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Abstract: Background: In the past decade, several antibodies directed against the PD-1/PD-L1
interaction have been approved. However, therapeutic antibodies also exhibit some shortcomings.
Using small molecules to regulate the PD-1/PD-L1 pathway may be another way to mobilize the
immune system to fight cancer. Method: 52,765 marine natural products were screened against
PD-L1(PDBID: 6R3K). To identify natural compounds, a structure-based pharmacophore model was
generated, following by virtual screening and molecular docking. Then, the absorption, distribution,
metabolism, and excretion (ADME) test was carried out to select the most suitable compounds.
Finally, molecular dynamics simulation was also performed to validate the binding property of the top
compound. Results: Initially, 12 small marine molecules were screened based on the pharmacophore
model. Then, two compounds were selected for further evaluation based on the molecular docking
scores. After ADME and toxicity studies, molecule 51320 was selected for further verification.
By molecular dynamics analysis, molecule 51320 maintains a stable conformation with the target
protein, so it has the chance to become an inhibitor of PD-L1. Conclusions: Through structure-based
pharmacophore modeling, virtual screening, molecular docking, ADMET approaches, and molecular
dynamics (MD) simulation, the marine natural compound 51320 can be used as a small molecule
inhibitor of PD-L1.

Keywords: PD-L1; virtual screening; pharmacophore modeling; ADME; molecular dynamics

1. Introduction

Blocking the interaction of PD-1/PD-L1 and PD-1/PD-L1 pathway modulators has
shown unprecedented clinical efficacy in a variety of tumor models [1–4]. Existing studies
have shown that the programmed cell death protein 1 (PD-1)/programmed cell death
ligand 1 (PD-L1) signaling pathway can induce tumor-specific T cell apoptosis by inhibiting
T cell activation [5]. It plays a role in immune escape and immune suppression under
pathological conditions such as inflammation [6–11].

Because PD-L1 is highly expressed in a variety of tumor cells, after PD-L1 binds to
PD-1, T cell activation is inhibited, and T cells are in a state of immune tolerance [12].
At this time, the immune system cannot kill the cancer cells, and tumor immune escape
occurs [13]. Therefore, this type of inhibitor has a wide range of tumors, especially for
tumors with high PD-L1 expression, and the response rate is higher.

Therefore, a targeted inhibitor designed for PD-L1 can cut off the signal pathway and
activate T cells [14]. Therefore, its immune tolerance is relieved, T cells are mobilized to
kill tumors, and tumor treatment is realized. Anti-PD-L1 monoclonal antibody is one of
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the most important drugs for lung cancer immunotherapy [15]. However, therapeutic
antibodies also show some disadvantages. For example, tumor penetration rate is low, it is
difficult to overcome physiological barriers, and there is a lack of oral bioavailability, high
manufacturing cost, inaccessibility to intracellular targets, and immune-related adverse
events (irAE) [16]. Using small molecules to regulate the PD-1/PD-L1 pathway may be
another way to mobilize the immune system to fight cancer. In 2015, Zak et al. reported the
crystal structure of the hPD-1/hD-L1 complex, which is generally considered to provide
important receptor-ligand interactions, and they are reasonable structure-based drugs on
the surface of PD-L1 Design (SBDD), which provides several major active sites [17]. In
recent years, several small molecule drugs that can bind to PD-L1 and inhibit the interaction
of PD-1/L1 have been discovered [18,19]. Therefore, it is of great significance to generate
simple, stable, and efficient PD-L1 small molecule inhibitors.

Due to its special ecological environment, the ocean contains rich natural products.
With the development of terrestrial resources, the marine environment provides a new
field for research. By the end of 2020, it is estimated that more than 29,000 marine natural
products have been found, and marine natural products have also received increasing
attention from scientists [20]. It has been found that marine natural products have different
structural characteristics from terrestrial natural products with various biological activities
such as antifungal, antiviral, anti-parasitic, anti-tumor, and anti-inflammatory [21,22].
Natural products are the best choice as a source of new drugs [23], and marine organisms are
thus considered as the latest source of bioactive natural products related to terrestrial plants
and non-marine microorganisms [24]. We have collected three marine natural product
databases: Marine Natural Product Database (MNPD) [25], Seaweed Metabolite Database
(SWMD) [26], and Comprehensive Marine Natural Product Database (CMNPD) [27]. In
this study, 52,765 kinds of marine natural products were virtually screened by targeting
PD-L1. In order to predict a variety of marine natural products that may inhibit PD-L1. We
hope to provide new options for the development of new anti-tumor drugs.

Structure-based pharmacophore modeling, virtual screening, molecular docking, AD-
MET approaches, and molecular dynamics (MD) simulation were performed on a library
of marine natural products to find the novel compounds against PD-L1, which are demon-
strated as Figure 1.
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Figure 1. The virtual screening workflow (VSW) used in this work for the identification of hit
molecules targeting PD-L1. A workflow overview of pharmacophore modeling, virtual screen-
ing, molecular docking, absorption, distribution, metabolism, elimination, and toxicity (ADMET)
approaches, and MD simulation.
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2. Results
2.1. Structure-Based Pharmacophore Modeling and Virtual Screening
2.1.1. Pharmacophore Model Establishment

Pharmacophore describes the three-dimensional arrangement of basic spatial and
electronic characteristics to achieve the best combination of ligands and macromolecules.
The main application area of the pharmacophore model is database search. By searching the
compound database through the pharmacophore model, it is possible to find biologically
active compounds with specific targets, and to find new chemical entities with similar
biological activities and different skeleton structures. Depending on the available target or
known ligand information, the design of the pharmacophore model can be structure-based
or ligand-based [28–30]. In this study, the available PD-L1 information of its small molecule
inhibitors was used to construct the structure-based pharmacophore model. Hence, the
7 pharmacophore models containing the feature set were generated (Table 1) [31–35].
Among the generated models, 6R3K composed of DHHHNP chemical characteristics with
the highest selectivity score (16.25) was selected as the best model.

Table 1. Ranking of pharmacophore models.

Compound Number of Features Feature Set Selectivity Score References

6R3K 6 DHHHNP 16.25 [31]
5NIU 6 DDHHHP 15.635 [32]
5N2F 6 AAHHNP 12.936 [33]
5N2D 6 AHHHPR 12.848 [33]
5J89 5 HHHHP 11.196 [17]

6NM8 6 HHHHHP 10.996 [34]
5J8O 6 HHHHHR 9.2594 [35]

Therefore, the structure-based pharmacophore model was constructed based on PD-L1
(6R3K) and small molecule JQT (Figure 1). Ten pharmacophore models were generated.
According to careful selection, we applied ligand 8 as the pharmacophore model for screen-
ing. DS software was used to generate key chemical features based on the pharmacophore
model and co-crystalized ligand JQT and pharmacophore ligand 08 in Figure 2b. The total
number of pharmacophores is 8. Two of them are hydrophobic, two hydrogen bond ac-
ceptors, two hydrogen bond donors, one positively charged ion center, and one negatively
charged ion center (Figure 2c).

2.1.2. Pharmacophore Model Validation

Verification is necessary to obtain true pharmacophore analysis and to evaluate the
quality of molecular models [36]. Before database screening, the structure-based pharma-
cophore model established in this study was verified to verify whether the pharmacophore
has a good ability to distinguish between active and inactive molecules. Receiver operating
characteristic curve (ROC curve for short) is also known as sensitivity curve. The ROC
curve graph is a curve reflecting the relationship between sensitivity and specificity. The
X axis of the abscissa is 1-specificity, also known as false positive rate (false positive rate),
the closer the X axis is to zero, the higher the accuracy rate; the Y axis of ordinate is called
sensitivity, also known as true positive rate (sensitivity), the larger the Y-axis, the better
the accuracy. According to the curve position, the whole graph is divided into two parts.
The area under the curve is called AUC (area under curve), which is used to indicate the
accuracy of prediction. The higher the AUC value, the larger the area under the curve,
indicating the prediction, the higher the accuracy rate. The closer the curve is to the upper
left corner (the smaller the X, the larger the Y), the higher the prediction accuracy rate [37].
In our verification process, the AUC (area under the ROC curve) at 1% threshold is 0.819
(Figure 3), which proves that our model has ability to distinguish between truly active
substances and decoy compounds.
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2.1.3. Virtual Screening Based on Pharmacophore

A marine natural product library containing a total of 52,765 compounds was used
for virtual screening based on pharmacophores against the generated pharmacophore
models. A total of 12 compounds that meet the characteristics of all pharmacophores were
generated. Compounds labeled HIT were retrieved and stored for further evaluation.

2.2. Molecular Docking

Molecular docking is an important part of the drug design process. This study aims to
evaluate the binding ability of HITS compounds to the target PD-L1 protein. According to
the previously obtained binding sites, a receptor grid with X =−7.1, Y = 59.3, and Z = −19.5
was prepared.

AutoDock was used to dock a specific number of drugs with PD-L1, and evalu-
ate its binding ability, which is in line with the characteristics of the pharmacophore
model. Among them, the binding affinity of compound 37080 and compound 51320 are
−6.5 kcal/mol and −6.3 kcal/mol (Table 2), and their binding affinity is better than that
of the PD-L1 inhibitor used in the process of generating the main pharmacophore model
(−6.2 kcal/mol). The interaction of compound 37080 in the docking complex is shown
in Figure 4a,b, and the interaction of compound 51320 is shown in the Figure 4c,d. In
compound 51320 with good docking performance, it can be observed that the compound
forms a hydrogen bond with Ala121, the oxygen atom interacts with the residue Asp122,
and there is an ionic interaction with the residue ASP122 (Figure 4d). More importantly,
the Pi–Pi interaction established between residue Ile54 and the compound and the Pi–
Sigma interaction between residue Tyr123 and the compound also played a key role in
ligand–receptor binding. Obviously, the rich interaction types between compound 513320
and the protein allow the best docking results between them. It can be seen from the
interaction analysis that the docking result is reliable and the selected compound can be
further analyzed.

Table 2. Molecular docking results of JQT and 12 selected ligands from the library of marine
natural products.

Molecules 2D Structure Binding Affinity
(kcal/mol) Formula

37080
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Table 2. Cont.

Molecules 2D Structure Binding Affinity
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2.3. Analysis of Pharmacophore Characteristics

The pharmacophore characteristics of compounds play an important role in the molec-
ular recognition process of targeted biological macromolecules. The pharmacophore of a
compound can be described according to the characteristics of H, AR, HBA or HBD, PI,
and NI. This helps to identify and design new drugs for the treatment of selected diseases.

These features retain the necessary geometric arrangement of atoms required to pro-
duce a specific biological reaction. Therefore, the characteristics of the pharmacophore we
generated were analyzed. As shown in Figure 5a, the overlap of the ligand and pharma-
cophore characteristics shows that the selected compound should be effective for our target
protein. Superimposition of the top12 hit compounds on to the pharmacophore model
was shown in Figure 5b and superimposition of JQT on to the pharmacophore model was
shown in Figure 5c.
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2.4. ADME and Toxicity Test ADME Properties Analysis

Swiss-ADME is a website (https://www.swissadme.ch, accessed on 9 October 2021)
which allows the user to draw their respective ligand or drug molecule or include SMILES
data from PubChem and provides parameters such as lipophilicity (iLOGP, XLOGP3,
WLOGP, MLOGP, SILICOS-IT, Log P0/w), water solubility Log S (ESOL, Ali, SILICOS-IT),
drug-likeness rules (Lipinski, Ghose, Veber, Egan, and Muegge), and Medicinal Chemistry

https://www.swissadme.ch
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(PAINS, Brenk, Lead-likeness, Synthetic accessibility) [38]. The ADME prediction study
of the designed compounds demonstrated Table 3. The Swiss-ADME section gives a
physicochemical property of possible oral drug candidates according to five different rules
determined by Lipinski, Ghose, Veber, Egan, and Muegge [39–42]. The reference value of
Log S for moderately soluble and highly soluble molecules ranged from−4 to−6 and−2 to
−4, respectively. According to the results, all molecules are classified as moderately soluble
and highly soluble. All these parameters infer that 51320 is close to a drug-like molecule.

Table 3. ADME properties of JQT and selected ligands from the library of marine natural products.

Molecule MW Rotatable
Bonds

H-bond
Acceptors

H-bond
Donors

ESOL
Log S TPSA WLOGP GI Ab-

sorption
log Kp
(cm/s)

37080 453.45 12 7 7 −3.18 190.62 1.54 0.78 Low
51320 620.73 19 9 5 −3.82 157.72 3.33 0.99 Low
37113 494.53 9 10 6 −1.91 174.65 −0.09 0.04 Low
38010 909.18 10 8 11 −5.32 271.15 −2.38 0.43 Low
41160 307.43 12 4 3 −1.6 69.56 3.22 0.35 High
32979 441.58 11 7 4 −2.04 132.31 3.13 1.28 High
35432 572.27 11 7 5 −2 165 0.94 0.31 Low
21793 466.66 9 6 3 −3.74 143.96 3.07 2.18 Low
23671 528.18 9 6 5 −3.99 166.6 1.06 −0.33 Low
41159 285.42 13 4 3 −2.01 69.56 3.11 0.14 High
35433 572.27 11 7 5 −2 165 0.94 0.31 Low
50094 1038.07 40 17 15 −0.68 449.83 −3.85 −4.93 Low
JQT 641.11 10 9 2 −5.81 121.48 5.30 2.64 Low

2.5. Toxicity Analysis

In order to better select lead compounds, the measurement of toxicity within silicon
is an important step before the candidate drug goes into clinical trials. Calculation-based
electronic toxicity measurement is widely used because of its accuracy and accessibility. It
can provide information on any synthetic or natural compound. In order to determine the
toxicity and adverse effects of the two selected compounds, we used the freely available
testing tool ProTox-II server [43]. The software evaluates several toxicological parame-
ters, such as acute toxicity, liver toxicity, cytotoxicity, carcinogenicity, mutagenicity, and
immunotoxicity, and is based on the predicted median lethal dose (LD50) (in mg/kg body
weight) (Table 4). According to the ProTox-II server, compound 51320 belongs to 4 types
of toxicity, with LD 50 of 300–2000 mg/kg, which is harmful when administered orally.
Compound JQT belongs to grade 4 toxicity, and its LD 50 value is 800 mg/kg. However, it
was active in cytotoxicity. Combined with the ADME results, 51320 is closer to drug-like
molecules than JQT. Subsequently, MD simulations were performed on 51320 molecules
and JQT.

2.6. Structure-Based Pharmacophore Modeling and Virtual Screening

MD simulations are used to explore the binding stability of the protein–ligand docking
complex. MD simulations also provide information about molecular interactions within a
reference time or provide valuable assessments in explaining drug resistance [44,45]. In this
paper, MD simulation methods are used to analyze the docking file of a complex of a natural
compound and PD-L1 protein to determine the stability and intermolecular interaction
between the protein and the molecule within a 100 ns time interval. The trajectory of MD is
extracted, and the simulation results of protein–ligand (P-L) interaction mapping based on
RMSD and RMSF are described. The results show that compound 51320 is stable.
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Table 4. List of toxicity properties (organ toxicity, toxicity endpoints, Tox21-nuclear receptor signaling
pathways, Tox21-stress response pathway) of the selected 2 compounds.

Endpoint Target JQT 51320

Organ toxicity Hepatotoxicity Inactive Inactive

Toxicity end points

Carcinogenicity Inactive Inactive
Immunotoxicity Inactive Inactive

Mutagenicity Inactive Inactive
Cytotoxicity Active Inactive

LD50 (mg/kg) 800 765
Toxicity class 4 4

Tox21-nuclear receptor signaling pathways Aryl hydrocarbon receptor (AhR) Inactive Inactive
Androgen receptor (AR) Inactive Inactive

Tox21-stress response pathways Heat shock factor response element (HSE) Inactive Inactive

2.6.1. RMSD Analysis

In order to obtain the equilibrium time of each simulated protein ligand complex
during the MD simulation, the root mean square deviation (RMSD) of the backbone was
calculated. RMSD diagrams are commonly used to evaluate the time required for the system
to reach structural equilibrium and estimate the duration of running simulations. RMSD
is an important parameter for estimating changes or changes in molecular conformation.
Due to the sudden change of structural conditions, the RMSD value of the analog complex
including the reference suddenly increased, which is related to the protein crystallization
method. The latter effect is expected, because in the crystal structure, the protein is rigid,
and when it is solvated in the water tank, it resumes its dynamic motion.

The complex system with a time frame x should have an RMSD that can be calculated
from the following Equation (1).

RMSDx =

√√√√ 1
N

N

∑
i=1

(r′ i(tx))− ri

(
tre f

)
)2 (1)

Here, the RMSDx is the calculation of RMSD for the specific number of frames, N is the
number of selected atoms, tre f is the reference or mentioned time, and r′ is the selected atom
in the frame x after super imposing on the reference frame, tx is the recording intervals.

As shown in Figure 6a, the RMSD of selected compounds 51320 and JQT were analyzed
to determine whether the system has been balanced. The system of compound 51320 was in
equilibrium after 105 ns, and finally stabilized at 0.33 nm, which reflected the good stability
of the whole system to some extent. In addition, the docking score of the compound was
−6.3 kcal/mol. The JQT system was in equilibrium after 100 ns, but finally stabilized at
0.45 nm, and the score of the JQT complex was −6.2 kcal/mol. Overall, both systems could
be in equilibrium after 150 ns simulation, and the stability of the two systems was good.
Compound 51320 had better system stability.

2.6.2. RMSF Analysis

In order to determine the deviation of the ligand from the initial posture and the
degree of movement of protein residues, the root mean square fluctuation (RMSF) values
of all sampled conformations during the 30 ns simulation were also calculated. RMSF
fluctuates greatly, indicating that the residue is unstable, otherwise the residue is stable.
The RMSF for residue i was calculated from the following Equation (2).
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RMSFi =

√
1
T

T

∑
t=1

<
(
r′ i(t)

)
− ri

(
tre f

)
)2 > (2)

where T is the overall trajectory time, ri is the residue location, tre f is the reference time, r′

is the location of atoms in residue i after aligned on the reference, and the angle brackets
(〈 〉) are the average of the square distance.

The RMSF of two compounds was analyzed to measure the displacement of specific
atoms during the simulation. In Figure 6b, the final image results of the two systems
basically overlap between 0.05 and 1.25 nm, while RMSF values of docking pocket and
residue generating interaction force are both lower than 0.25 nm, which to some extent
indicates that the flexibility of the two systems is low, and the overall effect of compound
binding is better.

2.7. MM/GBSA Analysis

Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) is an effective
and reliable method for calculating the free energy of binding of small inhibitors to their
protein targets. Another important indicator that considers the potential affinity of a ligand
to its target is the free energy of binding calculated using MM-PBSA and MD. In general,
complexes with lower binding free energy can be considered more stable, and their ligands
are expected to have higher activity and potency. We summarize the interaction energy
and binding free energy of the two complexes in Figure 7a,b, respectively. The MM/GBSA
of the complex system is calculated from a single trajectory collected from the respective
100 ns simulation (Table 5). The analysis of the contribution of each energy term shows
that the electrostatic interaction of 51320 (−179.032 kJ/mol) (Figure 8b) is much stronger
than the corresponding term of JQT (Figure 8a) and PD-L1 (12.196 kJ/mol). Therefore, the
compounds screened will be able to maintain a lasting interaction with the desired protein.
The quantitative information on the contribution of each amino acid residue to energy is
very helpful for a better understanding of the binding mechanism of inhibitor molecules.
The analysis of the selected compounds in Figure 8 revealed that MET-115, TYR-56, and
ILE-54 have high energy contributions in JQT and 51320. It can be seen from the above
results that the selected compound can maintain long-term interaction with the binding
site of the PD-L1 protein, resulting in the inhibition of the target protein.
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Table 5. Binding energy of binding for the protein complexed with ligands JQT, 51320.

Criteria JQT 51320

Van der Waal energy (kJ/mol) −291.250 ± 1.797 −227.131 ± 21.896
Electrostatic energy (kJ/mol) 12.196 ± 11.229 −179.032 ± 18.056

Polar solvation energy
(kJ/mol)

111.917 ± 12.103 271.823 ± 28.866

SASA energy (kJ/mol) −19.948 ± 0.176 −20.535 ± 0.727
Binding energy (kJ/mol) −187.084 ± 0.748 −154.875 ± 25.470
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3. Discussion

In recent years, anti PD-L1 monoclonal antibodies have also shown positive reac-
tions in clinical trials of various malignant tumors. However, antibody drugs have some
shortcomings, such as immunogenicity problems and poor tumor tissue permeability,
resulting in a low overall response rate of PD-1/PD-L1 antibody drugs [29]. At present,
small molecule inhibitors based on PD-1/PD-L1 are gradually recovering. Marine natural
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products are closely related to the fields of drug discovery and molecular biology, and have
always attracted the attention of the scientific community. Therefore, our research aims to
use marine natural products to perform virtual screening of PD-L1 detection sites.

In this study, we collected 7 structures of PD-L1 with low molecular mass inhibitor
by reading the literature. A structure-based pharmacophore model was constructed by
using DS 4.5, and 6R3K with the highest selection score was selected. The pharmacophore
model constructed by the complex was used to screen the marine natural product database.
The pharmacophore model is validated by the active compound, and the AUC under
the ROC curve indicates that the model has good distinguishing ability. The validated
pharmacophore model was used in the virtual screening process. A total of 12 compounds
were retrieved for hits and further screened by molecular docking methods. According to
the molecular docking score, the first two compounds with a better binding score than the
original ligand JQT (−6.2 kcal/mol) were selected for further verification.

We conducted interaction analysis from the perspective of molecular docking. The rich
interaction types between compound 513320 and protein can be seen, the docking result
is reliable, and the selected conformation can be further analyzed. In addition, quantum
mechanics/molecular mechanics (QM/MM) calculations can be performed on the complex
to select conformations from docking simulations [46]. After years of development and cal-
ibration, QM/MM hybrid method has become an indispensable tool to study the dynamics
of a variety of chemical and biochemical processes. For example, an article uses a molecular
docking method combining quantum mechanics and molecular mechanics (QM/MM) to
determine the resuscitation pathway of inhibited AChE [47]. Another article studied the
reaction mechanism between oxime and MmAChE, using the sequential QM/docking
(MM) method [48]. QM/MM is mostly used to characterize and study the transition state
and activation energy of enzyme reactions. The conformation calculated by this method
describes the surrounding environment in more detail. However, the calculation becomes
more complicated and not easy to control. We selected the conformation by analyzing the
interaction between molecules and combining scores, which not only pays attention to the
binding mode but also has scores for reference. However, the influence of the environment
is not considered, and some compounds will change the docking conformation due to
environmental changes. All in all, it is better to use QM/MM for the selection of the
molecular conformation of the enzyme’s active target. It is more visual and convenient
to use molecular interaction force to choose the conformation of other molecules. In the
future, further QM/MM research on PD-L1 and molecules can be carried out for better
selection of molecular conformations.

The two selected compounds 51320 and 37080 have been evaluated based on ADME
characteristics, and the 51320 showed good ADME characteristics. Compound 37080 vio-
lates Lipinski’s Five Rules, so this compound was skipped for further evaluation. Com-
pounds with good ADME properties were further evaluated for toxicity properties to
measure harmful effects on humans or animals. Toxicity analysis found that the selected
compound 51320 has very low toxicity and JQT has cytotoxicity. Our selected compound
51320 has no cytotoxicity and is better than JQT.

The MD simulation method identifies the stability of the compound to the protein
binding site. The 150 ns simulation trajectory was searched and analyzed based on RMSD
and RMSF to confirm the stability of the compound and protein binding site. In addition, the
MM/GBSA calculated from a single trajectory found a high ∆G binding value, indicating
that the selected protein-ligand complex has long-term simulation stability.

All in all, marine natural products provide a lot of information for the discovery of
new drugs. Through virtual screening, small-molecule inhibitors of PD-L1 were efficiently
identified from more than 52,000 marine natural products. The expansion and further
optimization of the screening range can finally identify useful immunomodulators to help
improve public health.
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4. Materials and Methods
4.1. Structure-Based Pharmacophore Modeling and Virtual Screening
4.1.1. Complex-Based Pharmacophore Modeling

Our first goal in this project was to collect as much information as possible about PD-
L1 as an inhibitor target. Through a literature search, we downloaded 7 PD-L1 compounds
and small molecule inhibitors from the PDB. Discovery Studio 4.5 was used to establish a
pharmacophore model based on the compound (Table 1). The pharmacophore model with
the highest score was used to screen the compound.

4.1.2. Pharmacophore Model Validation

In the modeling process, the receiver operating characteristic (ROC) curve analysis
and verification method built in DS 4.5 was used. Pharmacophore validation helps to assess
the potential properties of active and inactive compounds, usually derived from specific
protein-ligand interactions. A total of 90 active antagonists obtained from patent and
literature searches were used to validate the pharmacophore model, which is composed of
60 active compounds and 30 inactive compounds. Then, the generated pharmacophore was
verified by using the verification option in the receptor ligand pharmacophore generation
protocol implemented in DS 4.5. From the area under the ROC curve (AUC), we can
judge whether a pharmacophore has successfully selected active ingredients and removed
inactive ingredients [49,50]. The area under the ROC curve (AUC) is 0 ≤ A ≤ 1. When
A > 0.5, the closer A is to 1, the higher the diagnostic accuracy. When A = 0.5, the diagnosis
does not work at all. When A < 0.5, it does not meet the actual situation.

4.1.3. Virtual Screening Based on Pharmacophore

The marine small molecule databases (MND, SWMD, CMNPD) were screened accord-
ing to the characteristics of the pharmacophore. DS 4.5 created and acquired 3D models in
the case of protein-ligand interactions. These compounds were directly transferred to the
database list for rapid virtual screening based on pharmacophore characteristics. According
to the pharmacophore matching score, the fitted hit compounds were ranked and further
verified. Of the 20 molecules obtained, a total of 12 hits were selected after careful visual
inspection.

4.2. ADME and Toxicity Test
4.2.1. ADME

ADME is important to analyze the pharmacodynamics of the proposed molecule
which could be used as a drug. The Swiss ADME server (http://www.swissadme.ch/,
accessed on 9 October 2021) was used to evaluate the selected ligands which were harvested
from PubChem, which was done on the basis canonical SMILES [38]. The ADME properties
of the chosen compounds were calculated. The major ADME-associated parameters such
as pharmacokinetic properties and the solubility of the drug were considered. The values
of the observed properties are presented in Table 3.

4.2.2. Toxicity Test

Calculation-based methods have made it possible to obtain a safety profile of the
desired compound to measure toxicity through computer methods. ProTox-II (http://
tox-new.charite.de/protox_II/, accessed on 9 October 2021) server was used to determine
the toxic effects of the two selected compounds [51]. The ProTox-II server predicts the
median lethal dose (LD50), organ toxicity (hepatotoxicity), and toxicological endpoint
(immunotoxicity and cytotoxicity) of the query molecule.

4.3. MD Simulation

In order to further verify the results obtained, the second docking program CDOCKER
on DS 4.5 was adopted. The results were evaluated based on the interaction energy of
CDOCKER, and a higher interaction energy of CDOCKER meant greater beneficial binding.

http://www.swissadme.ch/
http://tox-new.charite.de/protox_II/
http://tox-new.charite.de/protox_II/
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After docking, the compound with the highest binding energy for each target is
simulated by MD simulation to check the stability of the compound in the binding pocket.
Then, GROMACS 2019.1 software package [52], gromos54a7atb.ff force field and single
point charge (SPC216) model was used for molecular dynamics simulation of the 150 ns.
In order to ensure the total charge neutrality of the simulated system, a corresponding
number of sodium ions was added to replace the water molecules in the three systems to
produce a solvent box of appropriate size. Then, periodic boundary conditions (PBC) [53]
were applied in the three directions of the system. Using the gromos54a7_atb force field,
the force field parameters of the entire atom can be obtained from the ATB website (http://
atb.uq.edu.au/, accessed on 9 October 2021). A first pass (EM) was conducted to minimize
the energy of 50,000 steps of the entire system at 300 K, then through MD simulation
with location constraints, through NVT collection (constant particle number, volume and
temperature), and finally through NPT collection (constant particle number, pressure, and
temperature) [53]. In addition, we balanced enzymes, ligand molecules, and solvents.

4.4. MM/GBSA

Improved MM-PBSA or Molecular Mechanics–Poisson Boltzmann Surface Area is an
opensource software used to calculate the free energy of binding between the receptor and
the inhibitor. As a scoring function, MM-PBSA has been used in the calculation method of
drug design [54]. In this study, MM-PBSA was used to determine the binding free energy
of JQT and molecule 51320, respectively.

The following Equation (3) describes the binding free energy:

Gbinding = Gcomplex −
(

Gprotein + Gligand

)
(3)

The free energy of protein-inhibitor complex is represented by GComplex, the free energy
of protein in solvent is represented by Gprotein, and the free energy of inhibitor in solvent is
represented by Gligand.

5. Conclusions

PD-L1 has become a therapeutic target for many malignant tumors. In this study, a
structure-based pharmacophore model was generated using the crystal structure of PD-
L1 (6R3K) and the combined small molecule inhibitor JQT. These were used for virtual
screening of a marine natural product database. Molecular docking, ADME analysis,
and toxicity studies were performed on the obtained compounds. Subsequently, the
molecule 51320 was selected for molecular dynamics simulation and MM/GBSA methods,
revealing that 51320 is a potential small molecule inhibitor that helps inhibit PD-L1. The
small molecule can be further evaluated through different laboratory-based experimental
techniques to help determine the activity of the compound, thereby providing an alternative
to immunotherapy.
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