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Abstract: Recent years include the world’s hottest year, while they have been marked mainly,
besides the COVID-19 pandemic, by climate-related disasters, based on data collected by the Emer-
gency Events Database (EM-DAT). Besides the human losses, disasters cause significant and often
catastrophic socioeconomic impacts, including economic losses. Recent developments in artificial
intelligence (AI) and especially in machine learning (ML) and deep learning (DL) have been used to
better cope with the severe and often catastrophic impacts of disasters. This paper aims to provide an
overview of the research studies, presented since 2017, focusing on ML and DL developed methods
for disaster management. In particular, focus has been given on studies in the areas of disaster and
hazard prediction, risk and vulnerability assessment, disaster detection, early warning systems, disas-
ter monitoring, damage assessment and post-disaster response as well as cases studies. Furthermore,
some recently developed ML and DL applications for disaster management have been analyzed. A
discussion of the findings is provided as well as directions for further research.

Keywords: disaster management; machine learning; deep learning; natural disasters; applications in
disaster management

1. Introduction

Natural and man-made disasters impact the lives of millions of people worldwide
each year [1]. Often it is the case that human lives are lost as a result of these events. Besides
human losses, significant impacts on infrastructure and properties are caused by disasters.
Disaster management operations are performed before, during and after the occurrence
of a disaster, aiming at preventing human losses, protecting people and infrastructure,
reducing the impacts on economy and reestablishing a state of normalcy [2]. The complexity
of the disasters and the criticality and complexity of disaster operations require robust
decision making, enhanced by information technology and in particular AI [2]. Effective
and informed disaster management is necessary to address the scale and the impact of
disasters and in recent years has been leveraged by advances in ML and DL [3].

Application fields include disasters such as hurricanes, earthquakes, floods, wildfires
and landslides. The management of man-made disasters such as refugee crises, can also
benefit from recent technological developments [4,5]. Yet, there is no unique definition of a
disaster. According to the terminology of United Nations Office for Disaster Risk Reduction
(UNISDR), a disaster is a “serious disruption of the functioning of a community or a society
involving widespread human, material, economic or environmental losses and impacts,
which exceeds the ability of the affected community or society to cope using its own
resources” [6]. Based on the EM-DAT terminology, disasters can be categorized in two main
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groups: natural disasters and technological disasters [7]. Using a different categorization,
disasters have been categorized to natural and man-made disasters [8]. Moreover, the
climate-related disasters in 2020 were mainly responsible for the 389 recorded disasters
during the same year. The statistics besides the human losses placed 2020 above the average
in the number of recorded disasters, with 26% more storms and 23% more floods, as well
as in the annual average of economic losses [1].

Disaster management addresses disasters over time [8]. Four distinct phases have
been widely adopted: mitigation, preparedness, response and recovery [2,8]. Mitigation
relates to activities that will either prevent the occurrence of a disaster or reduce the
impacts of a disaster. Preparedness includes the activities that prepare the communities
to take actions in response to a disaster, such as emergency planning, prepositioning of
supplies, training and education of the community in order to better respond when a
disaster strikes or to mitigate the effects of a disaster. Response includes the operations
that implement the planning made to protect the lives and property, the environment,
and the socio-economic structure of the community [2]. Disaster relief and response also
includes activities such as implementation of emergency plans, emergency rescue and
medical care, shelter opening and management, distribution of supplies and damage
assessment. It is one of the most researched phases because it is during this phase that
people and infrastructure need the most immediate assistance. In this phase, time is very
much of the essence, so techniques focus not only on high accuracy results but also fast
performing and optimized methods. Recovery (reconstruction) includes the long-term
actions that aim to bring a state of normalcy to the community. Activities in this phase
include among others financial assistance and rebuilding/reconstruction (e.g., of buildings
and key infrastructure). Moreover, the active involvement of local communities in disaster
management can lead to community resilience [6].

The AI techniques that are used for the purpose of assisting disaster management
across all of its phases consist of several ML and DL methods. ML methods include support
vector machine (SVM), Naïve Bayes (NB) methods, decision trees (DT), random forest (RF),
logistic regression (LR) and K-nearest neighbor (KNN) clustering algorithm. On the other
hand, DL methods include different architectures of artificial neural networks (ANNs),
such as convolutional neural networks (CNNs), multi-layer perceptron (MLP), recurrent
neural networks (RNNs), long short-term memory neural network (LSTM), transformers
architecture and generative adversarial networks (GANs) [3,9,10]. ML and DL enable
the utilization of big and complex datasets in order to develop systems that can predict
disasters as well as assist during the response and recovery after such events and practical
decision-support tools have been developed. These techniques take advantage of the ability
to manipulate different types of data from multiple sources and determine patterns that can
provide intelligence which would be otherwise impossible to divulge. Big data is available
from sources such as satellite imagery, unmanned aerial vehicles (UAVs), social media,
crowdsourcing, geographical information systems (GIS) and wireless sensor networks.

Recent reviews in disaster management have focused on applications of AI in disaster
management [3] and the use and potential of big data in natural disaster management [10].
Sun et al. [3] presented an overview of example AI applications in various application areas
of disaster management such as hazard risk assessment, vulnerability assessment, early
warning systems, disaster detection, event mapping, damage assessment, disaster rescue
and relief and resource allocation. There is an increasing trend in using AI to analyze and
process big data coming from various data sources for informed decision making in disaster
management. The studies included in [3] used in total 26 AI methods for 17 application
areas of disaster management. Yu et al. [10] provided a systematic review of the role of big
data in disaster management. The review covered journal articles published in the period
2011 to 2018. They authors identified ML including DL as both an evolutionary technology
and emerging technological topic in facilitating disaster management.

Taking into account the increasing trend in the development of ML-based methods
for disaster management and the rapid advances in DL, a comprehensive review focusing
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on ML and DL advances in disaster management is needed. Accordingly, in this paper, a
review of literature studies utilizing ML and DL since 2017 has been conducted, covering
various phases of disaster management with different types of techniques and data. The
purpose of this study is to provide a comprehensive analysis of the developed ML and
DL techniques for disaster management and present future trends. Moreover, recent
applications developed based on ML and DL for disaster management have been included.

In the following sections, the methodology is presented next. The theoretical back-
ground in some main ML and DL methods used in disaster management follows. Recent
studies presented since 2017 are analyzed next, categorized according to the subphases of
disaster and hazard prediction, risk and vulnerability assessment, disaster detection, early
warning systems, disaster monitoring, damage assessment and post-disaster response.
Case studies for disaster management and a section presenting in more detail technological
applications of ML/DL methods for disaster management follows. Discussion of the results
is presented next. Finally, conclusions are drawn.

2. Methodology

For the purpose of this study, a search was conducted in Google Scholar as well as rel-
evant journal databases, targeting articles published in the time period 2017 to (September)
2021. The keywords used in the search included the terms: “natural disaster”, “disaster
management”, “prediction”, “assessment”, “mitigation”, “preparedness”, “response”, “re-
lief”, “post-disaster analysis”, “case studies”, “applications”, “machine learning”, “deep
learning”. The initial search yielded 1210 articles, excluding reviews. Based on the research
experience of the authors a search was further conducted on the archives of the top ranking
journals of each target database. The explored databases included mainly IEEE, Elsevier,
Springer, Taylor and Francis, Scopus, Web of Science and Wiley. Manual search was further
performed to eliminate unrelated studies or studies that were outside the scope of this
research. Accordingly, 55 papers were finally included in this review. Figure 1 shows
the percentage distribution of the research papers included in this review according to
the database. Table 1 shows the combination of the keywords used to collect the papers
included in this study.
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Table 1. Combination of the keywords used to collect the papers included in this review.

Combination No. Keywords

1 Disaster management, machine learning, deep learning.

2 Disaster management, disaster prediction, disaster response, disaster preparedness, disaster mitigation,
post-disaster analysis.

3 Disaster management case studies, disaster management applications, machine learning

4 Disaster management case studies, disaster management applications, deep learning

5 Natural disaster, deep learning, machine learning

6 Natural disaster prediction, disaster prediction, deep learning, machine learning

7 Relief, response, assessment, disaster management.

3. An Overview of ML and DL Methods

ML has effectively addressed elimination of unrelated data and provides faster pro-
cessing and analysis of information on disaster events, effectively assisting in all phases
of disaster management [10]. However, traditional ML methods cannot directly learn the
representation of a complex system from the raw data. DL is a subclass of ML that can
automatically learn the representation of a complex system for prediction, detection or
classification purposes. DL uses long causal chains of neural network (NN) layers that
enable higher and more abstract computational models of the real system [11,12]. DL
techniques enable representations with many levels of abstraction, obtained by simple,
non-linear modules that at each level transform the representation to a higher more ab-
stract one, in order to finally learn invariant features and very complex functions [12].
DL advancements enable new approaches in the field of disaster management. CNNs
are dominating in computer vision tasks, making satellite and aerial imaging systems
crucial in disaster response and damage assessment [13]. ANNs are being widely used as
a powerful tool for big data analysis [10,14]. On the other hand, text-based NNs, namely
long short-term memory (LSTMs) and most recently transformers, utilize their architecture
in order to perform natural language processing tasks [15]. These types of NNs are used in
social media datasets for damage assessment studies. Two DL and one ML architectures
commonly used in disaster management are presented next, namely CNN and LSTM, and
SVM, respectively, in order to provide a theoretical background.

3.1. CNN

The CNN architecture is based on convolutional layers (CL). In these layers the data
is propagated and applied with tabular multiplication of n*m tabular filters also called
kernels, where n equals m in most cases. This process produces different representations of
the input data based on the filter applied to them. In each representation various features
are uncovered which are projected in feature maps that quantify the stimuli produced
by each filter of the convolutional layer [11,12]. As a result of the convolution, multiple
unique transformations of the input data are generated. The number and size of kernels
that are used in the convolution are key for the performance of the overall network. After
the convolution step, the data is passed through a pooling layer (PL) that groups the
convolution results and retains only the most important ones to the network, by keeping
the maximum, minimum or average of each part of the data. This entire process is repeated
several times depending on the depth of the network before the data is flattened in a
one-dimensional space in order to be fed in a fully connected layer (FL) which handles the
classification. The softmax layer converts the data into a probability distribution. Figure 2
shows a CNN architecture. It is important to mention that each CL in the network provides
a level of abstraction in the feature extraction process.
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Figure 2. A CNN architecture consisting of two sets of convolution and pooling layers followed by a
fully connected layer and a softmax layer.

3.2. LSTM

LSTMs are commonly used NNs for text classification in disaster management in social
media datasets. LSTMs are a type of recurrent neural network (RNN). RNNs are networks
that recurrently apply the same computation for every element in a set of sequential data
while passing some information along to the next iteration. Consequently, in each time
step, a prediction is made on the input data which in turn affects the future predictions.
This operation allows the network to understand complex textual data and extract meaning
based on positional data of words in sentences. LSTMs differ from regular RNNs because of
their internal cell architecture. LSTMs utilize memory cells called constant error carousels
(CECs), which in each time step determine how much information of the current state
will be passed on the next time step along with the new input data [11]. The predictions
that the LSTM can provide vary. The network output can be used with a probabilistic
classifier for classification purposes, or as an element prediction of the next element in
a sequence, or even to predict an entire new sequence of elements. The most important
hyperparameters to fine tune in an LSTM are the learning rate and the network size.
In LSTMs the hyperparameters can be tuned independently, which can save a lot of
time during training and experimentation [16]. Figure 3 shows an LSTM architecture.
As presented in the following section, the correct and deep analysis of textual data is
very crucial in various stages of disaster management, and LSTMs have proved to work
efficiently and effectively.
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3.3. SVM

The SVM is one of the simplest but most effective ML algorithms for classification
and regression problems. It is a supervised learning method, which means it requires an
already labeled training set, but with the support-vector clustering it can also categorize
unlabeled data [16]. The idea of SVM is simple. It creates a hyperplane which separates
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the data in their respective categories while trying to maximize the margin. A hyperplane
in a n-dimensional Euclidean space is defined as a flat n − 1 dimensional subset of that
space which separates the space into two disconnected parts. The margin is the minimum
distance between the hyperplane and the closest elements from each category. Maximizing
the margin in essence makes it more clear for the model to differentiate the categories
therefore making it more possible to make better predictions. While the SVM works with
vectors in a linear way, it can also perform non-linear classification using kernel trick [17].
Using kernel trick, the data is augmented in a multidimensional space where the features
can be represented in an easier separable way by a linear hyperplane. When reverting
to the original plane, the hyperplane is projected in a nonlinear transformation. The
kernel trick has made it possible for SVM to learn invariant features of complex datasets
while maintaining its simple and fast processing nature. Many modern studies in disaster
management use SVM as a starting point, which sometimes yields great results, without
the need of more complex DL systems.

4. ML and DL Methods for Disaster Management in the Recent Literature

In an era where natural disasters are on the rise, partially due to the increasing human
activities [18], ML and DL are the subfields of AI which have contributed the most in many
areas of natural disaster management [3,9,19]. In the following, recent research studies
presented since 2017 have been analyzed in their phases of application. Accordingly,
disaster mitigation has been reviewed in terms of disaster and hazard prediction as well as
risk and vulnerability assessment. Areas of disaster preparedness included in this paper are
disaster prediction, disaster monitoring, disaster detection and early warning systems. The
disaster response has been reviewed in terms of disaster monitoring, damage assessment
and post-disaster response. Additionally, case studies and applications based on ML and
DL methods developed for various areas of disaster management have been reviewed as
well.

4.1. ML/DL Methods for Disaster and Hazard Prediction

In disaster and hazard prediction, data is analyzed in order to predict upcoming
event or escalation of an event. It aims to minimize the unpredictability of crisis events
and disasters. The identified research studies for disaster prediction, detection and risk
assessment refer to the mitigation and preparedness phases of disaster management.

Yuan and Moayedi [20] proposed an optimization of the MLP classification technique
for landslide prediction. For this purpose, the multilayer perceptron (MLP) NN was cou-
pled with six evolutionary methods, namely ant colony optimization, biogeography-based
optimization, evolutionary strategy, genetic algorithm (GA), probability-based incremental
learning and particle swarm optimization. The MLP coupled with GA (GA-MLP) showed
the highest classification accuracy for landslide prediction equal to 85%.

A flood prediction method based on temperature and rainfall intensity was proposed
by Sankaranarayanan et al. [21]. The method used deep NN and achieved an accuracy
of 89.71%. The developed deep NN-based model outperformed traditional ML methods,
namely SVM, K-nearest neighbor (KNN) and Naïve Bayes (NB). The highest accuracy was
observed just before flood occurrence.

Huang et al. [22] proposed a forecasting method (FNN–LLE) based on fuzzy NN
(FNN) combined with the locally linear embedding algorithm (LLE) to predict the daily
precipitation during typhoons. The methodology was applied using rainfall data from
Guangxi, China. The FNN–LLE model outperformed the interpolation method of the
European Centre for Medium-Range Weather Forecasts and stepwise regression approach,
achieving equitable threat score (ETS) approximately equal to 1.0. and root mean square
error (RMSE) value of 21.94 for tropical cyclone rainfall prediction.

Asim et al. [23] used different ML techniques, namely, pattern recognition NN, RNN,
RF and linear programming boost ensemble classifier, that were separately trained with
earthquake data from the Hindukush region, Pakistan. The LPBoost ensemble showed the
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highest prediction accuracy of 65% with an unknown dataset, followed by RNN with an
accuracy of 64%, RF with 62% and pattern recognition with 58%.

4.2. ML/DL Methods for Risk and Vulnerability Assessment

Amin et al. [24] proposed an awareness based educational system to identify the
risks associated with indoors objects that can cause problems during earthquakes. For
this purpose, the authors used the DL-based detection algorithm You Only Look Once
(YOLO) in their system, which is deployed on their own cloud based server named as
ESLS (earthquake situation learning system). A dataset was created based on the candidate
problematic indoors objects to train the system. A user can use images or video-based
data of indoors objects to interact with the system. Detection algorithm YOLO detects
and recognizes the objects present in the images or video data, and it returns the risk tags
associated with the objects. To process and communicate the results, the system just only
took an average of 0.8 s. The accuracy gained by this system to detect and recognize the
potential indoors harmful objects is 96%, which proves that this system can be helpful to
provide awareness on a large scale to avoid harmful incidents during earthquakes.

Prasad et al. [25] proposed and implemented an ML-model-based ensemble technique
in the west coast area of India to map the flood vulnerability. To address this issue, KNN,
logitboost (LB), boosted regression tree (BRT), nearest shrunken centroids (NSC), and
rotation forest have been used with adabag (AB) base classifier to map the vulnerabilities
of the floods. The Boruta algorithm was used to select twelve such factors which were
effective from the identified 210 flood areas. Different statistical measures were used to
check out the validity of this approach. The authors used all the above mentioned models
individually as well as with adabag (AB) as an ensemble. The results showed that the
ensemble technique of AB-rotation forest models achieved the highest area under the curve
(AUC) value of 94% as compared to other ensemble and individual models. According
to the authors, this technique is very useful to map and study the flood areas which will
result in better management and planning for these flood vulnerable areas.

Nsengiyumva and Valentino [26] addressed the problem of vulnerable landslide areas
prediction using ML models. For this purpose, three ML models including Naïve Bayes
tree (NBT), logistic model tree (LMT), and RF were used. This study was conducted in
Rwanda to predict the vulnerable landslides in the upper Nyabarongo catchment area
using map data relating to 196 landslides and using field investigations to map these slides.
The authors divided the map data into training and testing data. An information gain
technique was used to find out the correlation between the observed landslides and fifteen
different factors associated with these landslides which were analyzed earlier. To validate
the results of their study, the authors used different statistical measures including accuracy,
RMSE, and precision. Moreover, area under the curve receiver operating characteristic
(AUCROC) has also been used for this purpose as well. Results showed that NBT achieved
the best results in terms of accuracy, precision and RMSE valued 0.799, 0.745, and 0.301,
respectively. This technique also achieved the highest AUC value of 82.4%. According
to the authors, this study can help to mitigate the risks associated with these vulnerable
landslides and form a policy for such risks management.

Shirzadi et al. [27] studied landslide susceptibility mapping at the Bijar region, Kurdis-
tan province (Iran) using a novel hybrid ML method. The developed method was based on
NBT and random subspace (RS) ensemble, achieving an AUC value of landslide prediction
equal to 0.886. The model outperformed the NBT classifier that achieved an AUC value of
0.811.

Sriram et al. [28] presented an advanced causal inference approach combined with
ML to assess the vulnerability of urban infrastructure when exposed to extreme weather
events. The authors proposed a deep NN-based causal approach to perform vulnerability
assessment for electricity outages and roadway closures after extreme weather events.
They applied the developed methodology in the context of the 2016 Hurricane Hermine at
the City of Tallahassee, Florida. The results showed a 93.83% accuracy in the prediction
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of power outages and a 90.54% accuracy in the prediction of roadway closures with the
boosted gradient regression based forecasting method.

Wahab and Ludin [29] used the ANN technique to estimate flood vulnerability assess-
ment. The performance was evaluated with the determination coefficient (R2) and RMSE.
The R2 value obtained was equal to 0.996, and the RMSE was equal to 0.0035.

Mutlu et al. [30] developed a landslide mapping method using RNN to assess the
landslide problem in terms of landslide susceptibility and inventory. The achieved AUC
value was equal to 0.93 for the test dataset.

Pham et al. [31] developed landslide models in order to assess landslide susceptibility
based on a combination of ensemble methods and the MLP classifier. The authors evaluated
the performance of the various models. The MultiBoost model achieved the highest
performance with an AUC value equal to 0.886.

4.3. ML/DL Methods for Disaster Detection

Gupta and Roy [32] proposed a new framework to identify the main reason of damage
caused in the disaster hit areas so that effective and accurate emergency activities can be
carried out. Six disasters of different types have been considered in this study. For the
recognition and detection of natural disasters through this framework, a satellite images
dataset of these disasters has been used here. For the feature vector construction, the
framework combined two types of features which included local binary features and image
wavelet scattering features. This framework had less cost in terms of the computational
power that is required and also had better accuracy as compared to the deep NN models.
The framework achieved better accuracy than the state of the art hand-crafted techniques
and other ML techniques. Authors achieved an F1 score and accuracy of 99.40% and 99.59%,
respectively, on the satellite images dataset. They argued that, using satellite images, the
model can be useful to locate regions affected by any type of natural disasters from the six
different types of disasters considered in the study.

A floodwater detection method based on CNN was developed by Layek et al. [33] to
detect flood images from images posted on online social media. A color-based filtering
followed the CNN-based detection of flood images. Real Twitter image data from a flood
event were used and results showed an average accuracy of 80.07% and F1 score of 0.77.

Muhammad et al. [34] presented an early fire detection methodology using fine-tuned
CNN for closed-circuit television (CCTV) surveillance cameras. An adaptive prioritization
mechanism for cameras was proposed for autonomous response and a dynamic channel
selection algorithm based on cognitive radio networks for reliable data transmission. An
alert is sent to the disaster management system based on the adaptive prioritization mecha-
nism for the cameras. The proposed method showed a detection accuracy of 94.39% and an
F1 score of 0.89.

A wildfire detection system based on deep CNN for early wildfire detection was
proposed by Lee et al. [35] using aerial images taken from UAVs. Various deep CNNs were
evaluated, such as AlexNet, GoogLeNet and VGG-13. GoogLeNet achieved the highest
accuracy equal to 99%.

4.4. ML/DL Methods for Early Warning Systems

Chin et al. [36] worked on improving the detection accuracy of earthquakes in early
warning and detection systems in order to address the false alarm problems of these
systems. These early warning systems use high-speed computer systems due to the very
low available response time to transmit the earthquakes waves-related information to
different centers working for this purpose. As heuristic thresholds and empirical features
are used with decision algorithms in these systems to issue the warning, these systems
usually issue fake warnings, causing panic to the response authorities and other tense
situations. These events can also result in the disruption of services of different departments,
causing heavy loss. To stop these false alarms, three ML-based algorithms have been
experimented: SVM, classification tree and KNN. A criterion-based method was used to
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compare the performance of these algorithms using the earthquakes related seismic data in
Taiwan. In this study, ML-based algorithms significantly reduced the false alarms rate by
increasing the detection accuracy.

Li et al. [37] aimed to mitigate false alerts and noise from earthquake early warn-
ing systems. The authors trained a generative adversarial network (GAN) to learn the
characteristics of first-arrival earthquake P waves, using waveforms recorded in southern
California and Japan. An RF classifier was trained with earthquake and noise waveforms.
The classifier identified 99.2% of the earthquake P waves and 98.4% of the noise signals.

In [38], Moon et al. developed an ML-based method of an early warning system for
very short-term heavy rainfall. Meteorological data were preprocessed by the selective
discretization and principal component analysis. The logistic regression (LR) classifier was
used for prediction purposes. The performance of the developed approach was evaluated
and compared to early warning system models using other classifiers. Data from 652
locations in South Korea from 2007 to 2012 were used. The empirical results showed that
the preprocessing methods improved the prediction quality and LR performed well on
heavy rainfall in terms of F1 score and ETS. The proposed approach outperformed other
classifier methods with an accuracy of 99.93% and an F1 score equal to 0.4601.

4.5. ML/DL Methods for Disaster Monitoring

During a disaster, the organization and live monitoring of information is crucial, and
many actions aim to optimize disaster monitoring.

Gopal et al. [39] used online news data for disaster monitoring. The authors used a data
scraping approach to crawl the online news data from different websites and online sources
which are based on various hazard emergencies. As crawlers collect all the information and
cannot differentiate between the useful and non-useful information and data, ML-based
approaches have also been incorporated in this study to target only useful data by filtering
out the irrelevant data. Text classification has been carried out by using supervised ML-
based approaches which classify news data which is important and collected from different
news articles and stories. The developed method can be applied to monitor online news
related to disasters in order to facilitate disaster preparedness and response.

Domala et al. [40] worked towards better crisis management using news data by
incorporating natural language processing and ML models. A scraping technique was
used by the authors to scrape the news related to disasters from several news outlets,
and then natural language processing and ML techniques were applied on these news
data to identify the relevant news data, which was then shared and shown on the crisis
management websites. For scraping news data from different English news websites, a
spider-scraper tool was used. This is a totally automated system which classified the news
data by using ML models into two categories which were disaster-relevant news data
and disaster irrelevant news data that was then published on websites related to crisis
management.

Fan et al. [15] worked on discovering disaster related events from social media posts
across various locations using hybrid ML methods for an effective disaster response. In
earlier studies conducted on this issue with the use of geotagged locations and detection
of coarse grained events, it was found that the posts’ content does not always contain
the entirety of the information which may hinder the situation’s awareness and enshroud
important information. So, the credibility of situation awareness social media data can be
improved using important event information and accurate location detection. To address
the above-mentioned limitations of earlier studies, the authors proposed a hybrid ML
system which considers all the tweets related to the disaster across different locations to
uncover all the disaster related events. To identify the credible information, graph-based
clustering was used while the posts classification task was handled by a BERT transformer
model. Moreover, for the detection of locations mentioned in the posts, named entity
recognition (NER) was used. For denoising the data and extracting the location coordinates,
the authors utilized a location fusion approach, which is a version of fusion approach.
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For this study, the authors used the 2017 Hurricane Harvey related Twitter posts data in
Houston and this application gained good accuracy by successfully mapping the events
mentioned in the posts based on different time and space. The authors suggested that the
application can be helpful to carry out emergency operations across different locations
in a timely manner and it can be used for awareness purposes as well. Furthermore, the
application can be used for risk mitigation as well as post-disaster response.

4.6. ML/DL Methods for Damage Assessment

Damage assessment includes the techniques that can put to scale the damage done as
well as calculate the resources that are needed for disaster response.

To assess the disaster situation, Wang et al. [41] proposed a novel framework which
used DL-based multimodal approach. This framework included VGG-19, CNN and LSTM
models. This framework significantly improved the performance of the model as it used
an automatic method of loss weighting instead of manual weight tuning process. A main
advantage of this framework was that it could also capture the correlation between different
kinds of data and concepts. A large-scale Twitter-based dataset was used for the experiment
in order to identify the level of damage caused by the disaster. The ability of this model to
learn the multi tasks with weight loss outperformed all other single task-based models by
achieving an F1 score of 0.857.

Resch et al. [42] addressed the shortcomings of limited spatial and temporal resolution
and high temporal lags. The authors combined the ML techniques, namely, Latent Dirichlet
Allocation (LDA), which helps to identify the hotspot areas by extracting the semantic
information and carrying out a temporal and spatial analysis on the social media posts to
assess the damage in the result of natural disasters. Authors successfully and accurately
identified the earthquakes and other natural disasters in advance with different spatial
and temporal properties. Moreover, they successfully generated a loss map caused by
these natural disasters, which is validated by using the HAZUS loss model [43]. Further-
more, identification and prediction of earthquakes was also validated by using the official
earthquake footprint provided by the US Geological Survey.

Assessment of the damage caused by the natural disasters is important for the timely
response and relief activities. For this purpose, Presa-Reyes and Chen [13] proposed a
CNN architecture that was two-streamed network. The proposed architecture overcomes
the shortcomings of pre-existing CNN applications, which classified well the structures
between destroyed and intact, yet these applications do not perform well if there are more
than two damage levels. The proposed architecture overcomes this problem very effectively
and could differentiate up to four damage levels with better accuracy. For this purpose, pre-
and post-hurricane disaster aerial images have been taken and then evaluated using the
proposed architecture. Concatenated features from the pre- and post-damage aerial images
played important role for the prediction as these features were used to train the model. To
evaluate this architecture an open source dataset that was fully labelled was used.

Akshya and Priyadarsini [14] proposed a hybrid-in-nature approach and incorporated
ML techniques to classify the areas which are flood affected. In this study, the authors used
the drone to capture aerial images of the areas from various heights as drones can capture
high resolution images with various features. For the classification purpose, K-means
clustering and SVM have been used in combinations. Aerial images were input to the
system which then classified them according to whether the area in the image was flood
affected or not. The authors also used different kernel functions which were used in SVM
to check the performance of the system. It was also shown that when quadratic SVM was
used, then the training and prediction time of the system decreased. Overall, the proposed
system achieved an accuracy of 92% by classifying the flood affected areas accurately.

Yang and Cervone [44] presented a method that combined DL and ML in order to
assess damage based on information extracted from aerial images. A pre-trained DL CNN
model initially identified critical infrastructure from images. Various ML techniques such
as SVM, RF, DT, LR and KNN, were then used to capture the features associated with the
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damaged areas. An ensemble max-voting classifier was then constructed from the trained
ML classifiers. The proposed methodology was applied to assess the damage of flooded
areas in the state of Texas using aerial images collected in 2015 and showed an accuracy of
85.6% accuracy and an F1 score of 89.09%.

Nguyen et al. [45] used deep CNN to perform damage assessment caused by natural
disasters. The domain-specific fine-tuned deep CNNs outperformed other techniques such
as Bag-of-Visual-Words (BoVW). The VGG-16-fine-tuned achieved an accuracy of 0.84 and
an F1 score of 0.82 for the Nepal earthquake data.

Rizk et al. [46] proposed a two-stage multi-modal damage classification scheme. Dur-
ing the first stage, classifiers were trained on visual and semantic features. Visual features
included color, shape and texture features and semantic features were based on BoW. The
outcome of the classification of the first stage was used in the second stage to create a
multi-modal feature vector that was used to train a new classifier. A dataset was created
using Twitter data. An accuracy of 92.43% was achieved with a linear SVM classifier.

Dotel et al. [47] proposed a DL based approach to assess the impact of water related
disasters in urban and rural areas using satellite image data. CNNs were employed to
assess the disaster impact in urban areas by segmenting topographical features such as
roads in images obtained before and after a disaster and identifying regions of maximal
change. Regarding rural areas, a bitemporal image classification method was developed
to assess the disaster impact directly comparing pre- and post-disaster area images. The
method developed for urban areas was tested based on an image provided by DigitalGlobe
with labeled data showing the impacts of Hurricane Harvey. The method developed for
rural areas was tested using images from the South Asian Monsoon Flooding of 2017.

Li et al. [48] developed a method based on CNNs and class activation maps to identify
and assess damage in disaster-hit areas. The components of the method included: a CNN
that classified images into the classes damage or no damage; class activation mapping;
damage severity score. The proposed method was evaluated based on image data from
different disaster events. A dataset consisted of social media image data from the Nepal
earthquake, Hurricane Matthew, Ecuador earthquake and typhoon. An accuracy of 90.1%
was achieved using image data from the Ecuador earthquake.

4.7. ML/DL Methods for Post-Disaster Response

In the post-disaster response, the aftermath of an event is evaluated in order to respond
to immediate needs, perform search and rescue operations, quantify the damage done and
the impact of the disaster in the community. In this phase, data is also collected that will be
later used to prevent future similar disasters or cope with similar disasters.

In disaster-hit areas, supply of relief aid is one of the main activities conducted for
disaster response. For this purpose, the traditional way of estimation of relief supply
depends upon the census data which may cause imbalance in demand and supply due to
the bias during the data capture operations, known as participation bias. For this purpose, a
dynamic calculation of the population distribution is spatio-temporal which can be helpful
to meet the supply demand. To overcome such issues, Lin et al. [49] proposed a dynamic
model for the demand of relief supplies which was driven by big data, as the emergence of
big data has changed the scenario due to various sources of data such as crowdsourcing,
web mapping and social media data. In this paper, the authors worked on the urban flood
disaster using Baidu big data and incorporating the MLP to improve the accuracy of relief
supplies across the affected population. The MLP NN was trained on the Baidu big data
as well as historical data of floods for the effective estimation of relief supplies. Due to its
accuracy, the authors argued that the model can be an ideal choice for the governments to
effectively carry out the relief activities in pre- and post-disaster areas.

O’Neal et al. [50] addressed the problem of noisy social media data related to natural
disasters by creating an ML-based supervised model on the qualitative data. These data
were collected from the 2017 Hurricane Harvey disaster from the on-field rescue workers
and those rescued; data were captured through interviews and their social media posts, in
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terms of images, videos and text from their social media accounts. Data was also collected
from Twitter, Facebook and Instagram posts. Google vision API was used here to detect
the attributes from these posts which have been proven more accurate as compared to
the human attributes-detection, and eight various ML-based supervised classification
algorithms were used. Between signal (high-quality) data and noise, authors achieved
an accuracy on classifying data equal to 99%, and the same accuracy was achieved on
respondent type classification. This ML-based automatic human role classifier and pattern
recognition application had an edge over other applications as it pursued signal data
instead of noisy social media data.

Post disaster, various activities are carried out, and medical rescue is one of them.
Li et al. [51] carried out qualitative research for medical rescue so that better disaster
management, in terms of medical rescue, can be achieved. By accurate classification of the
disaster, effective and correct decision making aids the medical response during the event.
A decision table based on medical rescue was constructed by incorporating the medical
features of different kinds of disaster types. To classify the disasters, medical features were
then analyzed on various bases using a genetic algorithm. Based on this classification and
the common features with the disaster personality features, recommendations were issued,
which in turn assisted a rescue management system based on medical emergencies to plan
the rescue work.

Ehara et al. [52] proposed a system using UAVs for the recognition of individual
people and their critical status to recommend them to the rescue teams for immediate
aid. This system used supervised ML techniques to classify the status of the individuals
whether they were standing, sitting or lying down on the ground. UAVs have proved their
advantages due to their wide area coverage through videos and photographs in a very short
span of time, so authors capitalized this advancement in UAVs to obtain the data related to
the status of the people from the disaster struck areas. The system successfully classified
all the three statuses of the individuals with an accuracy of 95.6%. It also proved to be
effective in real-time scenarios in a disaster struck area where it successfully recognized the
status of the peoples. This is a prime example of how a combination of new cutting-edge
technologies can play a vital role and save human lives in real scenarios.

In [53], Reynard and Shirgaokar used ML algorithms to characterize geolocated tweets
about Hurricane Irma, in Florida. The research aim was to identify whether Twitter data
can be used in planning disaster response operations during and after the event. The
authors used sentiment analysis to categorize tweets containing damage or transportation
related information. They trained ML techniques to identify negative, neutral, or positive
sentiment.

Chaudhuri and Bose [54] presented a method of effective classification of images from
earthquake-hit smart urban settlements. The authors applied a DL method to identify
survivors in debris, based on CNN variants, namely AlexNet, Inception-V3, and ResNet-50.
ML algorithms were also used, namely, ANN and SVM. Performance evaluation results
showed that DL methods outperformed ML methods for image classification, with ResNet-
50 showing the best performance, achieving a positive predictive value (PPV) score of
90.81% and F1 score of 0.9205.

Li et al. [55] presented a methodology to automatically analyze tweets in order to assist
in post-disaster response. The proposed methodology was based on domain adaptation
classifiers, using both source labelled data and unlabeled target data to train classifiers. The
method combined NB with an iterative self-training method (NB-ST). A dataset of tweets
called CrisisLexT6 was used to implement the experiments. The NB-ST method outper-
formed traditional supervised ML classifiers such as NB, RF, SVM and LR, in identifying
tweets relevant to a disaster showing an accuracy of 86.91%.

Bejiga et al. [56] presented a DL-based methodology in order to facilitate avalanche
search and rescue operations with UAVs equipped with vision cameras. A pre-trained
CNN was used to extract features from images of an avalanche debris. A trained linear
SVM was used to detect objects. A post-processing method based on a Hidden Markov
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Model was further employed to enhance the prediction accuracy of the classifier which
achieved a value of 96.93%.

Robertson et al. [57] compared the DL and ML techniques on the social media image
data posted by the people during Hurricane Harvey to check the communication with the
emergency responders during disaster. For this purpose, the authors used a portion of a
dataset composed of the images posted by the people on social media. A total 1128 images
were used, which were randomly selected out of 17,483 images. During disaster situations,
emergency services can be overloaded. It is often the case when people post images on
social media platforms to better reach out to the emergency responders. The framework
proposed by the authors used MLP to classify the images posted by the users while to
extract the important features from the images, VGG-16 CNN had been used. According
to the findings, ML methods cannot always be useful to capture the human experiences
during disaster so these methods can work better when used together targeted at the
important requests and content on the social media.

Using DL models, Huang et al. [58] also used the social media posts data to overcome
the problem of retrieving a specific topic related to social media posts with textual and
visual information during a disaster. The proposed approach was an automated approach
which used combined features of visual and textual information of social media posts
to label the related topic of social media posts. To extract the visual and textual features
from the posts of social media, the authors used embedded CNN and Inception-V3 CNN.
Extracted features were trained on the train data and then combined together to be passed
forward for the classification purpose of social media posts. Relevant or on-topic social
media posts were classified automatically based on the pictures and text data which helped
to formulate a timely document of the events. By combining these posts with geotagging
features, social media can play a vital role to formulate an approach to mitigate the disaster.
During the fused classification phase, selected ML algorithms including LR, DT, RF, SVM-
Linear, SVM-RBF, and SVM-Sigmoid were employed. The methodology was tested with a
case study of the 2017 Houston flood using Twitter posts. The classification performance
results for LR showed the highest classification accuracy of 95.2% and an AUC value equal
to 0.945.

Kundu et al. [59] presented an LSTM-based architecture to classify tweets into various
classes relevant to post-disaster activities such as resource need and availability and activi-
ties of non-governmental organizations (NGOs). The dataset used in the study was obtained
from Forum for Information Retrieval Evaluation 2016 (FIRE2016) and 2017 (FIRE2017) and
included data on the Nepal earthquake. The proposed method performed better than BoW
and term frequency-inverse document frequency (tf-idf)-related approaches, achieving a
precision of 0.9234 and an F1 score of 0.9159.

A methodology was proposed by Basu et al. [60] for informed post-disaster response
management regarding resource needs and resource availabilities based on information
retrieved from tweets. The authors proposed two unsupervised neural retrieval models
that combined word-level and character-level embeddings. They investigated various
supervised classification methods, unsupervised pattern matching and unsupervised infor-
mation retrieval methods. The dataset consisted of tweets posted during the 2015 Nepal
earthquake and parts of India and the earthquake in central Italy, in August 2016. For the
Nepal earthquake data, the proposed unsupervised information retrieval method outper-
formed other methodologies. The proposed word-level and character-level attention-based
embeddings method achieved a classification accuracy of 0.57 and F1 score of 0.191 for the
Nepal earthquake data.

Neppalli et al. [61] developed and evaluated pre-trained CNN and RNN models in
identifying informative Twitter data which contain critical information about the situation
of a disaster event. They engineered a set that combined BoW features with features
extracted from tweet content, user details and polarity clues and trained NB classifiers with
the feature set as well as with each feature independently. The CNN and RNN models
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performed better than the NB models in identifying informative Twitter data regarding
disasters and generalized better across different disasters using the CrisisLexT26 dataset.

Paul et al. [62] extracted information from Twitter data about power and communica-
tion outages relevant to seven major hurricanes that hit the USA between 2012 and 2018.
Various ML models such as SVM and LR were used to filter out tweets related to outages.
They also applied transfer learning models such as BERT to detect the various types of
outages.

Kabir and Madria [63] proposed a method to address the challenges of effective rescue
scheduling during disasters. The developed method combined an attention based Bi-
directional LSTM (bi-LSTM) and CNN to classify Twitter data and used feature engineering
to increase the model accuracy. They also developed a hybrid scheduling method for rescue
operations. The proposed method was evaluated based on Twitter data from Hurricanes
Harvey and Irma, as well as a merged dataset of different disasters from CrisisNLP and
CrisisLex.

Peng et al. [64] addressed urban flood mapping at high resolution by using a residual
patch similarity convolutional neural network (ResPSNet). They also used data augmen-
tation to remove the impact of varying illuminations due to different data acquisition
conditions. Experiments were performed based on data from the 2017 Hurricane Harvey
flood in Houston. An accuracy of 94.97% was achieved.

4.8. ML/DL Methods in Case Studies for Disaster Management

Nagendra et al. [65] addressed the problem of relief operations management that can
be disrupted due to the destruction or damage of communication infrastructure as the result
of disasters. If information and communication technology (ICT) infrastructure is damaged
during a disaster, it can be difficult to carry out relief operations. This disruption can cause
serious problems in communications and the identification process of the areas where
immediate relief operations are needed. The authors proposed and applied a methodology
to identify those areas where relief operations are needed based on priority using big
data analytics techniques. They used the census, geospatial and satellite images data
and deployed this system using the cloud platform of AWS (Amazon Web Services). For
validation purposes, authors deployed this system in the state of Kerala in the 2018 flood
and involved the rescue teams to carry out the targeted relief operations. This system
proved to be helpful as it improved the timely and targeted relief operations with improved
communication between the rescue teams.

Critical communication and knowledge are very important to carry out the rescue oper-
ations, which can be difficult in disaster-hit areas. To address this problem, Laverdiere et al. [66]
proposed a framework using remote sensing and DL techniques. For this purpose, to sup-
port the rescue operations carried out by rescue teams in 2018 in the wake of a lava flow
incident in Hawaii Island, the authors used the satellite high-resolution images. In this
framework, CNN models were used which showed the ability to generalize well in the
training phase on the available data so that mapping of the structure can be performed
very quickly on the pre- and post-incident satellite images. Rescue agencies were provided
the important and timely information to carry out the assessment of damage and loss due
to this disaster. In this case study, the future direction was provided of how this study can
be beneficial on a large scale in such incidents.

Sit et al. [67] worked on a case study of the Hurricane Irma by identifying and ana-
lyzing the tweets related to this disaster using natural language processing, DL and ML
techniques. The purpose of this study was to identify the services which are disrupted,
the affected people and the damaged infrastructure. Moreover, another purpose of this
study was to differentiate the various impacted areas, as well as the time period and other
related information. For the disaster-related binary classification, authors used DL and
ML techniques. LSTM was also used for the classification purpose as it was, according to
the authors, one of the best networks which outperformed the other methods. In this case,
LSTM takes the whole text structure for semantic and feature dependencies analysis. For
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affected people and disrupted services, the authors also used unsupervised learning for
the multi-label classification of the tweets. The authors used 500 million tweets based on
location data and keywords which were published before, during and after the disaster.
The results were promising as the framework successfully identified the areas with highly
affected people and damaged infrastructure.

Zhou et al. [68] studied landslide susceptibility using a case study at Longju, in
the Three Gorges Reservoir area in China. Two types of landslide, namely, the colluvial
and rockfall, were considered in the landslide susceptibility modeling. The SVM model
outperformed the ANN and LR models, achieving an overall AUC value of landslide
prediction 0.881 compared to 0.836 for ANN and 0.697 for LR.

4.9. ML/DL Methods in Developed Applications for Disaster Management

With the introduction of 5G technology, many innovations are taking place in the
various industries due to its low latency. By combining distributed edge computing with
the 5G technology, the automation process in many sectors is gaining pace. One of such
examples, presented in Ardiansyah et al. [69], is 5G-DIVE. In this paper, authors used
this 5G-DIVE with the autonomous drones for navigation, surveillance and real-time
emergency situation detection. The authors also used the edge computing ML models
for these real-time emergency situations detection. This system was named as EagleEYE
which was basically an aerial system for disaster relief operations. By reusing existing
datasets and making a mechanism of object fusion, this system reduced the time required
for training. The system also worked parallel both for the detection and response tasks.
A new algorithm, merged object detection (MOD), was proposed by the authors, while
CNN and YOLO V3 have been used as well. For evaluation purposes, the authors tested
this system on two datasets including COCO and Google Open Images dataset, as well
as in real-time, and gained an accuracy of 87% for detection purpose with 90% reduced
inference latency.

Zhang et al. [70] worked on an application for the phase of damage assessment. Many
applications have been proposed earlier by various researchers which incorporate AI- and
DL-based deep NN approaches. To assess the damage and the severity of the impacts in
the disaster-hit areas, post-disaster image data was used in these applications. However,
the black box nature of AI algorithms makes it difficult to achieve better accuracy. For this
purpose, research focus has been shifting and adopting new ways to address this problem.
In this paper, the authors also incorporated the crowd sourced information gained through
social media data with AI-based algorithms. Prior to the use of the machine intelligence,
crowd source information was used to tune, improve and troubleshoot the black box nature
of AI algorithms. Then, this crowd source information worked closely with the machine
intelligence in a cooperative way within the system. A damage assessment application
based on DL models was designed which is termed as CrowdLearn: crowd-AI hybrid
application. CrowdLearn was based on the crowdsourcing platform and exploited the
combination of crowd intelligence and machine intelligence to perform damage assessment.
This system was evaluated in real-time and proved that it can provide timely and accurate
assessment of the disasters. It outperformed existing AI algorithms such as VGG-16,
achieving a classification accuracy of 0.877 and F1 score of 0.894.

Alam et al. [71] worked on the solution of problems faced during relief operations by
using image processing techniques on images. The system was called Image4Act. To assist
the humanitarian organizations carry out the relief operations, the system used image data
of social media posts. This system collected the data, denoised it and then classified it
during natural disasters. Perceptual hashing and deep NN techniques have been used to
remove the noisy data. To assess the damage of infrastructure caused due to the disaster, a
case of real-time cyclone natural disaster was used. Evaluation of the system on pre-existed
dataset of disasters as well as in real time proved that this system was very effective and
reliable to use in real-time natural disasters.
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Song et al. [72] developed a disaster management system, called DeepMob, which
predicted and simulated people’s evacuation behavior and mobility as well as evacuation
routes following various types of earthquakes. DeepMob used heterogeneous big data
sources such as GPS records, transportation network data and Japan earthquake data. The
system achieved an accuracy of 87.8% in predicting people’s evacuation behavior.

5. Discussion

Appendix A Table A1 summarizes the technical analysis of the reviewed papers, based
on the disaster phase and subphase, the ML and DL techniques used, the data sources
used for evaluation purposes, performance metrics and the disaster type. The proposed
studies aimed to provide solutions in various subphases/areas of disaster management:
disaster and hazard prediction, risk and vulnerability assessment, disaster detection, early
warning systems, disaster monitoring, damage assessment and post-disaster response.
Based on the results shown in Table A1 and Figure 4, research studies focused on response
operations outnumbered those focused on other disaster management phases. Figure 4
shows the number of research studies in terms of the disaster subphases in percentage form.
The largest percentage of studies focused on post-disaster response (38.2%), followed by
damage assessment (20%), risk and vulnerability assessment (14.5%), disaster and hazard
prediction (9.09%), early warning systems (5.45%), disaster detection (5.45%) and disaster
monitoring (5.45%). Accordingly, more than 50% of the research studies focused on disaster
response, followed by disaster mitigation and then by disaster preparedness.
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The percentage distribution of research studies by disaster type is shown in Figure 5.
As can be seen from Table A1 and Figure 5, research efforts have been put on developing
ML/DL methods applicable for various types of disasters. Floods have been mostly studied
(20.3%), followed by earthquakes and hurricanes (18.8% each) followed by general type
(any disaster type) (15.9%) and landslides (10.1%). Other types of disasters that have been
studied include (heavy) rainfall, typhoon, volcano, wildfire, avalanche and tsunami.
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Figure 6 shows the percentage distribution of studies developed using ML and DL by
disaster phase. In terms of the mitigation phase, the research studies focused on ML have
largely outnumbered those focused on DL. Accordingly, 69.2% of the studies have been
developed based on ML techniques and 30.8% of the studies have been developed based on
DL techniques. For the disaster preparedness phase, equal number of studies have focused
on ML and DL techniques (50%). In terms of disaster response, the studies developed based
on DL techniques have largely outnumbered those based on ML techniques. Accordingly,
69.2% of the studies have focused on DL and 30.8% on ML.
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Figure 7 shows the percentage distribution of ML and DL in the presented research
studies in terms of disaster subphases. Accordingly, DL-based methods have outnumbered
ML-based methods in damage assessment and post-disaster response with 83.3% and
63%, respectively, and disaster detection with 75%. ML-based methods have outnumbered
DL-based methods in disaster and hazard prediction with 60%, early warning systems with
75%, risk and vulnerability assessment 66.7% and disaster monitoring with 66.7%.
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Online text, image and video data posted on social media platforms has gained impor-
tance in crisis and disaster management. Effective decision making by emergency respon-
ders and other decision makers can be facilitated by the information posted online on social
media platforms such as Twitter. In disaster response, research has mostly focused on DL
using social media and in particular Twitter data. The emphasis on post-disaster response
studies has been placed on processing and analyzing Twitter data [49,50,53,55,57,58,60–63,67].
Furthermore, besides post-disaster response, social media data and mainly Twitter data,
has been used in studies focused on damage assessment, disaster monitoring and disaster
detection. Other data sources used in different subphases include the following: satellite
imagery for disaster risk and vulnerability assessment and disaster detection; inventory
maps for disaster risk and vulnerability assessment; sensor data for disaster and hazard
prediction and early warning systems; video for disaster detection; online news for disaster
monitoring; aerial imagery for damage assessment and post-disaster response; other image
data such as from the AIDR platform and Google for damage assessment. Furthermore,
the crowdsourcing platforms have been used to improve the performance of DL-based
methods for damage assessment in terms of noise (false data labeling) reduction and the
black box nature [70].

Technologies such as UAVs and drones have been used in obtaining aerial imagery.
In [14], SVM was employed to assess the damage of flood affected areas using aerial image
data obtained from drones. A method based on CNN VGG-16 to assess post-disaster
information for disaster response operations using UAV aerial image data was proposed
in [52]. Wildfire detection based on various CNN variants used UAV aerial images in [35].
Drone aerial imagery and 5G technologies were used in DL-based methods [69] for disaster
detection and post-disaster response.

CNN and its variants have been employed for the development of methods processing
and analyzing social media image data and especially Twitter data [41,45,70,71] for damage
assessment. Traditionally, disaster damage assessment was performed by domain experts.
The drawbacks in this approach include the inability of domain experts to handle large
amounts of data and the high labor cost. The challenges of analyzing large volumes of
image data include not clearly defined images such as destroyed roads, poor signal-to-noise
ratio, subjective assessment of the damage severity by human annotators, and difficulty of
acquiring sufficient number of labeled data at the onset of a disaster. A pre-trained CNN
was developed in [45] to overcome the difficulty of obtaining large datasets to train CNNs.
A combination of CNN and bi-LSTM leveraged information from both text and image
Twitter data [41].
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Studies on post-disaster response aimed to leverage information mostly provided by
social media and especially Twitter in order to achieve the following: improve communica-
tion between affected population and emergency responders [57,66]; estimate demand of
relief supplies [49]; search and rescue operations [52,56]; evaluate Twitter performance in
planning and assisting disaster response operations [53,55]; identify resource needs and
resource availabilities based on Twitter data [59,60]; enhance the robustness of developed
methods in the context of noise reduction [50]; identify affected population and disrupted
services [67]; manage relief due to disruption or damage of communication infrastruc-
ture [65]; retrieve information for general purposes [22,54,61,69,71]; extract information
about power and communication outages [62]; rescue scheduling [63].

Based on the review results, accuracy, F1 score, precision, recall and AUC were
mainly used as performance metrics to assess the ML- and DL-based methods for disaster
management. Figure 8 shows the performance of the developed ML- and DL-based
methods in terms of accuracy by disaster subphase and disaster type. Accordingly, highest
accuracies have been achieved for post-disaster response regarding hurricanes, disaster
detection regarding floods and wildfires and early warning systems regarding rainfalls and
tsunamis.

Mach. Learn. Knowl. Extr. 2022, 4, FOR PEER REVIEW  20 
 

 

Figure 8. Performance of the developed methods in terms of accuracy by disaster subphase and 

disaster type. 

Figure 9 shows the ML/DL-based method performance in terms of accuracy distribu-

tion for the different disaster phases. Most studies have resulted in performance accuracy 

between 80% and 98%. According to Figure 9, disaster response distribution by accuracy 

peaks at 91% accuracy in 5.3% of the publications following normalization of the distribu-

tion. Disaster mitigation shows highest representation of 5.1% of publications also on 91%. 

On the contrary, different data is shown in disaster preparedness distribution after nor-

malization. Publications about disaster preparedness are more evenly distributed peaking 

at 95% accuracy at 3.9% of the publications. This figure shows that most ML and DL mod-

els used in publications on disaster management, in spite of the various different phases 

are performing very well, yielding results mostly around 88.8% accuracy. Another useful 

metric is the correlation between the accuracy and the type of data used by the models. 

More specifically, models that used image data display slightly better results in terms of 

performance in accuracy. Image-based models average 88.82% accuracy. while text-based 

models average 88.17% accuracy. Finally, models that used data in a structured form also 

display average accuracy of 88.65%. These results are very promising for future research 

as they clearly show that regardless of the type of data used, ML and DL techniques can 

yield accurate results. Each type of data can be used exclusively or in combination with 

other types of data. 
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disaster type.

Figure 9 shows the ML/DL-based method performance in terms of accuracy dis-
tribution for the different disaster phases. Most studies have resulted in performance
accuracy between 80% and 98%. According to Figure 9, disaster response distribution by
accuracy peaks at 91% accuracy in 5.3% of the publications following normalization of
the distribution. Disaster mitigation shows highest representation of 5.1% of publications
also on 91%. On the contrary, different data is shown in disaster preparedness distribution
after normalization. Publications about disaster preparedness are more evenly distributed
peaking at 95% accuracy at 3.9% of the publications. This figure shows that most ML and
DL models used in publications on disaster management, in spite of the various different
phases are performing very well, yielding results mostly around 88.8% accuracy. Another
useful metric is the correlation between the accuracy and the type of data used by the mod-
els. More specifically, models that used image data display slightly better results in terms of
performance in accuracy. Image-based models average 88.82% accuracy. while text-based
models average 88.17% accuracy. Finally, models that used data in a structured form also
display average accuracy of 88.65%. These results are very promising for future research as
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they clearly show that regardless of the type of data used, ML and DL techniques can yield
accurate results. Each type of data can be used exclusively or in combination with other
types of data.
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By examining in more detail the methods used in the reviewed sources and their
accuracy, some methods stand out in terms of performance accuracy and yield better results
in their respecting disaster phases. In disaster preparedness, 99.93% accuracy was achieved
using the ML method of logistic regression (LR) and 99.2% was achieved with DL using
GANs. In disaster mitigation, the highest accuracy of 96% was observed with DL using
CNN, while the best ML method was KNN with accuracy of 92.74%. Finally, in the phase of
disaster response, the highest accuracy was 99% and it was achieved with the ML method
of SVM. The best DL method in disaster response was CNN with 98% accuracy. It is
important to mention that across all the reviewed studies, the highest accuracy results of
both ML and DL methods were achieved on structured data. More specifically, 99.93%
was achieved with ML methods on meteorological data from locations in South Korea in
a structured form. Additionally, 99.2% was achieved with DL method using GANs upon
recorded waveforms in California and Japan in a structured form. This is an indication
that both ML and DL methods perform much better on structured data. Although this
analysis points out which methods of ML/DL perform better in terms of accuracy in each
disaster phase, there are many factors that contribute to the overall efficacy of the methods
used. For instance, unstructured data tend to be harder to analyze, preprocess and model,
therefore leading to worse performance results and possible overfitting when fed to a
ML/DL based system. A system that is trained in low quality datasets could potentially
prove confusing when applied in a real-world scenario, due to its biased results that are
a byproduct of its poor quality training data. A case specific comparison as presented in
some of the studied literature is appropriate to determine which method is better in each
scenario [15,23,25,26,44,50,54,62,67,68]. Additionally, the performance of the developed
methods can be enhanced by integrating big data coming from different sources [13]. This
conclusion highlights the need for the development and the expansion of additional data
capture techniques in the domain of disaster management to produce clean data and big
datasets of structured data that will support and fuel further research on the field and yield
better results. Moreover, data quality can be enhanced by employing ML to automate the
integration of multiple big data sources [10].

5.1. Limitations

According to the results in this paper, research studies focused on ML/DL approaches
for (long-term) disaster recovery have not been identified. Although the keyword “disaster
recovery” was not included in the search, the keyword “disaster management” could have
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yielded relevant results for disaster recovery. Disaster recovery covers a broad range of
activities aiming to bring communities back in normalcy, build community resilience and
design of efficient policies, yet it has been understudied in the literature. Therefore, future
research should focus on long-term disaster recovery, facilitated or driven by advances in
both ML and DL.

Due to the manual filtering that followed the initial keyword search, some research
articles may have not been included in this review.

5.2. Future Research Trends and Challenges

Bottlenecks in DL that need to be addressed in future studies, in order to enhance the
robustness of DL-based methods for effective disaster management, include the limited
amount of available labeled training data and the human labeling of the datasets [44,45].
DL overcomes the manual feature engineering process by automatically learning complex
structures, yet with the expense of requiring very large amount of labeled data manually
annotated in order to automatically learn the features. Moreover, social media data contain
high levels of noise [50], therefore, more methods should be developed to effectively
differentiate signal from noise in the above data.

According to the results of this paper, the prevalence and importance of Twitter has
been shown as a tool to extract both qualitative and quantitative information valuable to
emergency responders and other decision makers in all phases of disaster management.
Considering that Twitter contains geospatial information, in contrast to other social media
platforms, the extracted information can provide answers not only to what happened
but also to where it happened. However, due to the fact that Twitter users may not be
representative of all the population affected, cross-validation with information extracted by
other means such as 911 calls could enhance the performance of the developed methods [53].

Crowdsourcing platforms such as Amazon Mechanical Turk have been shown to assist
in the development of novel methods that improve the performance of AI algorithms for
disaster management tasks [70]. Crowd intelligence combined with machine intelligence
can increase the accuracy of the ML/DL developed methods and reduce labor costs of
using domain experts for data labeling. More research is needed in different areas of
disaster management to leverage the advantages of crowdsourcing when combined with
ML/DL-based methods.

Online news data is shown to be a reliable source of disaster related information
compared to social media data [39]. The process of extracting the right information in the
right time from wireless sensor networks and other relevant technologies deployed in the
disaster affected regions can be enhanced by using of web crawling or web scraping for
effective preparedness and response operations.

Furthermore, focus on all phases and areas of disaster management is needed, as
already identified in previous reviews [3]. In particular, disaster recovery management
using ML/DL-based methods is under-researched. Long-term disaster recovery includes
sustainable development efforts ultimately leading to community resilience building. The
resilience of key infrastructure influences the effectiveness and progress of disaster recovery
efforts [28]. More research is needed on the development of novel ML- and DL-based
methods to assess the resilience of key infrastructure. Vulnerability assessment of an
urban electricity and transportation infrastructure was studied in the context of resilience,
using a hybrid graphical causal method [28]. Additionally, the accurate damage and loss
assessment is necessary for efficient management of financial aid allocation during the
recovery phase. Novel methods based on CNNs and satellite imagery data can enhance
the performance of damage assessment of residential buildings [13]. Furthermore, the
integration of multiple remote sensing data can improve the overall performance.

Moreover, ML- and DL-based methods can assist in the evaluation of the performance
of disaster management operations. For instance, monitoring can follow the progress of
disaster response and recovery operations. Hybrid ML-based methods have been used for
disaster monitoring [15,40]. The performance of disaster management operations should
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also be measured in terms of the distress of the affected population [4]. ML- and DL-based
methods can be developed to measure the distress and feelings of affected population
based on the analysis of social media data during disaster response and recovery [53].

Hybrid ML- and DL-based methods have been developed for different areas of dis-
aster management to better cope with the complexity of operations. The criticality and
complexity of disaster operations highlights the need for robust, validated and trustworthy
AI solutions. Robust AI models should also explain both the outcome and the process
which led to it to the human experts [73]. Accordingly, in the context of medicine, verifi-
cation and explainability has been identified as a key frontier research area [73]. Yet, it is
important, besides in the area of medicine, to include explainability in research focused on
all application areas that affect human life, including disaster management.

6. Conclusions

Natural disasters are one of the major causes of human lives loss and damage to
infrastructure and property. Advances in ML and DL have been increasingly used to
manage with the complexity of disasters. In this paper, a review study has been carried out
to investigate how ML and DL techniques have been used in various areas of disaster man-
agement to assist disaster management operations and improve their performance. For this
purpose, those papers which have been published since 2017 have been targeted, dividing
them in categories which include the different phases and subphases of a disaster event.
In these categories, various ML and DL techniques have been used for different types of
disasters including floods, lava flow, earthquakes, typhoons, hurricanes, landslides among
others. Reviewed studies focused on the areas of disaster and hazard prediction, risk and
vulnerability assessment, disaster detection, early warning systems, disaster monitoring,
damage assessment and post-disaster response as well as cases studies and applications.
Challenges and future research directions have been discussed. Future research should
be directed towards leveraging ML and DL for improving the performance of disaster
recovery operations. Disaster recovery operations should be sustainable; therefore, research
should focus on using ML and DL to enhance mitigation efforts, reduce vulnerabilities, and
assess resilience including of key infrastructure.

The criticality and complexity of disaster operations requires robust and validated ML
and DL solutions. Disaster operations affect human life; therefore, the developed models
should also be explainable to be understood by domain experts and decision makers [73].
Moreover, research should focus on improving the quality of the data and developing novel
data capture techniques as well as using crowdsourcing to improve the performance of
ML/DL-based methods for disaster management operations.
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Appendix A

Table A1. Technical analysis of the ML/DL based research studies.

Ref. No. Year Disaster Phase(s)/
Subphase(s) Disaster Type Techniques Dataset Performance

Metrics

[24] 2021 Mitigation/
Disaster and hazard prediction Earthquake YOLO (CNN)

Own indoor image dataset
“TUHO” consisting of

19,200 images
Accuracy = 96%
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Table A1. Cont.

Ref. No. Year Disaster Phase(s)/
Subphase(s) Disaster Type Techniques Dataset Performance

Metrics

[25] 2021
Mitigation/

Risk and vulnerability
assessment

Flood

KNN, LB, BRT, NSC,
and rotation forest used
individually and with
adabag as an ensemble

Flood inventory map with
210 flood localities AUC = 92.74%,

[26] 2020
Mitigation/

Risk and vulnerability
assessment

Landslide NB tree, Logistic model
tree, RF

Inventory map of 196
passed landslides data

Accuracy = 79.9%,
Precision = 74.5%, AUC

= 82.4%
RMSE = 0.301

[68] 2018

Mitigation/
Risk and vulnerability

assessment
Case study

Landslide SVM, ANN, LR

High-resolution remote
sensing imagery data of

Pleiades-1 (9/22/2014) and
GF-1 (3/30/2015) and

historical landslide data,
Longju in the Three Gorges

Reservoir area in China.

For SVM: AUC = 0.881

[20] 2019 Mitigation/
Disaster and hazard prediction Landslide GA-MLP, traditional ML

classification techniques
For GA-MLP: Accuracy

= 85%

[27] 2017
Mitigation/

Risk and vulnerability
assessment

Landslide

Hybrid ML method
based on NB trees (NBT)

and random subspace
(RS) ensemble

Aerial photographs and
satellite imagery data of

Bijar, Kurdistan, obtained
from the Forests,

Rangelands and Watershed
Management Organization

(Iran),

AUC = 0.886

[28] 2019
Mitigation/

Risk and vulnerability
assessment

Extreme weather
events including

hurricane

Deep NN-based causal
approach

Data from Hurricane
Hermine 2016, and January

Storm 2017 on the
Tallahassee, Florida

For the boosted gradient
regression based

forecasting: Accuracy =
93.83%

[22] 2018 Mitigation/
Disaster and hazard prediction

Tropical cyclone,
Typhoon

Fuzzy NN combined
with the locally linear
embedding algorithm

Rainfall data, Guangxi,
China Guangxi

Meteorological Service,
China

RMSE = 21.94

[29] 2018
Mitigation/

Risk and vulnerability
assessment

Flood ANN-MLP
Satellite and sensor data
from Muar region, Johor,

Malaysia
RMSE = 0.0035

[23] 2017 Mitigation/
Disaster and hazard prediction Earthquake

Pattern Flood
vulnerability assessment

intensity map
recognition NN, RNN,

NN, RF, linear
programming boost

ensemble

Earthquake data from the
Hindukush region,

Pakistan.

For LPBoost ensemble:
Accuracy = 65%

[30] 2019
Mitigation/

Risk and vulnerability
assessment

Landslide RNN
Landslide inventory map

of the Buyukkoy
catchment area, Turkey

AUC = 0.93

[21] 2020
Preparedness/Disaster

prediction, early warning
system

Flood Deep NN
Data from flood affected
districts from Bihar and

Orissa, India
Accuracy = 89.71%

[31] 2017
Mitigation/

Risk and vulnerability
assessment

Landside Combination of
ensemble methods, MLP

Landslide inventory map,
Google Earth images data
from landslide inventory
map, part of Himalaya,

India

For MultiBoost
ensemble: AUC = 0.886

[36] 2019 Preparedness/Early warning
system Earthquake SVM, KNN and

classification tree

453 waveforms recorded
data, Time series data,

Central Weather Bureau
(CWB) data

____

[37] 2018 Preparedness/Early warning
systems Earthquake GAN

RF

Waveforms recorded in
southern California and

Japan
Accuracy = 99.2%

[38] 2018 Preparedness/Early warning
systems Heavy rainfall LR Meteorological data from

locations in South Korea
Accuracy = 99.93%
F1 score = 0.4601

[32] 2020 Preparedness/
Disaster detection

Earthquake,
Flood,

Tsunami,
Volcanic eruption,

and Hurricane

Wavelet feature vector,
LBP feature vector and
Bagged decision tree

classifier

Satellite imagery data Accuracy = 99.59%

[33] 2019 Preparedness/Disaster
detection Flood CNN Twitter image data from a

flood event
Accuracy = 80.07%, F1

score = 77%



Mach. Learn. Knowl. Extr. 2022, 4 469

Table A1. Cont.

Ref. No. Year Disaster Phase(s)/
Subphase(s) Disaster Type Techniques Dataset Performance

Metrics

[34] 2018 Preparedness/Disaster
prediction Fire CNN Images and videos from

various fire datasets
Accuracy = 94.39%, F1

score = 89%

[15] 2020 Preparedness, Response/
Disaster Monitoring

Hurricane
Harvey NER, BERT Transformer Twitter data Accuracy = 95.55%

[39] 2020
Preparedness,

Response/
Disaster Monitoring

Landslide, Flood
and Rain

SVM, K-NN, Naïve
Bayes, MLP, LR Online News Data Accuracy = 68%

F1 Score = 68%

[40] 2020 Preparedness Response/
Disaster Monitoring General LR, SVM with BoW Online English News Data Accuracy = 89%

F1 Score = 88%

[13] 2020 Response/
Damage Assessment Hurricane CNN and ResNet50 Own aerial image data F1 Score = 94%

[14] 2019 Response/
Damage assessment Flood SVM and K-means

clustering UAV aerial image data Accuracy = 92%

[41] 2020 Response/
Damage assessment General VGG-19, CNN and

LSTM

CrisisMMD Twitter
Disaster data which

includes 16,097 tweets and
18,126 images

F1 Score = 85.7%

[42] 2018 Response/
Damage assessment Earthquake ML Technique LDA and

HAZUS loss model Twitter Data Accuracy = 86.45%

[44] 2019 Response/Damage assessment Flood
CNN,

SVM, RF, DT, LR and
K-NN

Aerial image data from
flooded areas in the state of

Texas

Accuracy = 85.6%, F1
score = 89.09%

[45] 2017 Response/
Damage assessment General Deep CNN

Twitter Image data from
Artificial Intelligence for

Disaster Response (AIDR)
platform

Google image data

VGG-16:
Accuracy = 84%, F1

score = 82%

[70] 2019
Response/

Damage assessment
Disaster application

General,
Earthquake

Crowd and machine
intelligence

DL such as VGG-16
Ensemble, Hybrid active

learning

960 images from Twitter
and Instagram

about the Ecuador
Earthquake in 2016

Amazon Mechanic Turk

Accuracy = 87.7%,
Precision = 0.904, Recall
= 0.885, and F1 score =

89.4%

[71] 2017
Response/

Damage assessment
Disaster application

Earthquake,
Typhoon,
Hurricane

Deep NN, perceptual
hashing, CNN, VGG-16,

Transfer Learning

Social Media data, Twitter
image data of Nepal
earthquake, Ecuador

earthquake, Ruby Typhoon
and Hurricane Matthew

AUC 0.98

[46] 2019 Response/
Damage assessment

Earthquake,
Flood,

General

Linear SVM, kernel
SVM, ANN, ensemble

learning

Own dataset with text and
image Twitter data, SUN
dataset with image data

For linear SVM:
Accuracy = 92.43%

[47] 2020 Response/
Damage assessment

Flood,
Hurricane CNN

Satellite image from
DigitalGlobe about

Hurricane Harvey, data
about South Asian

Monsoon Flooding of 2017

Accuracy = 94%
(for the South Asian

Monsoon Flooding of
2017)

[48] 2018 Response/
Damage assessment

Nepal
earthquake,

Ecuador
earthquake,

Typhoon Ruby,
and Hurricane

Matthew

CNN, VGG-19

Google image data, social
media image data about

Nepal earthquake, Ecuador
earthquake, Typhoon Ruby,

and Hurricane Matthew

Accuracy = 90.1% (for
the Ecuador Earthquake)

[57] 2019 Response/Post-disaster
response Hurricane VGG-16 CNN and MLP Twitter image data Accuracy = 64%

[58] 2020 Response/
Post-disaster response Flood Inception-V3 CNN and

Embedded CNN Social Media Twitter Data Accuracy = 95.4%
AUC = 0.945

[49] 2020 Response/
Post-disaster response Flood MLP Baidu Big Data Correlation coefficient =

0.923

[50] 2018 Response/
Post-disaster response

Hurricane
Harvey

NB, KNN, SVM, and
MLP

Social Media image data
including Facebook,

Instagram and Twitter data
Accuracy = 99%

[51] 2020 Response/
Post-disaster response 25 different types Genetic algorithm —- —-

[52] 2020 Response/
Post-disaster response General CNN UAV dataset of 420 images Accuracy = 95.6%

[53] 2019 Response/
Post-disaster response Hurricane Multinomial logit model

Sentiment analysis
Twitter data about

Hurricane Irma, in Florida
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Table A1. Cont.

Ref. No. Year Disaster Phase(s)/
Subphase(s) Disaster Type Techniques Dataset Performance

Metrics

[54] 2020 Response/
Post-disaster response Earthquake

CNN variants: AlexNet,
Inception-V3, and

ResNet-50

Image data from the
earthquake-hit regions,

Tohoku, Japan (2011) and
Bologna, Italy (2012).

PPV = 90.81%,
F1 score = 92.05%

[55] 2018 Response/
Post-disaster response General NB-ST Twitter data, CrisisLexT6 Accuracy = 86.91%

[56] 2017 Response/
Post-disaster response Avalanche CNN,

SVM
Image data of an avalanche

debris Accuracy = 96.93%

[35] 2017 Preparedness/
disaster detection Wildfire Deep CNN: AlexNet,

GoogLeNet and VGG-13 UAV aerial image data Accuracy = 99%

[60] 2019 Response/
Post-disaster response Earthquake

Unsupervised neural
retrieval

models that combined
word-level and
character-level

embeddings

Twitter data about the 2015
Nepal earthquake and
parts of India and the

earthquake in central Italy
in August 2016

Accuracy = 57%,
F1 score = 19.1%
(for the Nepal

earth-quake data)

[59] 2018 Response/
Post-disaster response Earthquake LSTM

Data from Forum for
Information Retrieval

Evaluation 2016 (FIRE2016)
and 2017 (FIRE2017) about

the Nepal earthquake

Precision = 0.9234, F1
score = 91.59%

[65] 2020
Response/

Post-disaster response
Case Study

Flood Big data analytics

Satellite imagery data,
census record, weather

data, mobile phone calls
reports, GIS data, AWS and

SAR data

_____

[66] 2020
Response/

Post-disaster response
Case Study

Lava Flow CNN Hawaii Island satellite
imagery data

Precision = 81.0%, Recall
= 93.0%,

F1 score= 86.6%

[67] 2019
Response/

Post-disaster response
Case Study

Hurricane Irma
Ridge regression, LR,

Linear SVM
LSTM, CNN, LDA

500 million Twitter data

Accuracy = 74.78%
Precision = 0.7608, Recall

= 0.7826,
F1 score = 0.7514

[69] 2020

Preparedness, Response/
Disaster detection, post-disaster

response
Disaster Application

General Merged Object Detection
(MOD), YOLO V3, CNN

COCO and Google open
image data Accuracy = 87%

[61] 2018 Response/
Post-disaster response General CNN, RNN, NB Twitter data from the

CrisisLexT26 dataset

For CNN:
F1 score = 89.5%
(for non-natural

disasters)

[62] 2020 Response/
Post-disaster response Hurricane

ML and DL algorithms
including DT, KNN,

multinomial NB, LR, RF,
SVM, CNN, RNN-LSTM,

RNN-GRU,
RNN-Attn-LSTM, BERT

Twitter data about the
seven major hurricanes in
the USA between 2012 and

2018

For BERT:
Accuracy = 88%

[63] 2019 Response/
Post-disaster response

Hurricanes
Harvey and Irma,

General
Bi-LSTM and CNN

Twitter data about
Hurricanes Harvey and

Irma. Four different
datasets from CrisisNLP
and 15 different disasters

data from CrisisLex

Accuracy = 93.7%,
F1 score = 87.2%

[64] 2019 Response/
Post-disaster response Flood ResPSNet

High resolution satellite
image data from the 2017

Hurricane Harvey flood in
Houston, Texas

Accuracy = 94.97%,
F1 score = 91.28%

[72] 2017
Response/

Post-disaster response
Disaster application

Earthquake Deep Belief Network

Big and heterogenous data
including GPS data,

transportation and road
network data, Japan

earthquake data

Accuracy = 87.8%
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