila, M.R.; Myers, J.; Mills, R.F.; Peterson, G. Design and Analysis of a Dynamically Configured Log-based Distributed
Security Event Detection Methodology. J. Def. Model. Simul. Appl. Methodol. Technol. 2012, 9, 219–241. [CrossRef]

5. Guillermo Suárez de Tangil, E.P. Advances in Security Information Management: Perceptions and Outcomes; COMPUTER NETWORKS
SERIES; Nova Science Publishers, Incorporated: Commack, NY, USA, 2013.

6. Landauer, M.; Skopik, F.; Wurzenberger, M.; Hotwagner, W.; Rauber, A. Have it Your Way: Generating Customized Log Datasets
With a Model-Driven Simulation Testbed. IEEE Trans. Reliab. 2021, 70, 402–415. [CrossRef]

7. Kurniawan, K.; Ekelhart, A.; Kiesling, E.; Winkler, D.; Quirchmayr, G.; Tjoa, A.M. Virtual Knowledge Graphs for Federated Log
Analysis. In Proceedings of the 16th International Conference on Availability, Reliability and Security, Vienna, Austria, 17–20
August 2021; pp. 1–11. [CrossRef]

8. Xiao, G.; Calvanese, D.; Kontchakov, R.; Lembo, D.; Poggi, A.; Rosati, R.; Zakharyaschev, M. Ontology-Based Data Access: A
Survey. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden,
13–19 July 2018; International Joint Conferences on Artificial Intelligence Organization: Stockholm, Sweden, 2018; pp. 5511–5519.
[CrossRef]

9. Xiao, G.; Ding, L.; Cogrel, B.; Calvanese, D. Virtual Knowledge Graphs: An Overview of Systems and Use Cases. Data Intell.
2019, 1, 201–223. [CrossRef]

10. MITRE ATT&CK Matrix. Available online: https://attack.mitre.org/ (accessed on 24 February 2022).
11. Syslogd-Linux Manual Page. Available online: https://linux.die.net/man/8/syslogd (accessed on 24 February 2022).
12. Windows Event Log. Available online: https://docs.microsoft.com/en-us/windows/win32/wes/windows-event-log (accessed

on 24 February 2022).
13. W3C Extended Log File Format. Available online: https://www.w3.org/TR/WD-logfile.html (accessed on 24 February 2022).
14. NGINX Logging. Available online: https://docs.nginx.com/nginx/admin-guide/monitoring/logging/ (accessed on 24 February

2022).
15. Zhu, J.; He, S.; Liu, J.; He, P.; Xie, Q.; Zheng, Z.; Lyu, M.R. Tools and Benchmarks for Automated Log Parsing. In Proceedings

of the 41st International Conference on Software Engineering: Software Engineering in Practice, ICSE-SEIP ’19, Montreal, QC,
Canada, 25–31 May 2019; IEEE Press: Piscataway, NJ, USA, 2019; pp. 121–130. [CrossRef]

16. Ekelhart, A.; Ekaputra, F.J.; Kiesling, E. The SLOGERT Framework for Automated Log Knowledge Graph Construction. In
Proceedings of the European Semantic Web Conference, Virtual, 24–28 October 2021; Springer: Berlin/Heidelberg, Germany,
2021; pp. 631–646. [CrossRef]

17. Ekelhart, A.; Kiesling, E.; Kurniawan, K. Taming the Logs-Vocabularies for Semantic Security Analysis. Procedia Comput. Sci.
2018, 137, 109–119. [CrossRef]

18. W3C Standards. Available online: https://www.w3.org/standards/ (accessed on 24 February 2022).
19. RDF 1.1 Turtle. Available online: https://www.w3.org/TR/turtle/ (accessed on 24 February 2022).
20. RDF Schema 1.1. Available online: https://www.w3.org/TR/rdf-schema/ (accessed on 24 February 2022).
21. RDF 1.1 Semantics. Available online: https://www.w3.org/TR/rdf11-mt/ (accessed on 24 February 2022).
22. OWL 2 Web Ontology Language Document Overview (Second Edition). Available online: https://www.w3.org/TR/rdf11-mt/

(accessed on 24 February 2022).
23. SPARQL 1.1 Overview. Available online: https://www.w3.org/TR/sparql11-overview/ (accessed on 24 February 2022).
24. SPARQL 1.1 Federated Query. Available online: https://www.w3.org/TR/sparql11-federated-query/ (accessed on 24 February

2022).
25. Kurniawan, K.; Kiesling, E.; Ekelhart, A.; Ekaputra, F. Cross-Platform File System Activity Monitoring and Forensics—A Semantic

Approach. In Proceedings of the ICT Systems Security and Privacy Protection, SEC 2020, IFIP Advances in Information and
Communication Technology, Maribor, Slovenia, 21–23 September 2020; Hölbl M., Rannenberg K., Welzer T., Eds.; Springer: Cham,
Switzerlan, 2020. [CrossRef]

26. Kent, K.A.; Souppaya, M. Guide to Computer Security Log Management; Special Publication SP 800-92; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2006.

27. Svacina, J.; Raffety, J.; Woodahl, C.; Stone, B.; Cerny, T.; Bures, M.; Shin, D.; Frajtak, K.; Tisnovsky, P. On Vulnerability and Security
Log Analysis: A Systematic Literature Review on Recent Trends. In Proceedings of the International Conference on Research in
Adaptive and Convergent Systems, RACS ’20, Gwangju, Korea, 13–16 October 2020; Association for Computing Machinery: New
York, NY, USA, 2020; pp. 175–180. [CrossRef]

28. Jose, S.; Malathi, D.; Reddy, B.; Jayaseeli, D. A Survey on Anomaly Based Host Intrusion Detection System; Journal of Physics:
Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1000, p. 012049.

29. Yadav, R.B.; Kumar, P.S.; Dhavale, S.V. A survey on log anomaly detection using deep learning. In Proceedings of the 2020 8th
International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida,
India, 4–5 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1215–1220. [CrossRef]

30. Landauer, M.; Skopik, F.; Wurzenberger, M.; Rauber, A. System log clustering approaches for cyber security applications: A
survey. Comput. Secur. 2020, 92, 101739. [CrossRef]

31. Sabahi, F.; Movaghar, A. Intrusion Detection: A Survey. In Proceedings of the 2008 Third International Conference on Systems
and Networks Communications, Lisbon, Portugal, 16–20 October 2008; pp. 23–26. [CrossRef]

32. NIST Cybersecurity Framework. Available online: https://www.nist.gov/cyberframework (accessed on 24 February 2022).

http://dx.doi.org/10.1177/1548512911399303
http://dx.doi.org/10.1109/TR.2020.3031317
http://dx.doi.org/10.1145/3465481.3465767
http://dx.doi.org/10.24963/ijcai.2018/777
http://dx.doi.org/10.1162/dint_a_00011
https://attack.mitre.org/
https://linux. die.net/man/8/syslogd
https://docs.microsoft.com/en-us/windows/win32/wes/windows-event-log
https://www.w3.org/TR/WD-logfile.html
https://docs.nginx.com/nginx/admin-guide/monitoring/logging/
http://dx.doi.org/10.1109/ICSE-SEIP.2019.00021
http://dx.doi.org/10.1007/978-3-030-77385-4_38
http://dx.doi.org/10.1016/j.procs.2018.09.011
https://www.w3.org/standards/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf11-mt/
 https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-federated-query/
http://dx.doi.org/10.1007/978-3-030-58201-2_26
http://dx.doi.org/10.1145/3400286.3418261
http://dx.doi.org/10.1109/ICRITO48877.2020.9197818
http://dx.doi.org/10.1016/j.cose.2020.101739
http://dx.doi.org/10.1109/ICSNC.2008.44
https://www.nist.gov/cyberframework


Mach. Learn. Knowl. Extr. 2022, 4 395

33. NIST SP 800-92 Guide to Computer Security Log Management. Available online: https://csrc.nist.gov/publications/detail/sp/
800-92/final (accessed on 24 February 2022).

34. Gartner Magic Quadrant for SIEM. Available online: https://www.gartner.com/en/documents/4003080 (accessed on 24
February 2022).

35. Schütte, J.; Rieke, R.; Winkelvos, T. Model-Based Security Event Management. In Computer Network Security; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 7531, pp. 181–190. [CrossRef]

36. CVE - Common Vulnerabilities and Exposures. Available online: https://cve.mitre.org// (accessed on 24 February 2022).
37. Diederichsen, L.; Choo, K.K.R.; Le-Khac, N.A. A graph database-based approach to analyze network log files. In Pro-

ceedings of the International Conference on Network and System Security, Sapporo, Japan, 15–18 December 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 53–73. [CrossRef]

38. Noel, S.; Harley, E.; Tam, K.; Limiero, M.; Share, M. Chapter 4— CyGraph: Graph-Based Analytics and Visualization for
Cybersecurity. In Cognitive Computing: Theory and Applications; Gudivada, V.N., Raghavan, V.V., Govindaraju, V., Rao, C., Eds.;
Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 2016; Volume 35, pp. 117–167. [CrossRef]

39. do Nascimento, C.H.; Assad, R.E.; Lóscio, B.F.; Meira, S.R.L. Ontolog: A security log analyses tool using web semantic and
ontology. In Proceedings of the 2nd OWASP Ibero-American Web Applications Security Conference, Lisbon, Portugal, 25–26
November 2010; pp. 1–12.

40. Nimbalkar, P.; Mulwad, V.; Puranik, N.; Joshi, A.; Finin, T. Semantic Interpretation of Structured Log Files. In Proceedings of
the 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), Pittsburgh, PA, USA, 28–30 July 2016;
pp. 549–555. [CrossRef]

41. Kenaza, T.; Aiash, M. Toward an Efficient Ontology-Based Event Correlation in SIEM. Procedia Comput. Sci. 2016, 83, 139–146.
[CrossRef]

42. Wang, F.; Bundy, A.; Li, X.; Zhu, R.; Nuamah, K.; Xu, L.; Mauceri, S.; Pan, J.Z. LEKG: A System for Constructing Knowledge
Graphs from Log Extraction. In Proceedings of the 10th International Joint Conference on Knowledge Graphs, IJCKG’21, Virtual,
6–8 December 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 181–185. [CrossRef]

43. Calvanese, D.; Kalayci, T.E.; Montali, M.; Santoso, A. OBDA for Log Extraction in Process Mining. In Reasoning Web, Semantic
Interoperability on the Web, Proceedings of the 13th International Summer School 2017, London, UK, 7–11 July 2017; Tutorial Lectures;
Springer International Publishing: Cham, Switzerland, 2017; pp. 292–345. [CrossRef]

44. Krügel, C.; Toth, T.; Kerer, C. Decentralized Event Correlation for Intrusion Detection. In Information Security and
Cryptology—ICISC 2001; Goos, G., Hartmanis, J., van Leeuwen, J., Kim, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2002;
Volume 2288, pp. 114–131. [CrossRef]

45. Xiaokui Shu.; Smiy, J.; Danfeng Yao.; Heshan Lin. Massive Distributed and Parallel Log Analysis for Organizational Security; IEEE:
Piscataway, NJ, USA, 2013; pp. 194–199. [CrossRef]

46. Resource Description Framework (RDF). Available online: https://www.w3.org/RDF/ (accessed on 24 February 2022).
47. Harris, S.; Seaborne, A.; Prud’hommeaux, E. SPARQL 1.1 query language. W3C Recomm. 2013, 21, 778.
48. SEPSES Corelog. Available online: https://w3id.org/sepses/vocab/log/core/ (accessed on 24 February 2022).
49. Fernández, J.D.; Martínez-Prieto, M.A.; Gutiérrez, C.; Polleres, A.; Arias, M. Binary RDF Representation for Publication and

Exchange (HDT). Web Semant. Sci. Serv. Agents World Wide Web 2013, 19, 22–41. [CrossRef]
50. SEPSES CSKG-SPARQL Endpoint. Available online: https://w3id.org/sepses/sparql (accessed on 24 February 2022).
51. SPARQL Query Forms. Available online: https://www.w3.org/TR/sparql11-query/#QueryForms (accessed on 24 February

2022).
52. CARML A Pretty Sweet RML Engine. Available online: https://github.com/carml/carml (accessed on 24 February 2022).
53. Dimou, A.; Vander Sande, M.; Colpaert, P.; Verborgh, R.; Mannens, E.; Walle, R. RML: A generic language for integrated RDF

mappings of heterogeneous data. Ldow. 2014. Available online: https://openreview.net/pdf?id=S14jNMWd-H (accessed on 24
February 2022).

54. Taelman, R.; Van Herwegen, J.; Vander Sande, M.; Verborgh, R. Comunica: A Modular SPARQL Query Engine for the Web. In The
Semantic Web—ISWC 2018; Springer International Publishing: Cham, Switzerland, 2018; Volume 11137, pp. 239–255. [CrossRef]

55. Sigma-Generic Signature Format for SIEM Systems. Available online: https://github.com/SigmaHQ/sigma (accessed on 24
February 2022).

56. Kurniawan, K.; Ekelhart, A.; Kiesling, E. An ATT&CK-KG for Linking Cybersecurity Attacks to Adversary Tactics and Techniques.
Semant. Web ISWC 2021, 2021, 5.

57. CAPEC-Common Attack Pattern Enumerations and Classifications. Available online: https://capec.mitre.org/ (accessed on 24
February 2022).

58. SPARQL-Club Companies Seeking SPARQL Talent. 2022. Available online: http://sparql.club (accessed on 24 February 2022).

https://csrc.nist.gov/publications/detail/sp/800-92/final
https://csrc.nist.gov/publications/detail/sp/800-92/final
https://www.gartner.com/en/documents/4003080
http://dx.doi.org/10.1007/978-3-642-33704-8_16
https://cve.mitre.org//
http://dx.doi.org/10.1007/978-3-030-36938-5_4
http://dx.doi.org/10.1016/bs.host.2016.07.001
http://dx.doi.org/10.1109/IRI.2016.81
http://dx.doi.org/10.1016/j.procs.2016.04.109
http://dx.doi.org/10.1145/3502223.3502250
http://dx.doi.org/10.1007/978-3-319-61033-7_9
http://dx.doi.org/10.1007/3-540-45861-1_10
http://dx.doi.org/10.1109/GLOCOMW.2013.6824985
https://www.w3.org/RDF/
https://w3id.org/sepses/vocab/log/core/
http://dx.doi.org/10.1016/j.websem.2013.01.002
https://w3id.org/sepses/sparql
https://www.w3.org/TR/sparql11-query/#QueryForms
https://github.com/carml/carml
https://openreview.net/pdf?id=S14jNMWd-H
http://dx.doi.org/10.1007/978-3-030-00668-6_15
https://github.com/SigmaHQ/sigma
 https://capec.mitre.org/
http://sparql.club


Mach. Learn. Knowl. Extr. 2022, 4 396

59. Haag, F.; Lohmann, S.; Bold, S.; Ertl, T. Visual SPARQL querying based on extended filter/flow graphs. In Proceedings of the
2014 International Working Conference on Advanced Visual Interfaces—AVI ’14, Bari, Italy, 7–10 June 2016; ACM Press: Como,
Italy, 2014; pp. 305–312. [CrossRef]

60. Vargas, H.; Buil-Aranda, C.; Hogan, A.; Lopez, C. RDF Explorer: A Visual Query Builder for Semantic Web Knowledge Graphs;
Creative Commons: Mountain View, CA, USA, 2019; p. 4.

http://dx.doi.org/10.1145/2598153.2598185

	Introduction
	Background
	Related Work
	Requirements
	VloGraph Framework Architecture
	Implementation & Application Scenarios
	Implementation
	Application Scenarios

	Evaluation
	Evaluation Setup
	Single-Host Evaluation
	Multi-Host Evaluation

	Discussion
	Conclusions
	References

