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Abstract: Static authentication methods, like passwords, grow increasingly weak with advancements
in technology and attack strategies. Continuous authentication has been proposed as a solution,
in which users who have gained access to an account are still monitored in order to continuously
verify that the user is not an imposter who had access to the user credentials. Mouse dynamics
is the behavior of a user’s mouse movements and is a biometric that has shown great promise
for continuous authentication schemes. This article builds upon our previous published work by
evaluating our dataset of 40 users using three machine learning and three deep learning algorithms.
Two evaluation scenarios are considered: binary classifiers are used for user authentication, with the
top performer being a 1-dimensional convolutional neural network (1D-CNN) with a peak average
test accuracy of 85.73% across the top-10 users. Multi-class classification is also examined using an
artificial neural network (ANN) which reaches an astounding peak accuracy of 92.48%, the highest
accuracy we have seen for any classifier on this dataset.

Keywords: deep learning; machine learning; mouse dynamics; continuous user authentication;
multi-class classification

1. Introduction

The optimal user authentication method must be flexible, computationally efficient,
operational in near real-time, and, most importantly, accurate. Several methods of authenti-
cation have been previously proposed with biometrics appearing to be the frontrunner for
future user authentication schemes. Biometric-based authentication is segregated in two
groups: physical biometrics and behavioral biometrics [1]. Physical biometrics relies on the
uniqueness of certain physical attributes among humans for authentication by exploiting
fingerprints [2], irises [3], and voice scanners [4]. Similarly, behavioral biometrics operates
under the assumption that the general behavior of humans for certain tasks are distinct
enough to be used for user authentication, with examples including touch dynamics [5],
keystroke dynamics [6,7], and the focus of this paper: mouse dynamics. Behavioral bio-
metrics for authentication, when compared to physical biometrics, has been of particular
interest due to its more general, large-scale applicability, reduced intrusiveness, and lack of
external sensors. Moreover, mouse dynamics has proven to be a continuous, lightweight,
and non-intrusive method for dynamic user authentication [8–11].

Further, the large amounts of data available in the domain space of mouse dynamics
allows for the leverage of machine and deep learning algorithms. Fields which possess
sufficiently large amounts of data have observed tremendous improvements in results
when machine/deep learning methods are integrated. Machine learning exploits implicit
patterns in large data too difficult for humans to detect and has shown to be robust
enough to be applied to a variety of problem spaces; however, it requires the manual
extraction of features from data. This makes it difficult to find the optimal combination of
hyperparameters, extracted features, and data pre-processing methods for a given problem
or dataset. Conversely, deep learning methods utilize a hierarchy of layers to build levels of
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abstraction from raw data. This removes the necessity for hand-picked extracted features
and allows the model to gain a more holistic understanding of the data as opposed to being
limited to only the manually presented features. Despite the benefit of increased model
autonomy, deep learning methods come with their own introduced difficulties, such as
vanishing and exploding gradients, non-convergent loss functions, and less interpretable
results—often referred to as the “black box” nature of deep learning.

Due to the relative infancy of mouse dynamics and the sparsity of publicly available
data, the integration, impact, and shortcomings of these algorithms in the field have
not been fully realized. Specifically, mouse dynamics has generally been approached as a
method for user authentication in low-intensity settings. While promising results have been
published in these settings, the full potential of mouse dynamics has not been fully utilized
until it has been thoroughly tested in many different evaluation scenarios. In tandem
with the use of machine and deep learning, mouse dynamics could potentially serve as an
inexpensive, non-intrusive behavioral biometric for user authentication. Thus, the scope
of this paper revolves around evaluating three machine learning and three deep learning
algorithms on an improved novel dataset introduced in our previous work [12]. This dataset
contains the mouse dynamics data of 40 users as they engaged in a high-intensity task on a
desktop computer for 20 min. Current publicly available mouse dynamics datasets, such as
the Balabit [13] and TWOS [14] datasets, were collected with small sample sizes and with
dull, administrative tasks given to users to engage with during data collection. Evaluating
these six algorithms on data collected in a more high-intensity, volatile environment allows
for a more scrutinizing examination of the integration of machine and deep learning to
mouse dynamics, as well as may provide an insight into the required future research to
further improve the problem space. We found our 1D-CNN and ANN to be the best
performing algorithms in the binary and multi-class classification scenarios, respectively,
with more details found in the Section 4. Thus, the novel contributions of this paper are
as follows:

• Improve upon our previous work by introducing and analyzing a larger dataset (can
be found in the Data Availability section);

• In addition to random forests, two new machine learning models and three new deep
learning models are evaluated on the dataset;

• Introduce an artificial neural network for multi-class mouse dynamics user classification.

2. Background

This paper builds on the results of [12], where we hypothesized that collecting data
in an environment where users have more variability and freedom to choose their actions
would naturally encode more distinct features in each user’s data. We proceeded by col-
lecting data from 10 users while they played their own 20-min game of Minecraft on a
designated lab computer, then trained binary random forest classifiers for user authentica-
tion. Upon any mouse event, (i.e., mouse movement or mouse click) a custom program
running in the background collected the UNIX timestamp of the action, X and Y coordinates
of the pointer, and corresponding Subject ID. Raw user data, visualized in Figure 1, are not
sufficiently granular for machine learning algorithms to reliably authenticate users, hence
the need for the aforementioned data processing and feature extraction stages. Ten singular
mouse events were combined into a singular block called a “mouse action”, which is what
is inputted into the random forest for classification. Note that variable mouse action block
lengths have also been proposed, with mouse action block lengths usually a great order
of magnitude larger than 10. However, using a smaller mouse action block length and
observing similar results indicates that our dataset encodes more information in a smaller
amount of data, which is what we were able to conclude in [12]. Additional features such
as velocity, acceleration, jerk, angular velocity, and angle and length of mouse trajectory,
along with their summary statistics, were extracted from each mouse action and placed
into a vector along with the target class associated with the action. Ten binary random
forests for user authentication were correspondingly trained to each user, with inputted
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data consisting of an equal number of positive and negative class instances to balance
each classifier. A positive instance was defined as a genuine action that should warrant
continued user access, while negative instances were imposter mouse actions that should
result in additional monitoring/blocking of the user’s access.
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Figure 1. (a) Visualization of raw mouse from User 3’s session; (b) visualization of raw mouse from
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Many data processing and model building decisions in [12] were inspired by the
original paper proposing mouse dynamics as a reliable behavioral biometric [15]. Authors
of [15] introduced mouse dynamics as a novel human-computer interaction behavior that
could serve as an alternative security medium. As opposed to conventional methods,
where security relies on something “one knows” (PINS, passwords) or “one has” (keys,
identification cards), mouse dynamics offers security through what “one is.” In other
words, irreproducible behavioral biometrics such as mouse dynamics are difficult to mimic
and, thus, are a great candidate for user authentication schemes. Similar to [16], the
authors of [15] do note that due to the variability in human behavior over time, behavioral
biometrics as a whole must be designed to be robust and dynamic to changes in user
behavior. Reference [15] goes on to establish baseline data preprocessing and evaluation
methods, such as what additional features to extract from raw data, the use of false positive,
false negative, and equal error rates as evaluation metrics, the combination of mouse
actions into variable length mouse action blocks, and even offers results using statistical
learning methods to compare for future research. Despite the recency of mouse dynamics,
great improvements have been made to the field since [15]. Most noticeably, the consistent
superior performance machine learning has exhibited over more traditional statistical
learning methods is also quite apparent in mouse dynamics [17]. Moreover, [17] proposed
additional extracted features for mouse dynamics-based authentication and reported their
gain ratios. The search for new and more descriptive extracted features compared to [15]
and the magnitude of their impact on accuracy is imperative to the improvement of the
field and has been heavily researched [18,19]; however, it can also be seen as a limitation
for the application of machine learning, even more so when robust evaluation techniques
and metrics are encouraged [20]. This is observed to an even greater degree when deep
learning has been applied and performed at a higher level without the need for feature
extraction [21,22]—presumably due to deep learning’s ability to perform at superhuman
levels with sufficiently large data.

Deep learning’s performance on mouse dynamics can be dependent on the approach
to the problem. For example, due to the spatiotemporal attributes of the data, mouse
dynamics can be framed as a time-series problem yet integrate deep learning through
different modalities. There are multiple ways to leverage CNNs for mouse dynamics [23],
such as using the X and Y coordinates from the raw data to create user mouse maps, as
observed in [12], and evaluate their spatial features using a two-dimensional CNN [24].
By focusing on and extracting the spatial features of mouse dynamics data, the image
processing capabilities of CNNs can be similarly applied to user authentication. However,
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the strengths of convolutions in CNNs extend beyond spatial features, as the temporal
approach of modeling data as a time-series signal and using a 1D-CNN to convolve along
the singular time dimension of the signal has been proposed as well [25]. Further, [25]
uses X and Y velocities to create signals from their mouse events rather than absolute
coordinates to produce a translation invariant model. Consequently, recurrent neural
networks—especially their long short-term memory variants (LSTM-RNN)—have been
proposed for use due to their known strong performances with time-related data [26,27].
The contrasting methods in which these models exploit the spatiotemporal features of
mouse dynamics data could have an impact on their performance, hence their inclusion in
our experiment.

It is important to note that two-class binary classifiers have been shown to outperform
one-class classifiers on behavioral biometrics as a whole [28]. To ensure a more holistic
evaluation of this dataset, we also implement a singular model to distinguish between all
users in a multiclass classification setting. Binary user authentication is only concerned with
identifying whether a mouse movement originated from a genuine user or an imposter,
however this only evaluates a model’s ability to differentiate between inter-class instances
(i.e., imposter vs. genuine user). The ability to further distinguish one genuine user from
another on a trusted network (intra-class instances) possesses great potential value and
should not be ignored. As such, this paper introduces an artificial neural network to operate
under such constraints in mouse dynamics, yielding the question of whether more complex
deep learning algorithms may be able to follow suit with further research.

3. Methodologies

The data preprocessing methods differ by model. Machine learning models require
manual feature extraction, whereas the deep learning models were simply given raw mouse
dynamics data for implicit feature extraction and analysis. Due to the architectural differ-
ences between models, the various spatial and temporal aspects of the data are leveraged
differently and at an unequal frequency dependent on the model; for example, the afore-
mentioned difference between an LSTM-RNN and 1D-CNN. Furthermore, across both
deep and machine learning applications to mouse dynamics, binary classifiers have been
the most commonly used approach. This approach revolves around creating a separate
classifier for each user. Each user’s dataset consists of an equal number of positive and
negative class instances. This is usually achieved by sampling all available instances from
the target user (positive class) and appending an equal number of imposter instances
(negative class). The imposter instances are simply random samples from the rest of the
remaining users who are not the target user. In a dataset with k users, there should be n
positive and negative instances in a user’s dataset where n

k−1 imposter samples are taken
from each non-target user. This creates a balanced dataset that mitigates frequency bias in
the classifiers. Therefore, instead of being tasked with distinguishing each user from one
another, a classifier is only tasked with identifying a mouse action as a genuine action or
an imposter action. Our feature extraction process extracted 33 additional features from
each user’s raw data, such as velocity, acceleration, jerk, curvature, and trajectory values.
More details regarding our preprocessing method for the machine learning algorithms
can be found in our previous paper [12]. While quite frequent in mouse dynamics, binary
classification prevents more nuanced inferences on the data, such as which users share the
most similar behaviors. Therefore, we also include a multi-class classification approach to
mouse dynamics, which comes with its differences from the usual methods previously pro-
posed. This section serves to describe our methodologies as well as the few but important
dissimilarities between models and their preprocessing methods. All models were built
and evaluated in Python using the Keras/TensorFlow and the scikit-learn libraries.

3.1. Deep Learning Models

All deep learning models and their respective layers featured in this paper are available
in the TensorFlow and Keras libraries.
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3.1.1. LSTM-RNN

RNNs in general have seen their fair share of exposure in the mouse dynamics liter-
ature [23,29] and, with the advent of LSTM-RNNs, continue to produce excellent results
across many research domains. Mouse dynamics, generally, can be represented as a se-
quence of distinct actions over a variable period of time, thus making LSTM-RNNs a strong
candidate as a model choice time-series related data. As a part of the family of neural net-
works, LSTM-RNNs excel at taking some sequence of inputs, propagating this data through
the network to build higher levels of abstraction, and producing a meaningful output.
Specifically, LSTM-RNNs have the added benefit of internal memory, or the capability to
identify long-term dependencies. This benefit has been more readily realized in areas such
as natural language processing, due to the intertwined and dependent nature of linguistics;
however, these benefits do apply to general time-series data as well. This requires the input
to be in the form of a 3-dimensional array, with the dimensions representing batch size,
number of features, and number of time steps. Therefore, the preprocessing sequence for
our LSTM-RNN consisted of creating one block of mouse actions using 10 mouse events,
similar to [12]. Due to the static length of 10 imposed on each mouse action, as opposed to
variable length proposed in other literature, a time step of 3 was used for the LSTM-RNN.
We hypothesized that using a timestep of 3 would encode additional information into each
data point passed to the LSTM-RNN while still leaving a sufficient amount of data to train
a model of our respective size.

The architecture of the model consists of an input layer, three hidden LSTM layers with
128 neurons, followed by a dropout layer and a batch normalization layer, as is standard in
most LSTM-RNN architectures. The hidden layers are followed by a single fully connected
layer of size 64 with a ReLU (Rectified Linear Unit) activation, followed by a final fully
connected layer of size 1 with a softmax activation for classification output. The Adam
optimizer is used with α = 0.001 with a decay rate of 1.0 × 10−6. Binary cross-entropy loss
is used due to the binary nature of the data (whether the data is from the target user or not).

3.1.2. D-CNN

Mouse dynamics data can be represented through many modalities. As opposed
to examining long-term behavioral tendencies using just time, 1D-CNNs additionally
leverage both the spatial and temporal nature of the data. CNNs in general have observed
state-of-the-art performance in all facets of computer science, most notably computer
vision. These models are built on the foundation of processing data with a grid-like
topology using convolutional arithmetic rather than using general matrix multiplication
for computation within layers. With regards to CNNs specifically, liberties have been taken
with the representation of data for mouse dynamics, as an optimal representation has not
yet been found due to the novelty of the field. Some suggestions include using speed rather
than absolute coordinates to ensure a translationally invariant model [25] or graphing
mouse movements on a 2-dimensional plane and using a traditional 2D-CNN [24]. Many of
these methods are compatible with our data, as Figure 2 outlines. As such, we incorporate
using speed values for mouse action sequences rather than raw coordinate values to create
a more robust and flexible model. Our mouse dynamics data can be represented as a one-
dimensional time series signal and, thus, are suitable for analysis by a 1D-CNN. Similar to
our LSTM-RNN, data are inputted as a 3-dimensional matrix. However, instead of using a
timestep of 3, we simply pass a single mouse action as input to the model. Since an action
already consists of 10 events, the model will convolve over each event examining the X and
Y speed values at each UNIX timestamp and thus not requiring any batched timesteps.

The architecture of the model follows closely to [25]; however, it is shallower in
width. Model sizes of varying capacities were tested, but yielded negligible improvements
in overall accuracy. A binary classification approach identical to the one explained in
Section 3.1.1 is taken. Thus, our model is comprised of two 1D convolutional layers,
followed by a global max pooling layer. A flatten layer follows to mutate the output of the
max pooling layer into a vector, leading to two fully connected layers: one layer with a size
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of 60 and a ReLU activation, and another layer with a size of 1 and a softmax activation for
binary classification. The same loss functions and hyperparameters are used as discussed
in Section 3.1.1.
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3.1.3. ANN

Almost all deep learning applications to mouse dynamics have operated under the
constraint of binary classification. While this method of authentication has its benefits, a
multi-class approach allows for more granular results. Continuous user authentication
using mouse dynamics has a broader applicability outside of just intrusion detection and,
consequently, certain situations may arise when multi-class classification schemes are more
appropriate. For example, the ability to monitor and distinguish between known users on
a large network is only possible when models have been proven to operate in a multi-class
setting. Thus, it is integral to explore the other settings in which mouse dynamics can
reliably operate as a behavioral biometric for user authentication. Problems that could
advance the biometric and the field of continuous user authentication, as a whole, can only
be unearthed if mouse dynamics is continued to be thoroughly and wholly researched.
Therefore, we propose an ANN that can distinguish between all 40 users simultaneously in
a multi-class classification setting.

ANNs are one of the simpler manifestations of the neural network, inspired by the
modern hypothesis of how biological neural networks operate. Raw input propagates
through the network as it is manipulated by a series of affine non-linear transformations in
the form of multiplicative weights and additive biases. As ANNs are trained in a supervised
setting, the difference between model predictions and target values can be represented as a
loss function and minimized using some variation of a first-order iterative optimization
algorithm, most commonly gradient descent. ANNs are also universal approximators and,
thus, are capable of estimating infinitely complex functions. It then follows that they are a
fundamental tool in the novel application of deep learning to a field as a baseline reference.

The model follows a simple architecture, comprised of two layers of size 256, two
layers of size 128, two layers of size 64, and a final output layer of size 40. All layers
use a ReLU activation except for the output layer, which uses a softmax activation. Data
preprocessing methods differ only slightly from the 1D-CNN and LSTM-RNN processes.
A singular mouse action is inputted at a time, but raw absolute coordinates are used
instead of speed values since translation invariance is not applicable in this setting. Sparse
categorical cross-entropy loss is used instead of binary cross-entropy due to the multi-class
classification setting.
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3.2. Machine Learning Models

All machine models featured in this paper were built using the Scikit-learn library,
specifically the sklearn module. KNNs and RFs are available in the “ensemble” and
“neighbors” sklearn modules, respectively.

3.2.1. SVM

Support vector machines (SVM) are a machine learning algorithm commonly used
for classification and regression problems. In essence, SVMs create hyperplanes (also
known as decision boundaries) that best separates distinct classes in the data. Due to the
multidimensional nature of complex ML problems, it can be difficult to find such clear
separation of classes. In general, SVMs operate by finding the hyperplane that maximizes
the separation between classes in an n-dimensional space. In simpler settings, SVMs
often utilize linear classification sufficiently enough to come to a classification decision,
however this may not always be the case. Similar to the theoretical foundations of neural
networks, non-linear transformations tend to yield better results when working with
complex, high-dimensional data—as often is the case with mouse dynamics data and most
machine learning problems. Classes may be more easily separable when mapped to higher
dimensions, but explicitly mapping each sample vector to a higher dimension may be
computationally inefficient and cumbersome. Kernel functions are used by SVMs to bypass
this problem by acting as a similarity function for raw data representations, as opposed
to explicitly computing distances by mapping sample vectors into a desired feature space.
This allows for SVMs to feasibly operate in higher dimensional spaces without much of an
increase in computational complexity; an integral attribute for a user authentication model
based on mouse dynamics. Furthermore, SVMs usually operate in a binary classification
setting. While multi-class SVMs have been proposed in the form of “one vs. rest” or
multiple aggregated “one vs. one” scenarios, this article utilizes SVMs as general binary
classifiers to be consistent with the other machine learning models tested. While SVMs
are excellent at operating in higher dimensions and being memory efficient, they are still
quite sensitive to noise and are also hard to interpret. Classification decisions are made
using a hyperplane separation; therefore, there are no probabilistic aspects that offer insight
into the magnitude of error the model is experiencing. In the context of mouse dynamics,
this could prove to be a hindrance in the widespread adoption of SVMs for commercial
use, as identifying model weaknesses and troubleshooting would be more ambiguous of
a process as compared to other alternative models. Lastly, hyperparameter optimization
in machine learning models is just as imperative of a process as in deep learning, but the
decreased model complexity of most machine learning models leads to a lower number
of hyperparameters needing to be tweaked. The kernel function of an SVM is arguably
the most important “hyperparameter”, so we use a radial basis function kernel due to its
general applicability to most machine learning problems and its easy interpretability of
distance using an l2-norm.

3.2.2. KNN

The k-nearest neighbor algorithm (KNN) is a nonparametric statistical learning algo-
rithm commonly used for classification and regression problems. KNNs operate under
the general assumption that similar examples will exist in close proximity to one another.
Assuming this, KNNs will calculate the distance of an unknown point to other previously
labeled groups. The algorithm will classify this unknown point as a member of the group if
there is a sufficient number of neighbors, K, that are in close proximity; hence the need for
a distance function. Similar to SVMs, l2-norms are usually the most common choice for
KNN algorithms but are not always necessary.

In contrast to SVMs, KNNs have been shown to be highly robust against noise and
perform better on larger datasets. Due to the nonparametric, instance-based learning
techniques of KNNs, they also do not require any prior training on a dataset before creating
classification predictions. Consequently, there is only one hyperparameter to tune: K, the
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number of neighbors that an example must be in close proximity to in order to be associated
with that group. Unfortunately, optimizing this hyperparameter is quite difficult, and after
using a cross-validated random search for hyperparameters, we found that setting K equal
to 13 yielded the best general results across most users. As with most statistical learning
methods, KNNs struggle to yield high accuracy rates with higher-dimensional data. They
also require feature scaling, such as normalization of the data, and are quite sensitive to
outliers. The contrasting strengths and weaknesses of SVMs and KNNs allows us to test
these models in a pseudo-adversarial environment and determine which aspects of our
data (dimensionality, size of dataset, number of outliers, etc.) have a stronger impact in
final accuracy results.

3.2.3. Random Forest

Random forests (RF) are an ensemble training algorithm, consisting of an amalga-
mation of decision trees that use majority voting to curate a classification or regression
prediction. They are quite popular due to their simplicity, flexibility, and interpretability. At
their core, RFs are a massive collection of if–else statements. At each node of a decision tree
in an RF, a “test” is conducted on the inputted value. Each branch at that node denotes the
total possible sample space for the inputted value. As the inputted value descends down
the RF, data is granularly separated and further categorized by the various decision trees.
It is hypothetically possible to visually graph each and every decision tree in a RF, making
their decision-making process more transparent and easier to understand than almost any
other algorithm. Furthermore, differing magnitudes of each feature does not impact the
ability for RFs to perform, thus rendering feature scaling as irrelevant. RFs are known to
be quite computationally cheap when evaluating test data, but the cost of evaluation for
RFs are a stark contrast to their cost of training. Training on a large data set may require
an extremely deep RF as it will need to develop a myriad of decision trees to deal with
all possible scenarios. Thus, almost all of the computational cost resides in the training of
the model rather than the actual use. RFs are actually quite efficient and low cost when
classifying data, it is simply the model development that is costly.

There are many trade-offs to consider in an ensemble training algorithm. The main
causes of errors in most learning models are noise, bias, and variance. Therefore, any
training method that can best mitigate these errors has a high chance to improve the
accuracy and strength of machine learning algorithms. Ensemble training is designed
to combine multiple decisions from multiple models to minimize the errors from each
model. In the previously discussed algorithms, they are structurally independent and
solely rely on a decision from a single model to classify a data point. Ensemble training
allows multiple weak classifiers to be grouped into a family, and the collective decision
of these weak classifiers often times produce a moderate, averaged output. Ensemble
training operates under the assumption that each family of weak classifiers is going to
produce errors, and understandably so. When making groups of weak classifiers, it is
conducted so, such that each group’s correlation between one another is minimized. Thus,
one group’s proneness to a certain error may not be as prevalent in the other groups.
An example of this in the context of mouse dynamics has already been observed in [30].
Combining the decisions from all of the classifiers then minimizes each other’s errors and
create a singular strong classifying method that is unlikely to overfit. With regards to mouse
dynamics, RFs serve as a reliable middle ground between the stark contrasts of KNNs and
SVMs. Evaluating the differences in evaluation metrics across these three models may
allow us to gain more insight on which models perform better on mouse dynamics for
user classification. After performing an extensive grid search for optimal hyperparameters,
we found that the following settings for a Keras random forest produced the best general
results: n_estimators = 1600, min_samples_split = 2, min_samples_leaf = 1, max_features = “sqrt”,
max_depth = 30, and bootstrap = “False”. For clarity, all hyperparameters for each model (or
optimizer hyperparameters for the deep learning models) are listed in Table 1.
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Table 1. List of hyperparameters for each model.

Model Hyperparameter Value

1D-CNN/LSTM-RNN/ANN
α (Learning rate) 0.001
ε (Decay rate) 0.000001

KNN K-neighbors 13

SVM
C 1

kernel “rbf”

RF

num_estimators 1600
min_samples_split 2
min_samples_leaf 1

max_features “sqrt”
max_depth 30

boostrap “False”

4. Results

To stay consistent with results in [12], we evaluated each binary classifier using three
different metrics: accuracy (ACC), false positive rate (FPR), and false negative rate (FNR).
In abstract evaluation scenarios, FPR and FNR can be seen as equally erroneous, however
FPRs are much more detrimental in a user authentication scenario. Explicitly, failing
to authenticate a user poses a smaller security risk than continuing to authenticate an
imposter. For brevity’s sake, we only include FPR when evaluating the deep learning
models. EER denotes the equilibrium point between FPR and FNR and is used in [12,31]
as a more general metric to compare different classifiers, but we have decided to use the
F1-score—the harmonic mean of the precision and recall—in this study as it better describes
the model’s precision and recall capabilities [32]. Furthermore, reporting individual results
for each user in this article is spatially infeasible, so we resort to reporting the results
and averages from the top-10 users in accuracy (only applicable for the binary classifiers).
ANN results are gathered using the entire dataset without the need to separate users into
binary classes and thus is more reflective of how a baseline model would perform on every
user in this dataset. All results were compiled and visualized using the “metrics” module
in the sklearn library. The reported results from each model sorted by accuracy can be
seen below in Tables 2–7 with the best and worst values being highlighted in green and
red, respectively:

Table 2. 1D-CNN results.

User ACC FPR F1 Score

13 0.8637 0.1563 0.9197
24 0.8634 0.1602 0.9202
2 0.8587 0.1839 0.8551
39 0.8581 0.1588 0.9181
15 0.8577 0.1607 0.9225
30 0.8575 0.1194 0.9191
19 0.8567 0.1513 0.9171
14 0.8525 0.1652 0.8934
0 0.8524 0.1488 0.9182
9 0.8521 0.1419 0.9151

Average 0.8573 0.1546 0.9099
Standard Deviation 0.004156 0.01668 0.02091
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Table 3. LSTM-RNN results.

User ACC FPR F1 Score

19 0.8613 0.1553
15 0.8948

7 0.8589 0.1564 0.9052
24 0.8562 0.1457 0.8948
6 0.8561 0.1569 0.8920
38 0.8560 0.1515 0.9110
30 0.8554 0.1659 0.9142
15 0.8548 0.1511 0.9174
37 0.8525 0.1482 0.9084
33 0.8525 0.1737 0.9136
12 0.8526 0.1685 0.8836

Average 0.8556 0.1561 0.9035
Standard Deviation 0.002849 0.008327 0.01141

Table 4. SVM results.

User ACC FPR FNR F1 Score
4 0.6518 0.1692 0.6024 0.6541
39 0.6417 0.3996 0.4408 0.6426
10 0.6292 0.3964 0.4718 0.6256
0 0.6174 0.4325 0.4718 0.6206
32 0.6066 0.4362 0.3013 0.5930
5 0.6037 0.2954 0.6511 0.6031
1 0.5890 0.2875 0.6158 0.5895
3 0.5841 0.4112 0.4238 0.5832
15 0.5741 0.2361 0.7013 0.5873
31 0.5730 0.2818 0.6191 0.5662

Average 0.6071 0.3345 0.5299 0.6065
Standard
Deviation 0.02771 0.09274 0.1259 0.02819

Table 5. KNN results.

User ACC FPR FNR F1 Score
8 0.6584 0.4994 0.4030 0.6670
35 0.6536 0.4260 0.4306 0.6515
12 0.6195 0.3697 0.3311 0.6192
6 0.6190 0.4754 0.3118 0.6281
34 0.6066 0.4028 0.4744 0.6026
32 0.6054 0.3650 0.2484 0.6054
30 0.6033 0.4610 0.4165 0.6064
11 0.6021 0.4741 0.4045 0.6114
1 0.5938 0.4745 0.3558 0.5936
39 0.5932 0.4327 0.4102 0.5921

Average 0.6155 0.4380 0.3786 0.6177
Standard
Deviation 0.02309 0.04683 0.06647 0.02465
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Table 6. RF results.

User ACC FPR FNR F1 Score
8 0.6827 0.2582 0.3764 0.7016
12 0.6740 0.3076 0.3442 0.6739
35 0.6580 0.2732 0.4108 0.6564
11 0.6575 0.3692 0.3158 0.6673
6 0.6548 0.3171 0.3734 0.6745
34 0.6507 0.2820 0.4165 0.6501
32 0.6408 0.3923 0.3259 0.6401
30 0.6355 0.3761 0.3569 0.6575
1 0.6305 0.2454 0.4937 0.6247
18 0.6212 0.4022 0.3553 0.6210

Average 0.6506 0.3223 0.3768 0.6567
Standard
Deviation 0.01912 0.05838 0.05232 0.02440

Table 7. ANN results.

Peak Training Accuracy Peak Testing Accuracy

0.9589 0.9248

5. Discussion and Analysis

In comparison to [12], the additional 30 users in this dataset did not seem to have a
drastic negative affect on the performance of random forests. In fact, average accuracy
increased with this dataset, which can be seen in Table 5 as only 3 of the 10 users from the
original dataset were top performers. Moreover, the random forest observed significantly
lower FNRs than reported in [12]. Some users’ data appear to be more decipherable to one
model as opposed to another. For example, user 8 retained top results for the RF and KNN,
however is not even in the top-10 for the remaining models. The F1 scores also indicate
that that FPR and FNR values at the 0.50 threshold are lower per user on this dataset as
compared to the original. The standard deviation of accuracy for random forests was
0.01912, the lowest among machine learning models and lower than what was observed
in [12]. Both the 1D-CNN and LSTM-RNN observed miniscule standard deviations among
the top-10 users, indicating consistent authentications when model is performing at a high
level, but this cannot be extrapolated to all users. Random forests appear to be one of the
generally best performing machine learning algorithms for user authentication on mouse
dynamics in accordance with the previous literature [33,34], and our machine learning
models’ results concur.

The SVM and KNN had lower performances on the dataset compared to the random
forest. This is most prevalent and easily seen in the ROC curves provided in Figure 3, where
the KNN exhibited poor performance. This may prove that the weakness of KNNs with
high dimensional data could be too difficult to overcome, but must be further investigated
with future research. Compared to SVM results in [30] and in [35], our SVM outperformed
both proposed models with lower F1 scores, on our dataset compared to both the Balabit and
TWOS dataset. We hypothesized in [12] that collecting data in a faster-paced environment
may encode more information in the data as opposed to collecting data from users during
dull, administrative tasks. The authors of [25] evaluated a deep learning 1D-CNN model
on the Balabit dataset while using both higher mouse action block lengths and transfer
learning. As opposed to using randomly initialized weights when starting to train a deep
learning algorithm, transfer learning allows for the weights of a previously trained model
to be initialized instead. This not only speeds up the training process, but can also lead to
more optimal loss convergence and in turn better performance. Despite these high-level
learning concepts utilized for the model in [25], both our SVM and KNN outperformed
this model in accuracy, further indicating that our dataset may be of higher quality and
better representative of real-world entropy in mouse behavior.
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With regards to deep learning, every deep learning algorithm in this paper outper-
formed our previous random forest in [12]. Deep learning was mentioned in the limitations
of [12] and was an important advancement we wanted to address in this experiment. Based
on the average accuracy rates of ~85% from our 1D-CNN and LSTM-RNN, we could
conclude that deep learning does perform at a higher level on this dataset when compared
to simpler machine learning models. Furthermore, our ANN produced an astounding test
accuracy of 92.48%; the highest we have seen for this dataset. It is even more remarkable
when considering the fact that the ANN is performing in the arguably more difficult multi-
class classification setting. The authors of [36] did propose an ANN for multi-modal user
authentication, using both mouse dynamics and tracked eye-movements, yet still under-
performed when compared to our ANN. Moreover, their dataset only contains 32 users.
The authors of [36] use various evaluation scenarios to gather a broader perspective of the
performance of their model, yet every scenario uses less distinct classes than the 40 used in
this article. More importantly, they hand extract features from the raw data before inputting
it to their model, whereas our ANN requires no manual feature extraction. Our ANN still
outperformed theirs with regards to F1 scores in almost every evaluation scenario. Regard-
less of F1 scores, our ANN also outperformed the proposed models observed in [37,38] in
raw accuracy rates as well. Note that [38] uses significantly larger mouse action block sizes,
ranging from 500 to 2500. Our dataset is not large enough for such block sizes, but with
results already so similar with our block size of 10, it can be concluded that our models are
able to operate at similar levels with less available and descriptive data. A summarized
version of our results as compared to previous literature can be observed in Table 8.

It appears that the added users in the dataset compared to [12] actually increased
overall performance and indicates that larger sample sizes in the future could further
yield better results. All of our models, to some extent, outperformed others proposed in
previous literature, with the most obvious improvements from our previous paper being
the introduction of deep learning and the drastically reduced FNRs in the random forests.
While this does not guarantee that our models would be able to perform at a higher level if
evaluated in a real-world environment, it does indicate that our novel mouse dynamics
dataset is sufficient in quality and could yield even better results with future research.
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Table 8. Comparison of previous literature and our novel contributions.

Reference Strengths Weaknesses Our Contribution

[12]
• Novel application of RF

to our dataset
• Lacks additional models as

general baseline references

• Five additional models for
application to our dataset

• Additional 30 users added to
dataset

[25]

• One of few papers to
explore 1D-CNN
application to mouse
dynamics

• Use of Balabit dataset limits
results to only low-intensity
environments

• Large mouse action lengths
require more data and increase
model training times

• Evaluation of 1D-CNN on our
high-intensity mouse
dynamics dataset

• Smaller mouse action lengths
decrease data complexity and
increases granularity

[29]

• Explores various CNN
and RNN architectures
and their application to
mouse dynamics

• Balabit and TWOS dataset use
once again limits results to
low-intensity environments

• SVM observed insufficient
results with small mouse
action lengths

• Exhibit efficiency of RF and
SVM on smaller mouse action
lengths due to high-intensity
environment

• Introduce application of an
LSTM-RNN as opposed to
GRU-RNN for mouse
dynamics

[36]

• Novel multimodal user
authentication using
both mouse dynamics
and eye movements

• Extensive
hyperparameter
optimization

• Extremely weak ANN results
when using mouse dynamics
to authenticate 32 users

• Use of eye movements
requires more intrusive data
collection methods

• Our ANN strongly
outperformed [37] in all
aspects and evaluation metrics

[37]

• Strong SVM and ANN
results

• Uncommon extracted
features that lead to
promising results could
lead to widespread
adoption

• Manual feature extraction
required for ANN

• Limits mouse movements to a
small interactive GUI for users

• Stronger ANN results on
dataset are collected in a
larger, freeform environment
that allows for user behavior
that more closely reflects
real-world behaviors

• ANN operation does not
require manual feature
extraction

[38]

• Novel noise reduction
methods based on
different aspects of
mouse dynamics data

• Novel application of
Gaussian Naïve Bayes
classifier to dataset
proposed in [32]

• Vague experimental
discussion may lead to
irreproducible results

• Few models tested to provide
broad baseline references

• More detailed description of
experimental process aids in
fostering future research

• Aforementioned small action
block lengths lead to better
results with fewer data

• Greater number of models
provides better understanding
of our dataset’s capabilities
and shortcomings

6. Limitations

Limitations are important to address, especially in a relatively niche area like mouse
dynamics, to encourage continued research and developments. The most glaring improve-
ment to be made is the performance of SVMs and KNNs on the dataset. A moderate range
of hyperparameter values were tested for both models, so drastic increases in accuracy
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from hyperparameter tuning may not be observed for the SVM and KNN. Alternative
preprocessing methods, or simply more data, could lead to better accuracies. For example,
many classification problems can also be approached using regression techniques, and
mouse dynamics is not an exception [39]. Further exploring the varied user frequency in
the top-10 accuracies for each model could also reveal hidden aspects of the data that can
be employed to further improve results.

Deep learning architectures were kept quite simple to reduce training time and avoid
additional complexities. Increasing the capacity of any of the deep learning models could
lead to increased accuracy and F1 scores, possibly at the cost of time. Lastly, the relative
novelty of mouse dynamics still leaves plenty of room for future significant breakthroughs.
ANNs have been shown in the literature and this article to perform sufficiently well on
mouse dynamics data, yet they are quite a general and elementary application of deep
learning. When tailored specifically for a certain problem space, stronger and more complex
deep learning models than the ones proposed in this article that excel with time-series data
could be found to perform at a higher level as opposed to more generally applicable models.

7. Conclusions

This article builds upon previous work on a proposed novel dataset for user authen-
tication through mouse dynamics. The previous article tested only one type of machine
learning binary classifier on a dataset of 10 users. This article introduces a larger dataset of
40 users and provides three deep learning and three machine learning models as general
baselines. Building upon the sole RF proposed in [12], we also evaluate the examine the
efficacy of SVMs and KNNs for user authentication using mouse dynamics. The RFs pro-
posed in this article observed generally higher performances than seen in [12] with higher
average accuracy, and more evenly distributed FPR and FNR. While the KNNs seemed to
struggle on our dataset, our SVMs also observed more evenly distributed FPR and FNR
than the RF in [12]. Further, we also introduce a new multi-class classification scenario.
The deep learning models expectedly outperformed the machine learning models by an
average of around 20% in accuracy, with the ANN performing at an astonishing 92 + %
test accuracy. This is especially promising as the need for binary preprocessing and classi-
fication is unnecessary with the ANN multi-class classification approach. The 1D-CNN
and LSTM-RNN were included to evaluate and contrast the different possible approaches
to time-series data. Similar accuracies and F1 scores were observed, with the 1D-CNN
retaining a slight edge on F1 scores over the LSTM-RNN. A plethora of new avenues could
be explored with this dataset and with mouse dynamics as a whole; sustained research is
paramount as very promising results have been observed in this article and could continue
to appear.

For example, mouse dynamics has really only been developed with low-intensity
tasks in mind, such as online banking or administrative tasks, as reflected in the sparsely
available public datasets. The introduction of high-intensity mouse dynamics evaluation
opens the doors for even more robust user authentication scenarios. With the meteoric
rise of professional gaming, user monitoring to prevent cheating or any unfair advan-
tage has become of the utmost importance. Games that require multiple rapid, accurate
mouse movements, as seen in many first-person shooters, have observed the unfair use of
computer-assisted aiming programs. Models developed on low-intensity mouse dynam-
ics tasks may not be sufficient enough in identifying and flagging such erratic behavior,
hence the need for broader mouse dynamics research. Additionally, as covered in the
Section 6, deeper models, alternative preprocessing methods, transfer learning [40], and/or
alternative model architectures could all be explored in order to yield better results.

Continuous user authentication using mouse dynamics must be a robust, flexible,
and accurate system for widespread adoption to take place. The non-intrusive nature of
mouse dynamics paired with the high-performance rate of our models on large, diverse
data exhibits the immense potential of this behavioral biometric. Both authentication and
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classification scenarios in this article are proven to be viable with this dataset and with
mouse dynamics as a whole, fostering further research.
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