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Abstract: Capoamycin-type antibiotics (2–5) and polyene acids (6, 7) were isolated from 

marine Streptomyces fradiae strain PTZ0025. Their structures were established by 

extensive nuclear magnetic resonance (NMR) and high resolution electron spray ionization 

mass spectroscopy (HRESIMS) analyses and chemical degradation. Compounds 3, 4, 6, 7 

were found to be new and named as fradimycins A (3) and B (4), and fradic acids A (6) 

and B (7). Compounds 3–5 showed in vitro antimicrobial activity against Staphylococcus 

aureus with a minimal inhibitory concentration (MIC) of 2.0 to 6.0 μg/mL. Interestingly, 

Compounds 3–5 also significantly inhibited cell growth of colon cancer and glioma with 

IC50 values ranging from 0.13 to 6.46 μM. Fradimycin B (4), the most active compound, 

was further determined to arrest cell cycle and induce apoptosis in tumor cells. The results 

indicated that fradimycin B (4) arrested the cell cycle at the G0/G1 phase and induced 

apoptosis and necrosis in colon cancer and glioma cells. Taken together, the results 

demonstrated that the marine natural products 3–5, particularly fradimycin B (4), possessed 

potent antimicrobial and antitumor activities. 

Keywords: marine Streptomyces fradiae; fradimycins A and B; fradic acids A and B; 

antibacterial and antitumor activities 
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1. Introduction 

Capoamycin (1, Figure 1) was originally isolated from the culture broth of soil Streptomyces 

capoamus strain No. 23–41 [1]. Its characteristic structure consists of a modified benz[a]anthraquinone 

chromophore, a deoxysugar unit and a long chain polyene acid. Capoamycin has been reported to 

inhibit the growth of gram-positive bacteria, yeasts and fungi, induce differentiation of mouse myeloid 

leukemia cells, and prolong the survival periods of mice bearing Ehrich ascites carcinoma [1,2]. The 

capoamycin-related antibiotics included dioxamycin (2) from soil Streptomyces xantholiticus strain 

MH406-SF1 [3] and MK844-mF10 (5), which was recently discovered from soil Streptomyces sp. 

MK844-mF10 [4]. MK844-mF10 had activities against multidrug-resistant Staphylococcus aureus and 

vancomycin-intermediated Staphylococcus aureus and inhibited the activities of Bacillus subtilis 

YycG histidine kinase, Streptococcus mutans Vick histidine kinase, and Erwinia carotovora PehS 

histidine kinase [4]. 

During the course of our ongoing program for the discovery of novel bioactive substances from 

marine microorganisms, a crude extract prepared from the pellet of the cultured Streptomyces fradiae 

strain PTZ00025 isolated from marine sediments was shown to be active against Staphylococcus 

aureus. Bioassay-guided isolation of this active crude resulted in the isolation and identification of the 

known antibiotics dioxamycin (2) and MK844-mF10 (5), new compounds of fradimycins A (3) and 

B (4) and fradic acids A (6) and B (7) (Figure 1). Compounds 3–5 showed antibacterial and antitumor 

activities. In this study, the isolation and structure elucidation of these new compounds and their 

antibacterial and antitumor properties are described. 

Figure 1. Structures of Compounds 1–7. 
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2. Results and Discussion 

The antibiotic-producing strain PTZ0025 was isolated from marine sediments. The taxonomic 

identity of the isolated strain was determined by 16S rDNA sequence analysis. The top sequence  

match as of August 2012, using Basic Local Alignment Search Tool (BLAST) (nucleotide sequence 

comparison) and the GenBank database was a 99.0% sequence similarity to Streptomyces fradiae  

strain CO-4 (GenBank accession number JF915304.1). 

An acetone extract prepared from the pellet of the cultured broth of this isolated strain had activity 

against Staphylococcus aureus. This active crude was fractionated by Diaion HP-20 column 

chromatography, following by repeated high-performance liquid chromatography (HPLC) purification 

(supplementary Figure S43) to furnish Compounds 2–7. 

Compound 2 was proven to be identical to dioxamycin by comparison of its physico-chemical 

properties and spectral data with the reported values [3]. Dioxamycin has reported to have activities  

in vitro against gram-positive bacteria and some tumor cells [3]. 

Compound 3 was obtained as an orange amorphous powder and had a molecular formula of 

C39H42O15 deduced from its high resolution electron spray ionization mass spectroscopy (HRESIMS) 

m/z at 751.2673 [M + H]
+
 and 773.2463 [M + Na]

+
, 14 mass units higher than that of 2. Compound 3 

exhibited similar UV absorption to 2. The 
13

C and 
1
H nuclear magnetic resonance (NMR) data of 3 

(Tables 1 and 2) were also very close to those of 2 with the exception of additional signals at δH 3.76 

(3H, s) and δC 53.1 for a methoxyl in 3. An upfield chemical shift (∆δ −1.3 ppm) for C-12″ between 3 

and 2 suggested the methoxyl at C-12″. A key heteronuclear multiple bond correlation (HMBC) of δH 

3.76 (OCH3) to δC 172.6 (C-12″) further supported the above-mentioned conclusion. The trans-coupling 

constants of 15.1 Hz (H-2″ and H-3″), 14.8 Hz (H-4″ and H-5″), and 15.0 Hz (H-6″ and H-7″) 

determined the double bond geometries of 2″E, 4″E and 6″E in 3. In the rotating frame nuclear 

Overhauser effect spectroscopy (ROESY) spectrum of 3, the key nuclear Overhauser effect (NOE) 

correlations (Figure 2) of H-1′ with H-5′, H-4′ with H-6′, H-7″ with H-9″, H-8″ with H-10″, and H-9″ 

with H-13″ suggested that 3 had the assigned relative stereochemistry at C-1′, C-4′, C-5′, C-8″, C-9″, 

and C-11″, which were the same as their counterparts in 2 [3]. After alkaline hydrolysis, both 3 and 2 

furnished a same product 2a, confirmed by their UV, [α]D, and co-HPLC analysis, suggesting that 3 

and 2 also possessed the same stereochemistry at C-2, C-3, C-4a and C-12b. The 
1
H and 

13
C NMR 

signals of 3 were assigned by a combination of 
1
H, 

13
C, heteronuclear multiple quantum correlation 

(HMQC), HMBC, and ROESY NMR spectroscopic analysis, and by comparison with the NMR data 

of 2. The structure of 3 was thus established as fradimycin A, a new marine natural product. 

Compound 4 was obtained as an orange amorphous powder and had a molecular formula of 

C38H38O14 as determined by its HRESIMS ions at m/z 719.2408 [M + H]
+
 and 741.2247 [M + Na]

+
. Its 

UV spectrum displayed maxima absorption at 294 and 427 nm. The 
13

C NMR data (Table 1) of 4 

showed 38 signals, of which six were assigned to the 2,3-dideoxysugar moiety (ring E), 13 to the 

polyene acid unit (part F), and the remaining 19 to the anthraquinone chromophore (rings A–D). 

Detailed analysis of the NMR data of 4 and 2 concluded that both compounds shared identical 

substructures of ring E and part F. 
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Table 1. 
13

C nuclear magnetic resonance (NMR) data for compounds 2–5 (125 MHz,  

in dimethyl sulfoxide (DMSO)-d6) 
a
. 

Position 2 
b
 2 3 

b
 3 4 

b
 4 5 

1 206.6 205.1 206.6 205.0 200.5 198.3 197.9 

2 82.9 81.4 83.0 81.4 82.7 79.8 80.1 

3 77.6 
c
 75.4 77.7 

c
 75.4 76.5 73.3 74.5 

4 45.5 44.7 45.7 44.5 38.1 35.8 40.9 

4a 77.5 
c
 76.1 77.6 

c
 76.1 129.2 127.5 148.8 

5 147.8 147.5 147.8 147.5 161.4 159.5 134.1 

6 117.7 115.7 117.7 115.6 113.8 112.0 128.7 

6a 139.5 
d
 137.5 

c
 139.5 137.4 

c
 138.0 

c
 137.2 

c
 133.8 

c
 

7 189.7 188.5 189.9 188.4 189.5 187.8 187.6 

7a 115.3 114.1 115.5 114.0 116.3 114.8 114.8 

8 158.9 156.9 159.1 156.9 159.4 157.3 157.4 

9 139.8 
d
 137.6 

c
 140.0 

d
 137.5 

c
 138.3 

c
 137.3 

c
 136.4 

d
 

10 134.6 133.3 134.6 133.2 134.7 133.1 
d
 133.4 

c
 

11 120.4 118.7 120.2 118.6 120.1 118.5 118.6 

11a 131.9 130.5 132.0 130.4 135.5 134.1 
d
 133.0 

c
 

12 183.8 182.1 183.9 182.0 183.1 181.0 182.3 

12a 139.9 
d
 138.7 139.9 

d
 138.6 137.0 

d
 138.0 

c
 136.5 

d
 

12b 78.4 76.8 78.3 76.7 136.9 
d
 136.1 

c
 134.8 

c
 

13 22.0 21.8 21.9 21.8 22.7 24.9 24.6 

1′ 74.6 72.5 74.7 72.4 74.7 72.4 72.5 

2′ 32.6 31.0 32.7 30.9 32.7 31.0 31.0 

3′ 30.7 29.2 30.8 29.1 30.8 29.3 29.2 

4′ 74.8 72.9 74.9 72.8 74.9 72.9 72.9 

5′ 77.2 75.3 77.1 75.3 77.0 75.3 75.4 

6′ 18.9 18.3 18.8 18.2 18.9 18.2 18.2 

1″ 168.0 165.6 167.9 165.4 167.9 165.5 165.5 

2″ 122.5 121.2 122.6 121.3 122.6 121.5 121.2 

3″ 146.3 144.8 146.3 144.7 146.3 144.7 144.7 

4″ 132.6 131.2 132.7 131.2 132.6 131.1 131.1 

5″ 141.2 140.0 141.1 139.8 141.2 139.9 140.0 

6″ 134.8 133.2 
d
 134.9 133.3 134.8 134.5 

d
 132.2 

c
 

7″ 134.0 133.1 
d
 133.9 132.7 134.1 133.1 

d
 133.1 

c
 

8″ 85.9 83.9 86.1 83.9 86.0 83.8 83.9 

9″ 79.3 77.1 79.4 77.2 79.4 77.2 77.1 

10″ 17.0 16.4 16.8 16.3 16.9 16.3 16.4 

11″ 106.3 104.5 106.4 104.4 106.4 104.4 104.5 

12″ 173.9 171.4 172.6 170.1 174.0 171.3 171.4 

13″ 23.5 22.9 23.5 22.9 23.5 22.9 22.9 

OCH3   53.1 52.3    

a The assignment was based on 1H, 13C NMR, 1H-1H COSY, HMQC, and HMBC spectra. b Data were recorded in 

CD3OD. c, d Data with the same letter in each column may be interchangeable. 
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Table 2. 
1
H NMR data for Compounds 2–5 (500 MHz, in DMSO-d6) 

a
. 

H 2 
b
 2 3 

b
 3 4 

b
 4 5 

2 4.31, s 4.13, s 4.28, s 4.13, s 4.56, s 4.02, s 4.04, s 

4 1.88, d  

(14.9); 

2.15, d  

(14.9) 

1.80, d  

(14.7); 

1.91, d  

(14.7) 

1.86, d  

(14.8); 

2.13, d  

(14.8); 

1.80, d  

(14.7); 

1.91, d  

(14.7) 

2.98, d  

(18.0); 

3.24, d  

(18.0) 

2.88, s 3.00, d  

(17.3); 

3.20, d  

(17.3) 

5 6.41, d (9.8) 6.38, d (9.7) 6.40, d (9.8) 6.38, d (9.7) – – 7.71, d (8.0) 

6 6.82, d (9.8) 6.68, d (9.7) 6.85, d (9.8) 6.68, d (9.7) 7.71, s 7.66, s 8.23, d (8.0) 

10 7.89, d (7.8) 7.85, d (7.8) 7.89, d (7.8) 7.86, d (7.8) 7.87, d (7.8) 7.85, d (7.8) 7.88, d (7.8) 

11 7.60, d (7.8) 7.54, d (7.8) 7.60, d (7.8) 7.54, d (7.8) 7.58, d (7.8) 7.54, d (7.8) 7.57, d (7.8) 

13 1.22, s 1.03, s 1.22, s 1.03, s 1.18, s 1.20, s 1.21, s 

1′ 4.83 
c
 4.83, d (11.2) 4.88, d (12.1) 4.84, d (11.1) 4.86 

c
 4.84, d (12.2) 4.86, d (11.0) 

2′ 1.50, m; 

2.24, m 

1.51, m; 

2.13, m 

1.57, m; 

2.25, m 

1.51, m; 

2.13, m 

1.56, m; 

2.27, m 

1.51, m; 

2.14, m 

1.51, m; 

2.15, m 

3′ 1.75, m; 

2.22, m 

1.72, m; 

2.15, m 

1.76, m;  

2.23, m 

1.75, m; 

2.15, m 

1.77, m; 

2.23, m 

1.73, m; 

2.15, m 

1.75, m; 

2.17, m 

4′ 4.57, m 4.51, m 4.61, m 4.53, m 4.60, m 4.54, m 4.56, m 

5′ 3.69, m 3.70, m 3.70, m 3.72, m 3.70, m 3.72, m 3.73, m 

6′ 1.26, d (6.1) 1.17, d (6.7) 1.26, d (6.1) 1.17, d (6.8) 1.27, d (6.1) 1.21, d (6.2) 1.20, d (6.1) 

2″ 5.97, d (15.3) 6.04, d (15.2) 5.98, d (15.3) 6.05, d (15.1) 5.98, d (15.1) 6.05, d (15.1) 6.05, d (15.2) 

3″ 7.32, dd 

(11.2, 15.3) 

7.29, dd 

(11.3, 15.2) 

7.34, dd 

(11.2, 15.3) 

7.30, dd 

(10.2, 15.1) 

7.34, dd 

(11.3, 15.1) 

7.30, dd 

(11.2, 15.1) 

7.30, dd 

(11.5, 15.2) 

4″ 6.47, dd 

(11.2, 14.9) 

6.51, dd 

(11.3, 14.9) 

6.48, dd 

(11.2, 15.0) 

6.52, dd 

(10.2, 14.8) 

6.48, dd 

(11.3, 15.0) 

6.52, dd 

(11.2, 14.7) 

6.52, dd 

(11.5, 15.0) 

5″ 6.69, dd 

(10.9, 14.9) 

6.78, dd 

(10.9, 14.9) 

6.69, dd 

(10.8, 15.0) 

6.78, dd 

(10.2, 14.8) 

6.69, dd 

(11.0, 15.0) 

6.78, dd 

(11.2, 14.7) 

6.78, dd 

(11.0, 15.0) 

6″ 6.53, dd 

(10.9, 15.1) 

6.51, dd 

(10.9, 15.3) 

6.53, dd  

(10.8, 15.2) 

6.52, dd  

(10.2, 15.0) 

6.53, dd 

(11.0, 15.2) 

6.52, dd 

(11.2, 15.0) 

6.55, dd 

(11.0, 15.3) 

7″ 5.90, dd 

(7.5, 15.1) 

5.92, dd 

(7.5, 15.3) 

5.90, dd  

(7.5, 15.2) 

5.91, dd  

(7.6, 15.0) 

5.91, dd 

(7.4, 15.2) 

5.93, dd  

(7.3, 15.0) 

5.93, dd 

(7.5, 15.3) 

8″ 4.22, t 

(7.5, 7.9) 

4.23, t 

(7.5, 7.9) 

4.27, t  

(7.5, 7.9) 

4.23, t  

(7.6, 7.6) 

4.27, t  

(7.4, 8.3) 

4.24, t  

(7.3, 8.1) 

4.25, t 

(7.5, 7.9) 

9″ 3.83, m 3.78, m 3.83, m 3.83, m 3.83, m 3.80, m 3.79, m 

10″ 1.27, d (6.1) 1.18, d (6.7) 1.26, d (6.8) 1.19, d (6.2) 1.28, d (6.1) 1.19, d (6.0) 1.19, d (6.1) 

13″ 1.55, s 1.46, s 1.55, s 1.50, s 1.55, s 1.46, s 1.45, s 

5-OH – – – – – 11.4, s –

8-OH 12.3, s 12.2, s – 12.2, s – 12.6, s 12.6, s 

OCH3 – – 3.76, s 3.70, s – – – 

a The assignment was based on 1H, 13C NMR, 1H-1H COSY, HMQC and HMBC spectra. b Data were recorded in 

CD3OD. 
c
 This signal overlapped the solvent signal. 
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Figure 2. Key heteronuclear multiple bond correlation (HMBC), nuclear Overhauser effect 

(NOE), and correlation spectroscopy (COSY) correlations of Compounds 3 and 4. 
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The anthraquinone chromophore in 4 was constructed by NMR spectroscopic analysis and by 

comparison of its NMR data with those of its counterpart in 2. In the 
1
H NMR spectrum (Table 2,  

in DMSO-d6) of the anthraquinone part in 4, three aromatic proton signals at δ 7.66 (1H, s), δ 7.85  

(1H, d, 7.8 Hz), and δ 7.54 (1H, d, 7.8 Hz) were attributed to H-6, H-10, and H-11, respectively. The 

three singlet signals at δ 4.02 (1H, s), 2.88 (2H, s), and 1.20 (3H, s) were assigned to H-2, H-4, and  

H-13, respectively. In addition, two singlets at δ 11.4 (1H, s) for 5-OH and δ 12.6 (1H, s) for 8-OH 

were also observed in the 
1
H NMR spectrum of 4. The 

13
C NMR spectrum of 4 (in DMSO-d6) 

displayed signals at δ 127.5 for C-4a and δ 136.1 for C-12b, instead of two signals at δ 76.1 and δ 76.8 

for the two oxyquaternary carbons (C-4a and C-12b) as in 2. Above evidence suggested the existence 

of a double bond between C-4a and C-12b in 4, instead of the two hydroxyl groups at C-4a and C-4b 

as in 2. The double bond geometries for the polyene acid in 4 were assigned as 2″E, 4″E and 6″E based 

on the trans-coupling constants (Table 2). Unfortunately, ROESY experiment for 4 did not provide 

useful NOE information due to its limited amount for the assignment of the relative stereochemistry at 

C-2 and C-3 in 4. However, the relative stereochemistry at C-1′, C-4′, C-5′, C-8″, C-9″, and C-11″ in 4 

was proposed to be the same as those in 2 because the NMR values for ring E and part F between 4 

and 2 were almost the same (Tables 1 and 2). After alkaline hydrolysis, both 4 and 2 produced the 

same compound 6 as confirmed by UV, [α]D, and co-HPLC analysis, further supporting the assigned 

stereochemistry at C-8″, C-9″, and C-11″ in 4. The complete assignments of 
1
H and 

13
C NMR data of 4 

were made by HMQC and HMBC correlations (Figure 2). The structure of 4 was determined as 

fradimycin B, a new compound. 

The molecular formula of C38H38O13 for 5 was determined by HRESIMS and indicated that it had 

one less oxygen atom when compared with 4. Its UV spectrum and [α]D value were very similar to 

those of 4. Examination of the NMR data of 5 and 4 showed that 5 differed from 4 only in the 

substituent at C-5 of ring B. In the NMR spectra, the signals at δC 159.5 (C, C-5), δC 112.0 (CH, C-6), 
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and δH 7.66 (1H, s, H-6) in 4 were replaced by the signals at δC 134.1 (CH, C-5), δC 128.7 (CH, C-6), 

δH 7.71 (1H, d, J = 8.0 Hz, H-5), and δH 8.23 (1H, d, J = 8.0 Hz, H-6) in 5. The above information 

demonstrated that 5 was related to 4 without the hydroxyl group at C-5. Accordingly, the structure of 5 

was assigned as MK844-mF10 that was recently isolated from Streptomyces sp. MK844-mF10 [4].  

Compounds 6 and 7 had molecular formulae of C13H16O6 and C14H18O6, respectively, deduced from 

their HRESIMS and 
13

C NMR data. Both compounds contained characteristic NMR signals of two 

methyls, two oxymethines, one oxyquaternary carbon, six olefinic carbons, and two carbonyls. The 
13

C 

and 
1
H chemical shifts of 6 (Table 3) were very close to those of the polyene acid unit (part F) in 2 

(Tables 1 and 2, in DMSO-d6). The 
13

C chemical shift differences for C-1 (∆δ +2.0 ppm), C-2  

(∆δ +1.6 ppm), and C-3 (∆δ −1.0 ppm) between 6 and the part F of 2 accounted for the existence of a 

free carboxylic acid at C-1 in 6. The assigned structure of 6 was also confirmed by its [α]D and  

co-HPLC analysis with an authentic sample, the polyene acid obtained from a product of alkaline 

hydrolysis of 2. The 
1
H and 

13
C NMR signals of 6 were assigned using HMQC and HMBC 

correlations (Table 3). Therefore, the structure of 6 was assigned as fradic acid A. 

Table 3. NMR data for fradic acids A (6) and B (7) (in DMSO-d6). 

position 
6 7 

δC δH (J in Hz)
 

HMBC δC δH (J in Hz)
 

1 167.6 – – 165.5 –

2 122.8 5.91, d (15.1) C1, C4 121.3 6.05, d (15.2) 

3 143.8 7.18, dd (11.3, 15.1) C1, C2, C4, C5 144.7 7.30, dd (11.0, 15.2) 

4 131.5 6.48, dd (11.3, 14.8) C2, C3, C5, C6 131.2 6.52, dd (11.0, 14.8) 

5 139.0 6.69, dd (10.8, 14.8) C3, C7 139.8 6.78, dd (11.0, 14.8) 

6 133.3 6.51, dd (10.8, 15.2) C4, C5, C7, C8 133.3 6.52, dd (11.0, 15.1) 

7 132.5 5.89, dd (7.5, 15.2) C5, C8, C9 132.7 5.93, dd (7.5, 15.1) 

8 84.0 4.22, t (7.5) C6, C9, C10 83.9 4.23, t (7.5) 

9 77.1 3.78, m C7, C8 77.2 3.83, m 

10 16.4 1.18, d (6.1) C8, C9 16.3 1.19, d (6.2) 

11 104.5 – – 104.4 –

12 171.2 – – 171.1 –

13 22.9 1.45, s C11, C12 22.9 1.50, s 

OCH3 – – – 52.3 3.70, s 

The NMR data of 7 were almost superimposable on those of 6 with the exception of additional 

signals at δC 52.3 and δH 3.70 (3H, s) for a methoxyl. A chemical shift difference (∆δ −2.1 ppm) for  

C-1 (δ 165.5) of 7 when compared to C-1 (δ 167.6) of 6 indicated that the methoxyl was linked to C-1 

position. Both 7 and 6 had very similar UV spectra and [α]D values. Therefore, the structure of 7, a 

new compound, was established as fradic acid B. 

It was possible that the isolates 3, 6, and 7 were artifacts during the work-up isolation. In order to 

exclude this possibility, an ethanol extract prepared from the pellet of the isolate strain PTZ0025 was 

analyzed by co-HPLC with authentic samples using acetonitrile/water without acid as flow phase. The 

results indicated that compounds 3, 6, and 7 as new natural products were detected in the original 

extract (supplementary Figure S43). 
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Compounds 3–7 were assayed in vitro for their antimicrobial activity against Staphylococcus aureus. 

The results showed that compounds 3–5 were active against Staphylococcus aureus with a MIC of 6.0, 

2.0, and 4.0 μg/mL, respectively, whereas 6 and 7 were inactive. 

Compounds 3–5 were also tested in vitro for their cell-growth inhibitory activity against human 

colon cancer HCT-15 and SW620 cells as well as rat glioma C6 cells. All compounds showed  

dose-dependence activities of inhibiting growth of the tested tumor cells with IC50 values ranging from 

0.13 ± 0.04 to 6.46 ± 1.44 μM (Figure 3 and Table 4). 

Figure 3. Tumor cell-growth inhibitory activity of fradimycins A (3), B (4) and  

MK844-mF10 (5). Human colon cancer HCT-15 and SW620 cells and rat glioma C6 cells 

were treated with fradimycins A, B and MK844-mF10 for 72 h at concentrations from 

0.125 to 40 μM. Values are means ± S.D. from five independent experiments. 
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Table 4. Inhibition of tumor cell-growth activity of Compounds 3–5. 

Cell lines Human colon HCT-15 Human colon SW620 Rat glioma C6 

Compounds 3 4 5 3 4 5 3 4 5 

IC50 (μM) 
0.52 ± 

0.11 

0.13 ± 

0.04 

0.30 ± 

0.07 

6.46 ± 

1.44 

4.33 ± 

1.56 

4.39 ± 

0.93 

1.28 ± 

0.37 

0.47 ± 

0.09 

1.31 ± 

0.32 

Cell cycle arrest and induction of apoptosis by fradimycin B (4) in HCT-15 cells was further 

investigated. To determine if an alteration of the cell cycle occurred following the treatment of 

fradimycin B (4), the DNA content was measured by flow cytometric analysis. The percentages of 

each phase in the cell cycle are represented in Figure 4 and Table 5. The proportion of cells in the 

G0/G1 phase of the cell cycle increased 4.34%, 5.89%, 10.75%, and 21.91% after 3 h, 6 h, 12 h, and 24 h 

exposure to 1.25 μM fradimycin B (4). The alteration occurring in the cell cycle suggested that 

fradimycin B (4) blocked HCT-15 cells at the G0/G1 phase. 

Figure 4. Fradimycin B (4) induced apoptosis and necrosis (cell cycle arrest) in HCT-15 

cells. HCT-15 cells were incubated with fradimycins B (4, 1.25 μM) for 3 h, 6 h, 12 h and 

24 h and then stained with propidium iodide (PI) and subjected to flow cytometric analysis 

for cell distribution at each phase of cell cycle. The percentage of cells at each stage of the 

cell cycle are shown. The cell population at the G0/G1 phase was significantly elevated  

(G0: cell cycle Gap 0 phase; G1: cell cycle Gap 1 phase; S: cell cycle synthesis phase;  

G2: cell cycle Gap 2 phase; M: cell cycle mitosis phase). 
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Table 5. Time course analysis of cell cycle in fradimycin B (4) treated HCT-15 cells. 

Treatment 
Control Fradimycin B (4, 1.25 μM) Fradimycin B (G0/G1)

− 

Control (G0/G1) G0/G1 S G2/M G0/G1 S G2/M 

3 h 31.82% 52.99% 15.19% 36.16% 51.66% 12.18% 4.34% 

6 h 28.13% 55.02% 16.85% 34.02% 50.53% 15.45% 5.89% 

12 h 22.58% 57.44% 19.98% 33.33% 51.29% 15.38% 10.75% 

24 h 19.66% 45.37% 34.97% 41.57% 44.40% 14.03% 21.91% 

G0: cell cycle Gap 0 phase; G1: cell cycle Gap 1 phase; S: cell cycle synthesis phase; G2: cell cycle Gap 2 phase; M: cell 

cycle mitosis phase. 

After 72 h of treatment, fradimycin B (4, 0.625 and 1.25 μM) induced apoptosis and necrosis in 

HCT-15, SW620 and C6 cells as detected by Hoechst 33342 and propidium iodide (PI) double staining 

(Figure 5 and Supplementary Figures S45 and S46). In the cytometric analysis with annexin V-FITC/PI 

double staining, treatment with fradimycin B (4, 1.25 μM) in HCT-15 cells caused an increase of 

apoptotic and necrotic cells from 16.44% (control) to 28.46% (after 24 h treatment) and 43.04%  

(after 72 h treatment) (Figure 6). 

Figure 5. Fradimycin B (4) induced apoptosis and necrosis in HCT-15 cells. HCT-15 cells 

were treated with fradimycin B (4, 0.625 and 1.25 μM) for 72 h and then double stained 

with Hoechst 33342 and PI. Apoptotic cells showed bright blue nuclear condensation and 

necrotic cells displayed red fluorescence. 
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Figure 6. Dot-plot representing the double staining analysis with annixin V-FITC/PI in 

HCT-15 cells. HCT-15 cells were treated with fradimycin B (4, 1.25 μM) for 24 h and 72 h 

and were then stained with annexin-V FITC and PI and analyzed by flow cytometry. The 

fraction in the lower left represents normal cells, the fraction in the lower right represents 

early apoptotic cells, the fraction in the upper right represents late apoptotic cells, and the 

fraction in the upper left represents necrotic cells. 

 

3. Experimental Section  

3.1. General Experimental Procedures 

Optical rotations were measured on a JASCO DIP-370 digital polarimeter. UV spectra were 

recorded on a Shimadzu UV-2550 spectrometer. All NMR spectra were recorded on a Bruker 500 

spectrometer at 500 MHz for 
1
H and 125MHz for 

13
C using standard pulse programs and acquisition 

parameters. Chemical shifts were expressed in δ (ppm) referring to the NMR solvent used. High-resolution 

ESIMS data were acquired on MicroMass Q-Tof-2 spectrometer or Agilent 6210 TOF LC/MS 

spectrometer. Diaion HP-20 was used for column chromatography. The separation and purification of 

compounds were conducted on the Agilent 1100 HPLC system using column A (Agilent Zorbax  

SB-C18 column, 250 × 9.4 mm, 5 μm, Supelco) and column B (ODS-2 Hypersil column, 250 × 4.6 mm,  

5 μm, Thermo Scientific). Fluorescence microscope (Nikon SMZ1000) was used to detect apoptosis 

and necrosis of cells stained by Hoechst 33342 and propidium iodide (PI) double staining. Flow cytometry 

(Beckman Coulter, FC500MCL) was used for cell cycle assay and quantitative analysis of cell apoptosis. 

Human colon cancer HCT-15 and SW620 cells and rat glioma C6 cells were purchased from the 

Cell Bank of the Chinese Academy of Sciences. Annexin V apoptosis detection kit was obtained  

from Invitrogen. 

3.2. Isolation and Identification of Streptomyces fradiae Strain PTZ0025 

The marine sediments (5 g) were air dried for 10 days in a 45 mL sterile centrifuge tube. The dried 

sample was diluted into 0.01 g/mL with seed broth (1.5% glucose, 1.5% glycerol, 1.5% malt extract, 

2.5% yeast extract, 0.5% casamino acids, and 0.1% calcium carbonate), 200 μL of which was 

dispersed across a Bacto-agar plate and incubated at room temperature for 10 days. Bactria colonies 

were picked with sterile needles and purified by streaking them out onto Bacto-agar plates. After 

another seven days of growth at room temperature, the single colony (strain PTZ0025) that grew well 
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was transferred onto Gause’s synthetic agar media. Working stocks were prepared on Gause’s 

synthetic agar slants and stored at 4 C for further use. 

The taxonomic identity of strain PTZ0025 was determined by 16S rDNA sequence analysis. The 

top sequence using BLAST (nucleotide sequence comparison) was compared to the GenBank database. 

3.3. Fermentation of Strain PTZ0025 

A colony of isolate PTZ0025 was homogenized using a sterile pestle in a 1.5 mL Eppendorf tube 

containing 300 μL of sterile sea water. The bacterial homogenate was transferred to a 250 mL 

Erlenmeyer flask containing 30 mL of seed broth and then incubated for seven days at 26 C on a 

rotary shaker prior to production medium inoculation. Production was performed in 2.0 L tri-baffled 

flasks containing 500 mL aliquots of media (5.0 g glucose, 2.5 g yeast extract, 50 mg casamino acids, 

3.0 g MgCl2·6H2O, 1.5 g CaCl2·2H2O, 100 mg K2SO4, 25 mg KH2PO4, and 50 mL sea water). The 

flasks were incubated for 10 days at 25–28 C on a rotary shaker. 

3.4. Isolation of Compounds 2–7 

The fermentation broth (2.0 L) of the isolate marine Streptomyces fradiae strain PTZ0025 was 

centrifuged at 8000 rpm for 20 min, and the pellet was extracted with acetone two times (each 1.0 L). 

The concentrated acetone extract (2.1 g), not the supernatant, was shown to be active. The active 

acetone extract was applied to a column of Diaion HP-20 (300 mL) washing in turn with 10% MeOH 

and 90% MeOH. The activity resided in 90% MeOH fraction. The dried active crude (500 mg) was 

redissolved in 1.5 mL of DMSO and then separated by HPLC using column A (UV detection: 295 nm) 

injected in multiple 100 μL runs with a gradient solvent system at a flow rate of 3.0 mL/min with  

0.5 min for each collection from 3 to 27 min. Water and CH3CN containing 0.05% formic acid was 

employed as mobile phases A and B, respectively. The gradient procedure was 0–3.0 min with 10% B, 

3.01–12.0 min with 40% B, 12.01–27.0 min with 65% B, 27.01–33.0 min with 100% B, and 33.01–36.0 

with 10% B. After HPLC separation, fractions 8–9, 15–16, 29–30, 33–34, and 38 were lyophilized after 

the removal of CH3CN under reduced pressure to furnish fraction A (2.3 mg, tR 6.71 min), 7 (1.7 mg, 

tR 10.46 min), fraction B (3.6 mg tR 17.01 min), fraction C (4.6 mg tR 19.39 min), and 5 (0.9 mg,  

tR 21.30 min), respectively. Compound 6 (1.5 mg, tR 7.37 min) was purified from fraction A by HPLC 

using column B with an isocratic mobile phase (CH3CN/H2O: 25/75) at a flow rate of 1.0 mL/min. 

Similarly, by using column B with an isocratic mobile phase (CH3CN/H2O: 45/55), compound 2  

(4.5 mg, tR 9.32 min) was purified from fraction B, compounds 3 (4.1 mg, tR 13.54 min) and 4 (1.0 mg, 

tR 12.35 min) were obtained from fraction C. 

Dioxamycin (2): Orange amorphous powder; [α]
23

D +43.8 C (c 0.05, MeOH); UV (c 0.05, MeOH) 

λmax (log ε) 224 (8046), 296 (5172), 425 (652) nm; 
13

C NMR data (125 MHz, in CD3OD and DMSO-d6) 

and 
1
H NMR data (500 MHz, in CD3OD and DMSO-d6), see Tables 1 and 2; HRESIMS m/z [M + H]

+
 

737.2521 (calcd for C38H41O15, 737.2446), [M + Na]
+
 759.2330 (calcd for C38H40NaO15, 759.2265). 

Fradimycin A (3): Orange amorphous powder; [α]
23

D +39.5 C (c 0.05, MeOH); UV (c 0.05, MeOH) 

λmax (log ε) 224 (7578), 296 (5122), 426 (674) nm; 
13

C NMR data (125 MHz, in CD3OD and DMSO-d6) 
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and 
1
H NMR data (500 MHz, in CD3OD and DMSO-d6), see Tables 1 and 2; HRESIMS m/z [M + H]

+
 

751.2673 (calcd for C39H43O15, 751.2602), [M + Na]
+
 773.2463 (calcd for C39H42NaO15, 773.2421). 

Fradimycin B (4): Orange amorphous powder; [α]
23

D +36.3 C (c 0.05, MeOH); UV (c 0.05, MeOH) 

λmax (log ε) 222 (7644), 294 (4544), 427 (584) nm; 
13

C NMR data (125 MHz, in CD3OD and DMSO-d6) 

and 
1
H NMR data (500 MHz, in CD3OD and DMSO-d6), see Tables 1 and 2; HRESIMS m/z [M + H]

+
 

719.2408 (calcd for C38H39O14, 719.2340), [M + Na]
+
 741.2247 (calcd for C38H38NaO14, 741.2159). 

MK844-mF10 (5): Orange amorphous powder; [α]
23

D +39.6 C (c 0.01, MeOH); UV (c 0.05, MeOH) 

λmax (log ε) 221 (7612), 297 (4472) , 425 (528) nm; 
13

C NMR data (125 MHz, in DMSO-d6) and  
1
H NMR data (500 MHz, in DMSO-d6), see Tables 1 and 2; HRESIMS m/z [M + H]

+
 703.2380 (calcd 

for C38H39O13, 703.2391), [M + Na]
+
 725.2188 (calcd for C38H38NaO13, 725.2210). 

Fradic acid A (6): colorless powder; [α]
23

D +29.8 C (c 0.01, MeOH); UV (MeOH) λmax 223, 298 nm; 
1
H NMR data (500 MHz, in DMSO-d6) and 

13
C NMR data (125 MHz, in DMSO-d6), see Table 3; 

HRESIMS m/z [M − H]
−
 267.0878 (calcd for C13H15O6, 267.0869). 

Fradic acid B (7): colorless powder; [α]
23

D +29.8 C (c 0.01, MeOH); UV (MeOH) λmax 223, 298 nm; 
1
H NMR data (500 MHz, in DMSO-d6) and 

13
C NMR data (125 MHz, in DMSO-d6), see Table 3; 

HRESIMS m/z [M + H]
+
 283.1177 (calcd for C14H19O6, 283.1182), [M + Na]

+
 305.0998 (calcd for 

C14H18NaO6, 305.1001). 

3.5. Alkaline Hydrolysis of Compounds 2–4 

Dioxamycin (2, 1.0 mg) was refluxed with 2 mL 0.8 M NaOH at 80 °C for 4 h. After cooling, the 

reaction mixture was neutralized with 1M HCl and then applied to a small column of Diaion HP-20 

(30 mL) eluting with 50 mL H2O and then 50 mL 80% MeOH. The 80% MeOH elution was 

evaporated to dryness under reduced pressure. The residue was separated by HPLC to afford 

compounds 2a and 6. By the same method, 3 (0.5 mg) afforded 2a, and 4 (0.3 mg) afforded 6. 

Compound 2a: Orange amorphous powder; [α]
23

D +38.6 C (c 0.01, MeOH); UV (MeOH) λmax 220, 

296, 429 nm. 

3.6. Antimicrobial Assay 

The previous reported method [5] was used to evaluate the antimicrobial activities of compounds 3–7 

against Staphylococcus aureus in liquid growth medium. Briefly, a 2.0 mg/mL stock solution of tested 

compound in DMSO was two-fold serially diluted with DMSO. In a 96-well microtiter plate, 10 μL of 

each compound solution was mixed with 90 μL of a log-phase growth cells at a dilution of  

OD600 nm = 0.001 in Mueller-Hinton Broth. The final concentrations of test compound were 0.5 to  

16.0 μg/mL. After 18 h of incubation at 37 °C, minimal inhibitory concentrations (MIC) were determined 

by visual inspection. 

3.7. Tumor Cells Culture 

Human colon cancer HCT-15 cells and rat glioma C6 cells were separately cultured in RPMI 1640 

and Dulbecco's modified eagle medium (DMEM) (Gibco) with 10% FBS (PAA) at 37 °C in a 
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humidified, 5% CO2 incubator. Human colon cancer SW620 cells were grown in Leibovitz’s L15 

medium at 37 °C without CO2. Cells after the third generation were used for the experiment. 

3.8. SRB Assay 

Inhibition of cancer cell-growth activity was determined by a Sulforhodamine B (SRB) assay 

using human colon cancer HCT-15 and SW620 cells as well as rat glioma C6 cells. Briefly, tumor cells 

were plated in 96-well plate and then treated with different concentrations of tested compound after 

cells adhesion for 24 h. After 72 h of the treatment, cells were fixed with 50 μL of 10% cold 

trichloroacetic acid (TCA) solution for 1 h at 4 °C, washed with distilled water five times, and then 

dried at room temperature. The dried cells were stained with 50 μL of 0.4% SRB for ten minutes and 

rinsed with 1% acetic acid solution five times. After being dried, dye was dissolved in 10 mM Tris 

buffer and measured at 515 nm on a microplate reader (Bio-Tech). 

3.9. Cell Cycle Assay 

Cell cycle perturbations induced by the tested compound were analyzed by propidium iodide (PI) 

DNA staining using flow cytometry. Briefly, human cancer HCT-15 cells were treated with the tested 

compound for 3, 6, 12 and 24 h. At the end of the treatment, cells were harvested and prepared as a 

single cell in icy phosphate buffered saline (PBS), and then the cells were fixed with ice-cold 70% 

ethanol at 4 °C overnight. Cells were harvested by centrifugation (1900 rpm, 7 min) and washed with 

PBS twice, resuspended in PBS with RNase A (50 U/mL), then incubated for 30 min at 37 °C, and 

finally stained with PI in the dark at 4 °C for 30 min. Cell cycle distribution were studied using a 

FACScan flow cytometry. 

3.10. Morphological Analysis of Apoptosis  

Hoechst 33342 and propidium iodide (PI) double staining were used for detecting cell apoptosis and 

necrosis. Tumor cells were incubated with the tested compound at different concentrations in an 

atmosphere with 5% CO2 at 37 °C for 72 h, and then cells were stained with 10 μg/mL Hoechst 33342 

and 5 μg/mL PI for 20 min at room temperature. After being washed with PBS twice, fluorescence was 

imaged by fluorescence microscope at 40× magnification. Apoptotic cells stained by Hoechst 33342 

showed bright blue nuclear condensation and fragmentation, and necrotic cells displayed red 

fluorescence as stained by PI. 

3.11. Annexin V-FITC/PI Double Staining Assay 

Apoptosis and necrosis were quantified using an Annexin V apoptosis detection kit. Cells were 

treated with the tested compound for 24 h and 72 h, and then 1 × 10
6
 cells were harvested. The cells 

were washed in cold PBS buffer and further resuspended in 100 μL 1× binding buffer mixed with 5 μL 

Annexin V-FITC and 1 μL 100 μg/mL PI working solution. Cells were incubated at room temperature 

for 15 min and then 400 μL 1× binding buffer was added. Fluorescence was analyzed by flow 

cytometry at the fluorescence emission at 530 nm and 575 nm using 488 nm excitation. 
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4. Conclusions 

Four new compounds of fradimycins A (3) and B (4) and fradic acids A (6) and B (7) were isolated 

and identified from marine Streptomyces fradiae PTZ0025. Fradimycins A (3) and B (4) showed 

potent antibacterial activity against Staphylococcus aureus and significantly inhibited cell-growth of 

human colon cancer HCT-15 and SW620 cells as well as rat glioma C6 cells. Fradimycin B (4) 

induced apoptosis and necrosis of HCT-15, SW620, C6 cells and blocked HCT-15 cells at the G0/G1 

phase. Taken together, the results from this study demonstrated that the new marine natural products 

fradimycins A (3) and B (4), particularly fradimycin B (4) from marine Streptomyces fradiae strain 

PTZ0025 had potent antimicrobial and antitumor activities. 
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