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Abstract: Cancer remains one of the most lethal diseases worldwide. There is an urgent need for
new drugs with novel modes of action and thus considerable research has been conducted for new
anticancer drugs from natural sources, especially plants, microbes and marine organisms. Marine
populations represent reservoirs of novel bioactive metabolites with diverse groups of chemical
structures. This review highlights the impact of marine organisms, with particular emphasis on
marine plants, algae, bacteria, actinomycetes, fungi, sponges and soft corals. Anti-cancer effects
of marine natural products in in vitro and in vivo studies were first introduced; their activity in
the prevention of tumor formation and the related compound-induced apoptosis and cytotoxicities
were tackled. The possible molecular mechanisms behind the biological effects are also presented.
The review highlights the diversity of marine organisms, novel chemical structures, and chemical
property space. Finally, therapeutic strategies and the present use of marine-derived components, its
future direction and limitations are discussed.
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1. Introduction

Cancer remains one of the most life-threatening diseases worldwide. In 2018, approximately
18 million new cases of cancer reported globally, resulting in approximately 10 million deaths [1].
Figure 1A–C show the estimated new cancer cases of different body tissues, the estimated cancer
deaths, and estimated number of new cancer cases in different world areas, respectively. Over 1,000,000
new cases and 65,000 deaths are estimated globally, with an incidence rate around two times higher
among men than women. Nonmelanoma skin cancer (NMSC) is the most frequently diagnosed cancer
in North America, and in Australia, New Zealand, the countries with the highest incidence rates
worldwide in men and women, respectively [1]. The highest incidence rates were reported with
increased risk is associated with age, and an unhealthy lifestyle [2]. The incidence of cancer continues
to increase due to environmental changes and life style modernization [3]. Lung and breast cancer
are the most frequently diagnosed cancers worldwide and are the leading causes of cancer-related
death in men and women, respectively. Meanwhile, the predisposition factors of cancer could be both
external (tobacco, chemicals, radiation, and infectious organisms), and internal (genetic predispositions,
immune conditions) [2].

The progress in biological, immunotherapy and the substantial improvements in modern drug
design and manufacturing have made the discovery of a cure for cancer a feasible goal [4]. Cure and
prolonged survival have already been achieved for a number of human malignancies, such as
lymphomas, testicular cancer, and childhood lymphoblastic leukemia [5–7]. Despite the significant
advances of current therapies [8,9], multiple side effects have been reported with chemotherapy [10],
motivating the search for other effective cure with fewer side effects [10]. Natural products represent
an available source of new drugs, drug leads and chemical entities [11,12]. Approximately 80% of the
approved chemotherapeutic drugs [13], and more than half of all drugs are based on bioactive natural
products [14]. Eighty-seven percent of human diseases, including cancer, are treated using natural
products [15]. Natural bioactive molecules exhibit cytotoxic effects by attacking macromolecules
expressed by cancer cells, such as those in oncogenic signal transduction pathways [16]. A significant
number of marine-derived metabolites act as antitumor agents via potent growth inhibition of human
tumor cells both in vitro, in vivo (in murine) models and in cancer clinical trials [13,17]. Advanced
technology and extensive research on marine natural products have led to the discovery of a new
generation of anticancer drugs currently used in clinical trials [6].

Marine have great potential for discovery of new entities that can aid in the prevention and
treatment of cancer. Marine emerged in the late 19th century. After 1980, biotechnology emerged as a
field that provided direction to the study of marine, aiming at applications such as drug development.
This research is still ongoing using advanced tools [18]. Given the great potential of marine natural
product scaffolds, there is an increasing interest for exploiting this diversity and complexity for rational
drug discovery [16]. Natural products, in general, have been a prime source of compounds for the
treatment of many forms of cancer, and offer a promising opportunity for evaluation of not only new
chemical classes of anticancer agents but also novel and potentially relevant mechanisms of action [19].
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Figure 1. Cont.
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Figure 1. (A) Estimated new cancer cases in the worldwide based on Global Cancer 
(GLOBOCAN)2018. (B) Estimated cancer death in the worldwide based on GLOBOCAN 2018. (C) 
Estimated number of new cancer cases in different world areas based on GLOBOCAN 2018. 

2. Nature and Cancer Chemotherapy 

Over the past 50 years, emerging evidence has shown that many natural products derived from 
plants and microbes of marine origin (Table 1), exhibit beneficial effects in the prevention and 
treatment of cancer i.e., cytarabine, eribulin mesylate, brentuximab vedotin, and trabectidine are 
marine-based drugs used against leukemia, metastatic breast cancer, soft tissue sarcoma and ovarian cancer [20,21]. Not only the marines represent the main source for anticancer drugs but also there are 
other vital sources like as plants, animals, invertebrates and terrestrial microbes, for example Taxol; 
is an antineoplastic drug obtained from the bark of the Western Yew tree (Taxus brevifolia L., 
Taxaceae), proved to be useful in the treatment of breast cancer [22], in addition to the active complex 
alkaloid compounds such as Vincristine and Vinblastine which are present in Vinca herb. They have 
proven effective agents against childhood leukemia and Hodgkinʼs disease (a cancer of the lymph 
nodes), choriocarcinoma, respectively [23]. 

Although the National Cancer Institute provides researchers with the resources needed to better 
elucidate the role of food and nutrients in cancer prevention, cancer chemoprevention using marine 
natural compounds [16,24] has not been investigated in-depth and the preclinical and clinical data 
for this strategy remain scant, in spite of the robust chemical rationale [16]. Many other compounds 
with anticancer properties have been isolated and developed from various biological resources, such 
as plants, microbes and marine organisms (Figure 2). Consequently, a large number of natural 
products are in preclinical investigations, and 13 natural products isolated from marine organisms 
are being tested in different phases of clinical trials, highlighting the potential of marine natural 
compounds [25]. A focused, combinatorial approach would has been suggested to accelerate the 
development of new anti-cancer drugs from marine resources with increased efficiency and fewer 
side effects [26]. 
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Figure 1. (A) Estimated new cancer cases in the worldwide based on Global Cancer (GLOBOCAN)2018.
(B) Estimated cancer death in the worldwide based on GLOBOCAN 2018. (C) Estimated number of
new cancer cases in different world areas based on GLOBOCAN 2018.

2. Nature and Cancer Chemotherapy

Over the past 50 years, emerging evidence has shown that many natural products derived from
plants and microbes of marine origin (Table 1), exhibit beneficial effects in the prevention and treatment
of cancer, i.e., cytarabine, eribulin mesylate, brentuximab vedotin, and trabectidine are marine-based
drugs used against leukemia, metastatic breast cancer, soft tissue sarcoma and ovarian cancer [20,21].
Not only the marines represent the main source for anticancer drugs but also there are other vital sources
like as plants, animals, invertebrates and terrestrial microbes, for example Taxol; is an antineoplastic
drug obtained from the bark of the Western Yew tree (Taxus brevifolia L., Taxaceae), proved to be useful
in the treatment of breast cancer [22], in addition to the active complex alkaloid compounds such
as Vincristine and Vinblastine which are present in Vinca herb. They have proven effective agents
against childhood leukemia and Hodgkin’s disease (a cancer of the lymph nodes), choriocarcinoma,
respectively [23].

Although the National Cancer Institute provides researchers with the resources needed to better
elucidate the role of food and nutrients in cancer prevention, cancer chemoprevention using marine
natural compounds [16,24] has not been investigated in-depth and the preclinical and clinical data for
this strategy remain scant, in spite of the robust chemical rationale [16]. Many other compounds with
anticancer properties have been isolated and developed from various biological resources, such as
plants, microbes and marine organisms (Figure 2). Consequently, a large number of natural products
are in preclinical investigations, and 13 natural products isolated from marine organisms are being
tested in different phases of clinical trials, highlighting the potential of marine natural compounds [25].
A focused, combinatorial approach would has been suggested to accelerate the development of new
anti-cancer drugs from marine resources with increased efficiency and fewer side effects [26].



Mar. Drugs 2019, 17, 491 5 of 31
Mar. Drugs 2019, 23, x 5 of 30 

 

 
Figure 2. Natural sources for cancer control. 

3. Marine Organisms and Cancer Chemotherapy 
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and extensive phytochemical studies on pure compounds from this organism were performed from 
1950 to 1960, before the identification of cytosine arabinoside (ara-C) [34–36]. Furthermore, some 
marine organisms, such as microflora (bacteria, actinobacteria, cyanobacteria and fungi), microalgae, 
macroalgae (seaweeds) [31], invertebrate animals [37,38] sponges, soft corals, sea fans, sea hares, 
nudibranchs, bryozoans, tunicates, etc. [2], have been investigated for cancer control [39,40]. The bio-
active molecules impact has been evaluated against various cancer types in clinical trials [41–45],. 
Additionally, with the ongoing advancement in marine chemistry, new tools have been employed, 
e.g., metabolomics, to examine marine products from different perspectives [31]. 
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3. Marine Organisms and Cancer Chemotherapy

Oceans cover over 70% of the earth. The total global biodiversity is estimated to include ca.
500 × 106 species of prokaryotic and eukaryotic organisms. The marine environment is indeed an
exceptionally diverse reservoir of life, containing nearly 250,000 described species [27,28]. Among
marine organisms, 3.7 × 1030 microorganisms have been discovered in marine environments [29],
99% of all bacteria cannot be cultured but can synthesize many fascinating natural products that are
potential drug leads [30]. This extraordinary chemical and pharmacological scope of marine organisms
could be attributed for the necessity to produce secondary metabolites as defense tools to survive in
extreme environments; of temperatures, salinity, pressure and to resist predators.

Since ancient times, marine flora has been used for medicinal purposes worldwide: in India,
China, the Near East, and Europe [31]. From then till now, less than 5% of the deep sea has been
explored, and less than 0.01% of the deep-sea floor has been sampled in detail [32]. The Caribbean
sponge (Cryptotethya crypta) was the first marine organism to be investigated in detail chemically [33],
and extensive phytochemical studies on pure compounds from this organism were performed
from 1950 to 1960, before the identification of cytosine arabinoside (ara-C) [34–36]. Furthermore,
some marine organisms, such as microflora (bacteria, actinobacteria, cyanobacteria and fungi),
microalgae, macroalgae (seaweeds) [31], invertebrate animals [37,38] sponges, soft corals, sea fans,
sea hares, nudibranchs, bryozoans, tunicates, etc. [2], have been investigated for cancer control [39,40].
The bio-active molecules impact has been evaluated against various cancer types in clinical trials [41–45].
Additionally, with the ongoing advancement in marine chemistry, new tools have been employed, e.g.,
metabolomics, to examine marine products from different perspectives [31].

4. Characterization of Marine Metabolites

The major obstacles for better understanding of marine metabolites chemistry and composition are
sampling difficulties. Sufficiently large quantities are required for detailed analyzes and resolution of
the instrumental and bioassay approaches used. For modern analytical methods in mass spectrometry
(MS), and nuclear magnetic resonance (NMR) spectroscopy [46], sub mg, or low micro gram, amounts
may be enough for full structure elucidation. The marine community has used MS for the past three
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to four decades. A separation method is commonly used together with MS to enhance resolution
and selectivity, in hyphenated techniques such as LC-MS, LC-MS/MS, GC-MS, pyrolysis-GC-MS,
and direct temperature-resolved MS (DT-MS) methods [47–50]. MS has been mainly used in past
studies for identifying and quantifying the specific fractions or trace components within the marine
organisms, and identification is then aided by MS/MS analysis, as exemplified by the identification
of hierridin B from a marine cyanobacterium Cyanobium spp. strain [51]. There is no doubt that
NMR is the most widely used technique for structural characterization of molecules, i.e., acremines
P was isolated from a marine-derived strain of Acremonium persicinum and identified using NMR
techniques [52]. Nevertheless, the lower sensitivity level of NMR compared to MS hinders the
identification of metabolites present at trace levels or low amounts. Although originally used for small,
relatively simple organic compounds, it has gained widespread popularity as a method for marine´s
metabolites fingerprinting organism [53,54]. However, although LC-HRMS is extremely sensitive and
can detect compounds present at very low quantities, there are certain classes of compounds that
cannot be detected by MS; they may not form ions at all, or ion formation may be suppressed or they
are not able to be eluted from the column to be detected. NMR, on the other hand, has no separation
step and therefore provides a snapshot of the metabolome of the sample. It is less sensitive than MS,
but more robust and reproducible with universal feature in metabolites detection, all of which allowing
for comparison of results from different datasets or running at different time periods. Also, coupling of
metabolomics to other “omics” technologies, i.e., genomics could aid in better correlation of marine
metabolome in relation to its genotype. [55]. These analytical techniques are also used to elucidate the
function/mode of action of metabolites. For example, functional metabolomics was employed to reveal
metabolic alterations associated in MCF-7 breast cancer cells exposed to the alkaloid ascididemin [56].

5. From Marine Organisms to Anticancer Drugs

There are more than 22,000 known microbial secondary metabolites, 70% of which are produced
by actinomycetes, 20% by fungi, 7% by Bacillus spp. and 1–2% by other bacteria [57]. It should be
noted that generally 10% of all currently known biologically active natural products are of microbial
origin. There are few examples of marine antineoplastic agents that have reached clinical phase trials.
For instance, bryostatin 1, ET-743 and dolastatin 10. The bryostatin 1 has recently entered phase II
clinical trial against melanoma, non-Hodgkin’s lymphoma, renal cancer and colorectal cancer [58–60].
The biological effect of bryostatin 1 is mediated via the promotion of normal growth of bone marrow
progenitor cells [61]. Moreover, ET-743, a tetrahydroisoquinilone alkaloid isolated from tunicate
Ecteinascidia turbinata entered phase I clinical trials [62], since it exerts anti-proliferative effects by
selective alkylation of guanine residues in the DNA minor groove [63], whereas dolastatin 10, a member
of a peptide family isolated from the mollusk Dolabella auricularia, reached phase II clinical trials [64],
based on its inhibition of microtubule assembly, which eventually leads to metaphase arrest in the cell
cycle [65,66], (Table 2, Figure 3).

5.1. Marine Plants

Marine plants have rarely been discussed in the literature as a distinct and self-contained group.
These plants have traditionally been treated either as the poor relations of marine animals in courses and
texts on marine biology or as examples of particular groups of algae, where the essential ‘marine-ness’
of marine plants tends to disappear among the taxonomic and morphological parallels with freshwater
algae. Over 90% of marine plant species are algae [67]. Because there is great chemical diversity
in marine plants, including marine algae and mangroves, products isolated from these plants have
been shown to possess antibacterial, antifungal, analgesic, anti-inflammatory, cytotoxic, hypotensive,
and spasmogenic activities [68,69].
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5.1.1. Macroalgae (Seaweed)

Macroalgae have long been recognized as food, functional food and potential drug sources [70].
Also known as seaweed, multicellular macroalgae contain numerous pharmacologically important
bioactive elements to include carotenoids, dietary fiber, protein, essential fatty acids, vitamins (A, B, B12,
C, D, E), and minerals such as Ca, P, Na, and K [70–73], in addition to polyphenols [74,75]. An alcoholic
extract of the red alga Acanthophora spicifera was supplemented to mice treated with Ehrlich’s ascites
carcinoma cells, and to exhibit anti-tumor activity at an oral dose of 100 and 200 mg/kg [76]. Similarly,
an extract of the brown seaweed Sargassum thunbergii displayed antitumor activity against transplanted
tumor such as sarcoma 180 and Ehrlich solid carcinoma (in vivo) [77]. The anti-proliferative effect of
fucoidan, isolated from Ascophyllum nodosum was demonstrated against sigmoid colon adenocarcinoma
cells (COLO320 DM), in comparison to fibroblasts (hamster kidney fibroblast CCL39) [78]. Caulerpenyne
from Caulerpa sp. algea attributed to anticancer and antiproliferative effects against neuroblastoma cell
line through induction of cells inhibition proliferation with an IC50 of 10 µM [79]. Condriamide-A,
isolated from Chondria sp., showed a cytotoxic effect at a dose of 0.5 µg/mL against KB cells and
5 µg/mL against LOVO cells (colon cancer) [80]. Two compounds isolated from Cystophora sp.,
namely, meroterpene and usneoidone, have demonstrated antitumor properties [79,81–83]. Sulfated
polysaccharides purified from the brown alga Eclonia cava selectively and dose-dependently suppressed
the proliferation of murine colon carcinoma (CT-26) and human leukemic monocyte lymphoma (U-937)
cell lines [84]. Equally important, stylopoldione, a potent cytotoxic metabolite isolated from Stypodium
sp., disrupted mitotic spindle formation functioning via inhibiting synchronous cell division using
urchin egg assay (Strongylocentrotus purpuratus Stimpson) at ED50 = 1.1 µg/mL, and to inhibit cells
cleavage via inhibition of tubulin polymerization [85].
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5.1.2. Microalgae

Cyanobacteria, also known as blue-green algae, are prolific sources of more than 400 novel
metabolites, particularly unique, biologically active peptide and polyketide metabolites [86], effective
at either killing cancer cells by inducing apoptotic death or affecting cell signaling via activation of the
protein kinase c family [31]. Approximately half of the 41 screened strains of cyanobacteria exhibited
the ability to cause cancer cell death [87]. Two cyanobacteria-derived anti-microtubule agents, i.e.,
dolastatin 10 and curacin A, have been clinically evaluated for the treatment of cancer and to serve
as lead structures for the synthesis of a number of synthetic analogs/derivatives [88]. Calothrixins A
and B, are pentacyclic metabolites isolated from Calothrix cyanobacteria with anticancer potent activity
against human HeLa cancer cells in a dose-dependent manner at an IC50 of 40 and 350 nM, respectively
(in vitro studies) [89]. Ulithiacyclamide and patellamide, produced by cyanobacteria Prochloron spp.
and Lissoclinum patella [90–92], exhibited potent cytotoxic activity against a human nasopharyngeal
carcinoma cell line at IC50 value of 17 and 3000 ng/mL, respectively [93]. Borophycin, a boron-containing
metabolite isolated from marine cyanobacterial strains of Nostoc linckia and Nostoc spongiaeforme var.
tenue [94], attributed potent cytotoxicity against human epidermoid carcinoma (LOVO) and human
colorectal adenocarcinoma (KB) cell lines [95]. Potent cytotoxicity was displayed by cryptophycin
1, isolated from Nostoc sp. GSV 224, against tumor cells in vitro (human tumor cell lines (KB and
LOVO with IC50 = 0.005; 0.003 ng/mL)) and in vivo (human solid tumors (colon adenocarcinomas,
pancreatic ductal adenocarcinoma and mammary adenocarcinoma) [96,97]. Largazole represented a
unique chemical scaffold derived from Symploca spp. with impressive anti-proliferative activity [98].
The parental compound, apratoxin A, isolated from a strain of Lyngbya boulloni, exhibited cytotoxicity
against adenocarcinoma [99]. Coibamide A, a promising anti-cancer agent with a new potential
mechanism of action, derived from a strain of Leptolyngbya, exhibited significant cytotoxicity against
NCIH460 lung and mouse neuro-2a cells (LC50 < 23 nM) [100]. Cyanobacteria produce a family of
antitumor agents known as cryptophycins, which interfere with tubulin assembly [101]. Scytonemin,
is a protein serine/threonine kinase inhibitor of the cell division cycle 25C (cdc25C) in a dose-dependent
manner with an IC50 of 2.3 µM where significant inhibition was observed at concentrations as
low as 300 nM [102]. Scytonemin is present in the extracellular sheaths of different genera of
aquatic and terrestrial blue-green algae. This compound regulates mitotic spindle formation as
well as enzyme kinases involved in cell cycle control, and to also inhibit the proliferation of human
fibroblasts and endothelial cells [103]. Curacin A, isolated from the organic extracts of Curacao
collections of Lyngbya majuscule, is an exceptionally potent anti-proliferative agent that inhibited
tubulin polymerization and also exhibited selective inhibitory activity against leukemia and Burkitt
lymphoma cell lines (IC50 = 9 nM and 200 nM) [104,105]. Apratoxins represent are another class of
cyanobacterial compounds that inhibited a variety of cancer cell lines at nanomolar dose levels.

Various strains of cyanobacteria exhibited apoptotic activity against acute myeloid leukemia
cells without affecting non-malignant cells, e.g., hepatocytes and cardiomyoblasts [106]. Based on
modern research, cultured benthic cyanobacteria from temperate marine environments provide a
promising, under-exploited source for novel drugs against leukemia [107]. Nevertheless, there are
some compounds isolated from marine sources, not been yet applied in clinical trials like as calothrixins
A, B, ulithiacyclamide, patellamide, borophycin, largazole, etc. This all compound shows anticancer
activity against various types of cancer cells with different mechanisms hence we recommend further
investigation of their potential biological activities and clinical uses.

5.2. Marine Bacteria

Marine Pseudomonas-derived bioactive substances are diverse and include pyrroles,
pseudopeptides, pyrrolidinedione, phloroglucinol, phenazine, benzaldehyde, quinoline, quinolone,
phenanthrene, phthalate, andrimid, moiramides, zafrin and bushrin [108]. Some of these bioactive
compounds are antimicrobial agents, whereas dibutyl phthalate and di-(2-ethylhexyl) phthalate
have been reported to be cathepsin B inhibitors [109]. Discodermolide, bryostatins, sarcodictyin,
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and eleutherobin are among the most effective anticancer drugs produced mainly by marine
bacteria [31,110].

In vivo, Lactobacilli and Noctiluca scintillans exhibited chemopreventive effects against colon
cancer and melanoma cancer [104], respectively. Lactobacilli has the ability to reduce the activities
of azoreductase, nitroreductase, and β-glucuronidase enzymes in the diet of rats as these dietary
components were able to reduce the standard level of enzymes in the intestinal tract thus Lactobacilli
suggestive that it could lessen the incidence of colon cancer development [111,112]. Probiotic bacteria,
such as Lactobacilli and Bifidobacteria, produce anticancer substances [113]. The marine-derived
Halomonas spp. strain GWS-BW-H8hM was reported to inhibit the growth of HM02 (gastric
adenocarcinoma), HepG2 (hepatocellular carcinoma) and MCF7 cell lines to induce apoptosis
via cell cycle arrest compared to actinomycin D [114,115]. Highly heterogeneous polymers, i.e.,
exopolysaccharides (EPSs) and sulfated EPSs isolated from H. stenophila inhabiting a hypersaline
environment have also been reported for their pro-apoptotic effects on T-leukemia cells. Only tumor
cells were found susceptible to apoptosis induced by the sulphated EPS (B100S), whilst primary
T cells were resistant [116]. The isolation of cytotoxic hydroxyphenylpyrrole dicarboxylic acids,
i.e., 3-(4-hydroxyphenyl)-4-phenylpyrrole-2,5-dicarboxylic acid (HPPD-1), 3,4-di-(4-hydroxy-phenyl)
pyrrole-2,5-dicarboxylic acid (HPPD-2) and the indole derivatives 3-(hydroxyacetyl)-indole,
indole-3-carboxylic acid, indole-3-carboxaldehyde, and indole-3-acetic acid, from a marine Halomonas
sp. has also been reported [117]. Both HPPD-1 and HPPD-2 exhibited potent antitumor activities via
the inhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA) induced activation of Epstein–Barr virus
early antigen. The inhibitory effect of HPPD-2 was more potent with respect to HPPD-1 at all tested
dose ratios: for instance, 32 nmol (1.1 × 10−2 mg mL−1 in DMSO; 1000% ratio to TPA) of HPPD-2 led
to 90% inhibition of TPA-induced activation of EBV-EA (residual activation 10.8%) [118]. The two
most active extracts were obtained from isolates of Sulfitobacter pontiacus (P1-17B (1E)) and Halomonas
axialensis (P5-16B (5E)), that inhibited the growth of HeLa and DU145 cells by 50–70%. The cytotoxic
activity observed in isolates P1-37B and P3-37A (Halomonas) could be attributed to the aforementioned
cytotoxic compounds from Halomonas spp. extracts prepared from Chromohalobacter salexigens (P3-86A,
K-30, P3-86B (2), H. meridian (P3-37B), Idiomarina loihiensis (P3-37C) and C. israelensis (K-18) were found
to be the most active at inducing apoptosis in HeLa cells [115].

5.3. Marine Actinomycetes

Marine actinomycetes include members of the genera Dietzia, Rhodococcus [119], Streptomyces [120],
Salinispora [121–123], and Marinispora [120–123]. Actinomycetes are undoubtedly the largest producers
of secondary metabolites among marine microorganisms [124]. Actinomycete-isolated secondary
metabolites account for ca. 45% (~10,000 compounds) of the total known anti-microbial metabolites.
Of these actinomycete-derived compounds, 75% were derived from Streptomyce whereas 25% were
derived from rare actinomycetes [125,126].

Actinomycetes, Streptomyces and Micromonosporaceae are good candidates for the isolation of
potent growth-inhibiting compounds and novel antitumor agents [31,106,126–128]. In the exploration
of marine-derived actinomycetes as sources of antitumor compounds, lucentamycins A-D, which are
3-methyl-4-ethylideneproline-containing peptides were isolated from Nocardiopsis lucentensis (strain
CNR-712). Lucentamycins A and B exhibited significant in vitro cytotoxicity against HCT-116 human
colon carcinoma using MTS assay with IC50 = 0.20 and 11 µM, respectively [129]. Thicoraline,
a depsipeptide isolated from Micromonospora marina, displayed cytotoxic activity against both LOVO
and SW620 human colon cancer cell lines with IC50 of 15 nM and 500 nM, respectively in vitro.

Thiocoraline cytotoxic action was found mediated via an arrest in G1 phase of the cell
cycle and a decrease in the rate of S phase progression towards G2/M phases, as assessed
using bromodeoxyuridine/DNA biparametric flow cytometric analysis [117]. Trioxacarcins A-C
extracted from Streptomyces species showed high anti-tumor activity against lung cell line with
IC50 ranging from 0.1, 6.0, 0.003 to 0.26 ng/mL, respectively [130]. Mansouramycin A-D and
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3-methyl-7-(methylamino)-5,8-isoquinolinedione, from the marine-derived Mei37 isolate of Streptomyces
sp., exhibited significant cytotoxicity with a great degree of selectivity for non-small-cell lung cancer,
breast cancer, melanoma, and prostate cancer cells [131]. Macrodiolide tartrolon D, extracted from
Streptomyces sp. MDG-04-17-069, exhibited strong cytotoxic activity against three human tumor cell
lines, viz., lung (A549), colon (HT29), and breast (MDA-MB-231) cancer (GI50 = 0.16, 0.31 and 0.79 µM)
compared to doxorubicin as a standard [132]. Salinosporamide A, another compound isolated from
a marine-derived actinomycete, is a highly potent irreversible inhibitor of the 20S proteasome that
exhibited selective cytotoxic effect against A-549, HL-60, BEL-7402 and P388 cell lines at IC50 = 0.13,
0.28, 7.5, 35.0 µM, respectively, and was tested in clinical trials as an anticancer agent (Table 2) [133,134].

5.4. Marine Fungi

Marine-derived fungi represent a rich and promising source of novel anticancer
agents [135,136]. Higher fungi (basidiomycetes), endophytic fungi and filamentous fungi from marine
habitats yielded biologically active principal compounds, such as leptosphaerin„ leptosphaerolide (and
its O-dihydroquinone derivative), and leptosphaerodione from the lignicolous fungus Leptosphaeria
oraemaris (Pleosporaceae) [137–139]. Antioxidative effects against free radical reactions associated with
atherosclerosis, dementia, and cancer were exhibited by (I) acremonin A from Acremonium spp. [140],
and (II) a xanthone derivative from Wardomyces anomalus [141]. The topo I isomerase inhibitor
(+)-3,3,7,7,8,8-hexahydroxy-5,5-dimethylbianthraquinone, isolated from both Aspergillus candidus and
A. terreus, showed in vitro cytotoxic and anticancer effects [142,143]. Aspergiolide A, isolated from
the marine filamentous fungus A. glaucus, contributed to the cytotoxicity against the A-549, HL-60,
BEL-7402, and P388 cell lines [144], whereas alkaloids isolated from Penicillium spp. derived from
deep-ocean sediment displayed antitumor activities. Two new alkaloids meleagrin analogs, meleagrin
D and E, and two new diketopiperazines, roquefortine H and I, showed cytotoxic activity toward
A-549 and HL-60 cells via apoptosis and arrested the cell cycle at G2/M phase [145]. The anticancer
activity of 14 anthracenedione derivatives of secondary metabolites of the mangrove endophytic fungi
Halorosellinia spp. and Guignardia spp. has been reported [146]. The 14 anthracenedione derivatives
were found to function via apoptosis induction [142].

5.5. Marine Sponges

These organisms contributed to nearly 30% of all-natural products discovered to date [147].
The initial discoveries from marine sponges led to the belief that it would not be long before
true marine-derived drugs would reach the market. One successful example is the discovery and
identification of spongothymidine and spongouridine from the Caribbean sponge Tethya crypta.
These compounds were found to possess antiviral activity and synthetic analogs studies eventually led
to the development of cytosine arabinoside (AraC) as a clinically anticancer agent [148]. Eribulin, a
truncated synthetic version of halichondrin B, derived from the sponge Halichondria okadai [149], has
clinically potential activity against pretreated metastatic breast cancer cells [150,151].

5.6. Soft Corals

Sarcophyton is one of the most widely distributed soft coral genera in the tropical and sub-tropical
oceans, and approximately 30 species from this genus have been collected and tested for the presence
of bioactive secondary metabolites, i.e., fatty acids (arachidonic, eicosapentaenoic, docosahexaenoic
acids) that showed cytotoxic activity against brine shrimp in dose-dependent manner (LC50 of
96.7 ppm) [152,153]. Among the most important components of soft coral are cembranoids, which are
present at high concentrations (up to 5% dry weight). Cembranoids have an impact on biological
activities, i.e., ichthyotoxic, cytotoxic, anti-inflammatory, and antagonistic activity. In vitro cytotoxicity
testing showed that furano-cembranoids and decaryiol isolated from Nephthea spp. and Sarcophyton
cherbonnieri are effective against several tumor cell lines (gastric epithelial, breast and liver) (with GI50

values ranging from 0.15 to 8.6 µg mL−1) via arrests the cell cycle in the G2/M phase [154]. In addition,
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crassumolide C isolated for the first time from (the soft coral Lobophytum crissum) was found to inhibit
the accumulation of the pro-inflammatory proteins iNOS and COX-2 at 10 µM, as well has a cytotoxic
effect toward Ca9-22 cancer cells with IC50 of 1.7 µg mL−1 compared to doxorubicin; appositive
control [155].

6. Bioactive Constituents of Marine Organisms

Polyphenols, polysaccharides, and alkaloids are among the highly active, biologically potent and
predominant anticancer compounds isolated from marine organisms.

6.1. Polyphenols

Polyphenols (Figure 4; Table 1), are categorized into phenolic acids, flavonoids, tannins, catechin,
anthocyanidins, epigallocatechin, lignin, epicatechin, epigallate, and gallic acid [74,75]. Polyphenolic
compounds are known for their potential to reduce the mitotic index and decrease the levels of cellular
proteins needed for cancer cell proliferation and colony formation. For example, scutellarein 4’-methyl
ether exhibited anticancer effects in vitro and in vivo due to its cytotoxic activities. In addition to
anticancer effects, the phenols exhibited anti-inflammatory activity, antiviral effects, and inhibited the
human platelet aggregation [156–160]. Palmaria palmata, an edible seaweed, is rich in polyphenols
with potential antioxidant and anticancer properties [161–163]. These polyphenols showed metabolic
inhibition of xenobiotic-metabolizing enzymes [164], leading to alteration of the mitotic process in the
telophase and thus disruption of cell division [159].

6.2. Polysaccharides

The other potent group of compounds that is abundantly present in several marine organisms
is polysaccharides (Figure 5; Table 1), primarily alginates, agar, and carrageenans [31]. The main
mechanism of action of polysaccharides cytotoxic effect is the activation of the innate immune
system [165–168], leading to attraction of macrophages and natural killer cells to the target site
and production of tumoricidal cytokines [166,169–171]. A sulfated polysaccharide isolated from a
marine Pseudomonas spp. (B-1) filtrate induced apoptosis of human leukaemic cells (U937) [172],
whereas pancreatic islet carcinoma apoptosis was observed with PI-88, a sulfated oligosaccharide [173].
Glycosaminoglycans are sulfated internally and thus induced murine melanoma cell apoptosis by
altering transcription [174]. Fucoidan, a sulfated polysaccharide (sulfated L-fucose) from the brown
algal cell wall [175–177], was able to modulate atherosclerosis, angiogenesis, and metastasis [178],
when tested against human lymphoma HS-Sultan cell line. This effect was explained by the consequent
activation of caspase-3 and down regulation of the kinase pathway [179]. Fucoidan can disrupt
heparansulfate-growth factor/cytokine complexes and act as a substitute for cell surface heparansulfates
by stabilizing the interaction between growth factors and their receptors [31].

6.3. Alkaloids

Alkaloids derived of marine origin are divided into four groups, namely, indoles, halogenated
indoles phenylethylamines, and other alkaloids (Figure 6; Table 1), most of which belong to
phenylethylamines and indoles [31]. Two derivatives, namely, lophocladine A and lophocladine B,
have been isolated from the red alga Lophocladia spp. [180]. Similarly, the presence of alkaloids, e.g.,
acanthicifolin, brugine and benzoquinones, in Acanthus illicifolius, Bruguiera sexangula, and Kandelia
candel has been reported [31]. “Rhizophrine” is a major alkaloid constituent of the leaves of Rhizophora
mucronata and R. stylosa, species of mangrove found on coasts and river banks in East Africa and
the Indo-Pacific region. The growth inhibitory activity of these compounds has been successfully
demonstrated using various cancer cell lines.
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6.4. Peptides

Different types of peptides (Figure 7; Table 1), have been isolated from a wide variety of marine
flora. In the last decade, ca. 2500 new peptides with anti-proliferative activity have been identified [110].
Purified peptides have exhibited cytotoxic effects against various human cell lines, including pancreatic,
breast, bladder and lung cell lines [110]. Apratoxin A, a cyclic depsipeptide, exerted cytotoxic effects
against human HeLa cervical carcinoma cells via cell cycle inhibition [181]. A similar mechanistic
effect was reported for the cyclic depsipeptide coibamide A, isolated from Leptolyngbya sp. [100],
and lyngbyabellin B, isolated from Lyngbya majuscule [182]. The linear pentapeptides dolastatin 10 and
symplostatin 1 were isolated from Symploca spp. and exhibited cytotoxic effects against human lung
and breast cancer cell lines, via both Bcl-2 phosphorylation and caspase-3 protein activation [183,184].
In addition, several different types of active peptides have been isolated from Lyngbya spp. and Nostoc
spp., exhibiting anti-proliferative effects via microfilament disruption, secretory pathway inhibition
and other intracellular mechanisms [185]. Two novel cyclodepsipeptides, namely, scopularide A and B,
isolated from the marine fungus Scopulariopsis brevicaulis [186], significantly inhibited the growth of
pancreatic and colon cancer cell lines. Sansalvamide A is a structurally unique cyclic depsipeptide
isolated from various marine fungi. This compound exhibited cytotoxic activities against different
carcinomas, i.e., pancreatic, colon, breast and prostate sarcomas, as well as melanoma, representing a
promising anticancer therapeutic lead. The exact mechanism of this depsipeptide is unknown, but a
recent study showed an interaction between a heat shock protein (HSP90) and client cancer protein in
a mammalian cell line. Sansalvamide A binds to the N-middle domain of HSP90 and allosterically
inhibits protein complex formation, which is necessary for promotion of tumor growth [187].
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Table 1. List of compounds isolated from marine sources with potential anticancer effect.

Compound Name/Class Marine Source Type of Cancer Mechanism References

Apratoxin A/Peptide Lyngbya boulloni, bacteria Cervical cancer Cell cycle inhibition IC50 = 2.2 nM [181]

Brugine/Alkaloid Bruguiera sexangula, plant Sarcoma 180 and Lewis Not reported [31]

Fucoidan/Polysaccharides Ascophyllum nodosum, algea Colon cancer Inhibit the proliferation of arterial smooth
muscle cells at conc. of 80 to 100 µg/mL [78]

Lyngbyabellin B/p Peptide Lyngbya majuscule, bacteria Burkitt lymphoma cancer Inhibit of cell growth IC50 = 0.02 µM [182]

Sansalvamide A/Peptide Marine fungi Pancreatic, colon, breast and
prostate cancers Inhibits protein complex formation [187]

Scutellarein 4′-methylether/Polyphenol Osmundea pinnatifida, algea Choriocarcinoma cancer Not reported [158,188]

Phlorofucofuroecol A/Polyphenol Brown seaweeds Cancer Not reported [189]

Phloroglucinol/polyphenol Brown seaweed Colon cancer Induce DNA damage, and cell death at
300 µM [190]

Heparin/Heparan/Ppolysaccharides Dictyopteris delicatula, Seaweed Colon cancer Inhibit the proliferation of arterial
smooth muscle cells at 80 to 100 µg/mL [78,191]

Chondroitin-4-sulphate/Polysaccharides Cucumaria frondosa, sea cucumber Not reported [31,192]

Chondroitin-6-sulphate/Polysaccharides Cucumaria frondosa, sea cucumber Not reported [31,192]
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Table 2. List of clinical compounds and natural products isolated from marine sources with potential anticancer effect.

Compound Name/Chemical Class Marine Source Type of Cancer Mechanism Clinical Status/Study Type References

AE-941/Peptide Shark cartilage Renal, lung cancer

Inhibition of gelatinolytic and elastinolytic activities
of MMP-2, MMP-9, and MMP-12. The MMP’s are

often over expressed in tumors and play an important
role in the degradation of the (extracellular matrix
allowing tumor growth and invasion (metastasis)

Drug, phase 3, Investigationa,
Interventional [44,193,194]

Actinomycin/Peptide Streptomyces parvullus, Streptomyces sp.
ZZ338 Actinomyces Childhood cancer, Wilms tumor Inhibition of RNA polymerase Drug, phase 4, Interventional [195–197]

Aplidine (Plitidepsin,
Dehydrodide-mnin B)/Peptide

Aplidium albicans, Tunicate, Ascidiacea
Pancreatic, stomach, bladder, and

prostate cancers Activation of protein kinase C Drug Investigational [198,199]

Leukemia Non Hodgkin Lymphoma Induce the apoptotic cascade Drug phase 2, Interventional [44,198,200]

Bryostatin-1/Polyketide Bugula neritina, Bryozoa Metastatic solid tumors Inhibition of growth and alteration of differentiation Drug phase 1, 2 Interventional [44,198,201]

Citarabine/Alkaloid Sponge Leukemia (acute non-lymphoblastic) Inhibition of DNA synthesis Drug Approved,
Investigational [198,202]

Cryptophycins/Peptide Nostoc sp., Macroalgae & Dysidea
arenaria, Sponge Not reported Tubulin (inhibition of polymerization of microtuble) Phase 1 [44]

Dolastatin 10/Peptide Dolabella auricularia, Mollusc Pancreatic cancer Inhibition of microtubules and pro-apoptotic effects Drug phase 2, Interventional [44,198,203]

ET-743 (Trabectedin,
Ecteinascidin)/Alkaloid

Carribean tunicate Ecteinascidia turbinate
Tunicate, Ascidiacea

Sarcomas and ovarian cancer
Binding to the minor groove of DNA interfering with
cell division and genetic transcription processes and

DNA repair machinery

Drug Approved,
Investigational [44,198,204]

Breast cancer Alkylation ofguanine residues in the DNA
minor groove Drug phase 2, Interventional [198,205]

Eribulin (E7389)/Polyketide Lissodendoryx sp. Halichondria okadai.,
Sponge

Breast cancer
Activation of cellular apoptosis under

anchorage-independent and -dependent cell
culture conditions

Phase 1,2, Investigationa,
Interventional [44,206,207]

Advanced solid tumors, breast
Inhibition of growth phase of microtubules without

affecting the shortening phase and sequesters tubulin
into nonproductive aggregates

Drug, Approved, phase 2,
Investigationa, Interventional [208,209]

Kahalalide F/Peptide Elysia rufescens, Mollusc/
Bryopsis sp., Macroalgae Prostate cancer Induction of changes in lysosomal membrane Phase 2 [44]

PM02734/Peptide Elysia rufescens, Mollusk Breast, colon, pancreas,
lung and prostate Antiproliferative Drug, phase 1, Investigation,

Interventional [210,211]

Salinosporamide A (Marizomib®)
(NPI-0052)/Polyketide

Salinospora tropica, actinomyces
Prevention of proteins breakdown involved in signal

transduction, which blocks the cancer cells growth
and survival

Drug phase 1, Interventional [17,44,212]
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7. Anticancer Bioactive Antibiotics Derived from Marine Sources

Toxins that originally evolved to kill competing microorganisms can have a variety of physiological
effects and could function as novel targets for anticancer drug discovery. In many cases, the targets
of these compounds are components of signal transduction cascades that are conserved in many
species [213]. Antitumor antibiotics are among the most important cancer chemotherapeutic agents and
include members of the anthracycline, actinomycin, and aureolic acid families [19,34,214]. Clinically
useful agents from these families (Figure 3, Figure 8; Table 2) include peptolides, dactinomycin,
was found to downregulate several glioma metabolic enzymes of glycolysis, glutaminolysis,
and lipogenesis, suggesting that targeting multiple tumor metabolic regulators might be a new
anti-glioma mechanism of actinomycin D [195]. Anthracyclines are among the most widely used
antitumor antibiotics in the clinic and exert antitumor activity mainly by inhibiting topoisomerase
II [215–219].

Geldanamycin is a natural fermentation product of the benzoquinone ansamycin and inhibits the
heat shock protein HSP90 [220], as well show cytotoxic effect against HeLa cells [221]. Trabectedin
and pegylated liposomal doxorubicin have been combined in a randomized phase III study to combat
ovarian cancer in vivo and compared to pegylated liposomal doxorubicin alone [222]. The three fused
tetrahydroisoquinoline rings contributed to the trabectedin complex mechanism of action. It was
claimed to block the substantial DNA and transcription interacting effect as the chemical structure binds
to the minor groove of DNA covalently and interact with transcription factors (e.g., SP-1) directly [223].
Another chemotherapeutic agent is bryostatin that modulates the paclitaxel inhibitor of protein kinase
C (PKC) [224].

Bryostatin 1, best known anticancer agent isolated from a species of bryozoan Bugula neritina,
is able to induce ubiquitination and proteasome degradation of Bcl-2 in lymphoblastic leukemia and
permits the growth of progenitor cells from bone marrow [225]. Bryostatins are potent activators of
protein kinase C (PKC) and regulate the activation, growth, and differentiation of cells [226]. Some of
the other suggested mechanism of actions were illustrated and included cell cycle arrest, inhibition
of protein synthesis and antiangiogenic activity corresponding to didemnin B and aplidine. Several
pathways are proposed for kahalalide F with specific interactions with cell membrane proteins [16].
Aplidine displays promising anti-proliferative activity (currently in phase I–II trials) via characterized
delay of neuromuscular toxicity and promising anti-proliferative activity (Figure 8) [227]. Squalamine,
neovastat, and LAF389 were investigated for their antiangiogenic activity where squalamine and
neovastat are currently tested in phase II and III studies, respectively [16]. Squalamine and LAF389
inhibited sodium hydrogen antiporter sodium-proton exchangers thus targeting the phospholipid
bilayer, and with LAF389 entered phase I trial [228]. On the other hand, neovastat stops the binding of
VEGF to its receptor [227,229]. Plinabulin (NPI-2358), a potent and selective vascular disrupting agent
(VDA) isolated from a marine fungal extract, is presently undergoing phase II clinical trials because
of its activity against multi-drug resistant human tumor cell lines [25,101]. Tasidotin, Synthadotin
(ILX-651), derived from a marine bacterium in phase II clinical trials, and Soblidotin (TZT 1027),
the bacterial peptide of marine origin in phase III clinical trials, are promising anticancer agents [101].

Salinosporamide A, a novel long-lasting proteasome inhibitor isolated from a marine bacterium
Salinispora tropica [230] in phase I clinical trials, has more efficacy against a wider range of hematologic
malignancies and many solid tumor models, and less cytotoxicity to normal cells (Figure 8) [101].
Sorbicillactone-A, is an alkaloid produced by Penicillium chrysogenum and associated with marine
sponge Ircinia fasciculate, showed antileukemic properties [231]. Depsipeptide (NSC 630176), a bicyclic
peptide isolated from Chromobacterium violaceum, decreased the mRNA expression of the c-MYC
oncogene, causing cell-cycle arrest at G0-G1 and acting as an inhibitor of a histone deacetylase [232].
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Brugine/Alkaloid 
Bruguiera 

sexangula, plant 
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Inhibit the proliferation of 
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Peptide 
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majuscule, bacteria 

Burkitt lymphoma cancer 
Inhibit of cell growth IC50 = 

0.02 µM 
[182] 
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Peptide 

Marine fungi Pancreatic, colon, breast 
and prostate cancers 

Inhibits protein complex 
formation 

[187] 

Scutellarein 4′-
methylether/ Polyphenol 
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pinnatifida, algea 

Choriocarcinoma cancer Not reported [158,188] 
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Brown seaweed Colon cancer 
Induce DNA damage, and cell 

death at 300 µM 
[190] 
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8. Chemical Property Space

The chemical global positioning system of natural products shortly called ChemGPS-NP [233]
was used to investigate the chemical property space produced by the marine compounds in this review.
The chemical structures were converted to SMILES (simplified molecular-input line-entry system),
formats using Chemsketsh [234], and submitted to ChemGPS-NPweb. Eight principle component (PC)
values were obtained based on 35 molecular descriptors for each compound. The three major values
were plotted on three dimensions graphs as PC1, PC2, and PC3 in order to indicate among others;
the size, weight, aromaticity, rigidity, and lipophilicity. Principle component analysis represents the
most group of variant properties where every position indicates a compound-specific value in a virtual
chemical property space. Figure 9 showed the diversities of studied marine compounds within their
respective chemical class as their specific positions did not form a tight cluster in chemical property
space. The unique diversity within a single chemical class was noted to be in agreement with Muigg
et al 2013 who reported a unique distinction between marine and terrestrial compounds by using
chemical property space [235]. For example, marine peptides did spread over and did not form a close
cluster forms indicating an interesting diversity within a similar chemical class. The demonstration of
marine anticancer compounds as a set of compounds in term of chemical property space can be used
to compare different activities using other specific set or databases. Natural marine compounds are
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no exception from the natural compounds that continue to be a source of unique diversity even by
their chemical-property.
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9. Conclusions

Several marine natural products have been found to exhibit anticancer activity in vitro on a wide
range of tumor cell lines, including renal, lung, prostate, bladder, melanoma, osteosarcoma, mammary,
and lymphoid cancer-derived cell lines. In addition, most of the reports on the mechanism of action
of marine products in inhibiting tumor growth both in vitro and in vivo suggest it is mediated via
apoptosis, necrosis, and lysis of the tumor cells. Marine flora, including microalgae, fungi, seaweeds,
mangroves, bacteria, cyanobacteria, actinobacteria, and halophytes were found to have anticancer
activity in in vitro and in vivo models are extremely important oceanic resources. In this context,
reports on the bioactive molecules combating a wide range of tumor cells such as prostate, bladder,
renal, lung, mammary, melanoma, bone, and blood cancers, together with the known knowledge
of the mechanism of action mediated via necrosis, apoptosis, and tumor cells lysis were discussed
herein to illustrate the medicinally potent chemicals associated with the discovery of new anti-cancer
drugs. Polyphenols, polysaccharides, alkaloids, peptides, and terpenoids (cembranoids) are some of
the potential marine organism metabolites (Table 2), that exhibited an array of antioxidant, antitumor
activities, in addition to immunostimulation. The technological innovation and scientific advances
provided a baseline for exploring a great scope of the chemically unique, biologically active, and
taxonomically diverse marine floras. Eribulin, trabectedin, cytarabine, and brentuximab vedotin,
derived from marine resources, are some of the successful examples that predominantly have proven
effective in preventing oxidative damage of DNA, induce apoptosis, control carcinogenesis and activate
macrophages in pre-clinical and clinical trials. In this review, we summarized the contributions of
marine natural products to treat cancer via modulation of cancer-related factors involving oxidative
stress, inflammation, and cell survival. We discussed the pharmaceutical prospects and the chemical
space properties that provided crucial insights and valuable knowledge on the largely unexplored
marine flora-based anticancer leads. Although more detailed investigations are essential to meet
the most common challenges of the clinical utility, it is clear that marine products are promising in
providing a platform for improving the anti-cancer therapeutic strategies.
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