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Abstract: Loss of muscle mass is the primary symptom of sarcopenia. Protein intake is recommended
to prevent muscle mass loss, and Spirulina platensis, a microalga with high protein content, is a
potential protein supplement. Here, we evaluated the differentiation ability of C2C12 cells and
the inhibitory effect of Spirulina hydrolysates (SPH) prepared by Collupulin on dexamethasone
(DEX)-treated C2C12 cells. SPH contained 578.27 mg/g protein and 92.30 mg/g branched-chain
amino acids. SPH increased C2C12 myotube length and diameter, likely owing to increased MyoD1
and Myf5 expression. Inhibition of increased Atrogin-1, MuRF-1, and FoxO3 expression by SPH
in DEX-treated C2C12 cells suppressed DEX-induced muscle atrophy. Moreover, SPH inhibited
the DEX-induced increase in cytosolic p-Akt protein expression and suppressed the increase in
nuclear FoxO3a protein expression, thereby suppressing the increase in the protein expression of
the ubiquitin-proteasome-related factors Atrogin-1 and MuRF-1, which are involved in muscle
atrophy. SPH suppressed DEX-induced muscle atrophy by activating the Akt/FoxO3a pathway.
SPH promoted C2C12 myoblast differentiation into myotubes and inhibited DEX-induced myotube
atrophy by suppressing Atrogin-1 and MuRF-1 expression and regulating the FoxO3a transcription
factor. Collectively, SPH can be used as a functional food to inhibit muscle atrophy and promote
muscle regeneration.

Keywords: Spirulina; Collupulin; muscle atrophy; dexamethasone

1. Introduction

Sarcopenia refers to a decrease in skeletal muscle mass owing to a decrease in the
number and area of muscle fibers seen with increasing age. This significantly impacts
the performance of daily life functions, thereby limiting the ability of the elderly to lead
independent lives [1,2]. Sarcopenia is an important risk factor for physical disability.
Maintaining adequate skeletal muscle mass and strength is crucial for maintaining normal
body functions [3]. An imbalance in protein metabolism leads to sarcopenia, although
the exact contribution of each factor depends on the research model [2,4]. Metabolic
factors can contribute to this imbalance, including changes in anabolic hormone levels,
catabolic stimulation due to inflammation or disease, poor physical activity, and nutritional
factors, such as insufficient protein intake [4]. Additionally, several intracellular changes
are involved, including regulation of protein synthesis, protease activation, ubiquitin
conjugation, and autophagy [5].
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Although the exact mechanism related to muscle atrophy is obscure, the activation
of the ubiquitin-proteasome pathway is believed to be the primary cause of increased
proteolysis. Moreover, muscle RING-finger protein-1 (MuRF1) is expressed in skeletal
muscles and is directly involved in muscle protein degradation [6,7]. In addition, the
expression of myogenin and myogenic differentiation 1 (MyoD1), which are transcription
factors involved in muscle differentiation, is reduced owing to the activation of specific
genes during muscle atrophy [8,9].

Hence, there is an increasing demand for food ingredients and natural substances that
can help in muscle development and enhancement and have relatively low side-effects.
Substances with this potential activity include proteins and peptides present in protein
hydrolysates [10]. Moreover, oyster hydrolysate [11], potato protein hydrolysate [12], and
collagen hydrolysate [13] exhibit muscle atrophy-inhibitory effects. In particular, proteins
and peptides of marine origin possess this potential biological activity. Spirulina platensis, a
blue-green alga, has a high protein content (55–70%) and contains essential amino acids.
Furthermore, Spirulina is rich in the phycobiliproteins phycoerythrin, allophycocyanin, and
phycocyanin, which account for 60% of its total protein content. Phycocyanin in Spirulina
is the key ingredient used in food, cosmetics, and pharmaceuticals [14]. In addition,
phycocyanin is one of the pigment components present in Spirulina that shows various
physiological activities, such as anti-inflammatory, antidiabetic, and hepatoprotective
activities. It is also receiving attention as a potential substance with angiotensin-converting
enzyme-inhibitory and antioxidant activities, in addition to affecting lipid metabolism.
These pigment components are considered potent pharmacological and medicinal agents
owing to their antioxidant capacity [15,16]. However, previous studies did not analyze
the inhibitory effect of Spirulina hydrolysates on muscle atrophy. In the present study,
we found that Spirulina hydrolysate (SPH) exerts an inhibitory effect on dexamethasone
(DEX)-induced atrophy of C2C12 cell-derived myotubes.

2. Results
2.1. The SPH Composition and Effect on C2C12 Cell Viability

The crude protein content of raw Spirulina was 671.67 mg/g, that of the Spirulina
water extract was 27.12 mg/g, and that of SPH, a hydrolysate prepared by collupulin,
was 578.27 mg/g, which was equivalent to 86.1% of the protein content in raw Spirulina
(Table 1). Regarding the total amino-acid content, the glutamic acid and aspartic acid
contents were 115.24 mg/g and 71.25 mg/g in raw Spirulina, 90.70 mg/g and 49.74 mg/g
in the water extract, and 94.73 mg/g and 50.57 mg/g in SPH, respectively (Table 1). The
content of branched-chain amino acids (BCAAs), the muscle-forming amino acids, was
133.41 mg/g in raw Spirulina, 80.16 mg/g in the water extract, and 92.30 mg/g in SPH
(Table 1). SPH showed higher crude protein, amino-acid, and phycocyanin contents than
the water extract. The cell viability assay revealed that SPH did not affect the viability of
C2C12 cells treated with 25–1000 µg/mL SPH for 24 h (Figure S1), indicating that, at a
concentration less than 1000 µg/mL, SPH was not cytotoxic. Thus, subsequent experiments
were conducted with 1000 µg/mL or lower SPH concentration. To evaluate the myoblast
differentiation-promoting effect of SPH, SPH was treated during the 6 day differentiation
induction period. It was confirmed that SPH did not affect cell viability when treated for 6
days at a concentration of 50–150 µg/mL (Figure S2).

Table 1. Crude protein, phycocyanin, and total amino-acid contents of raw Spirulina, Spirulina
hydrolysate, and the water extract of Spirulina.

mg/g Spirulina
Spirulina Extract

Water Extract Enzyme Hydrolysis

Crude protein 671.67 ± 5.76 27.12± 1.52 578.27 ± 4.68
C-phycocyanin 0.68 ± 0.002 2.09 ± 0.02

Allophycocyanin 0.47 ± 0.001 2.19 ± 0.01
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Table 1. Cont.

mg/g Spirulina
Spirulina Extract

Water Extract Enzyme Hydrolysis

Amino acids

Aspartic acid 71.25 ± 2.98 49.73 ± 1.29 50.57 ± 2.48
Glutamic acid 115.24 ± 8.98 90.69 ± 1.08 94.73 ± 2.47

Serine 35.88 ± 0.58 22.40 ± 1.02 24.09 ± 1.08
Histidine 10.81 ± 1.89 4.56 ± 0.17 6.84 ± 0.36
Glycine 38.59 ± 0.82 24.39 ± 0.31 23.14 ± 0.73

Threonine 36.55 ± 1.34 24.21 ± 0.49 27.62 ± 0.93
Arginine 51.39 ± 1.04 31.93 ± 1.18 30.27 ± 0.87
Alanine 54.18 ± 1.98 42.86 ± 1.07 37.54 ± 1.58
Tyrosine 28.59 ± 1.16 19.26 ± 0.87 16.09 ± 0.32

Valine 38.58 ± 0.73 24.76 ± 1.19 28.61 ± 0.73
Methionine 17.11 ± 0.33 11.32 ± 0.76 12.04 ± 0.39

Phenylalanine 33.61 ± 1.06 16.94 ± 0.58 20.70 ± 0.80
Isoleucine 36.45 ± 0.73 24.27 ± 0.79 25.97 ± 0.78
Leucine 58.38 ± 1.99 31.12 ± 1.03 37.71 ± 1.16
Lysine 32.47 ± 1.25 15.93 ± 0.77 18.04 ± 0.66
Proline 14.72 ± 0.37 7.755 ± 0.53 9.25 ± 0.58
BCAA 133.41 ± 3.45 80.16 ± 3.01 92.30 ± 2.67

Data are expressed as the mean ± standard deviation. BCAA: branched-chain amino acid.

2.2. Effect of SPH on C2C12 Myotube Length and Diameter

Undifferentiated myoblasts differentiate into mature myotubes [17,18]. To evaluate the
effect of SPH on myoblast differentiation, changes in the myotube length and diameter were
measured. Giemsa staining confirmed that the differentiation of myoblasts into myotubes
increased as the differentiation duration increased (Figure S3).

In addition, the myotubes tended to become longer and thicker with increasing dif-
ferentiation duration (Figure 1). On day 6 of differentiation, 75, 100, and 150 µg/mL
SPH significantly increased myotube diameter compared to the control group (p < 0.05,
p < 0.01, and p < 0.001, respectively). Long and thick myotubes were formed when SPH
concentration was greater than 75 µg/mL, which indicates that SPH can help promote
myoblast differentiation.

2.3. Effect of SPH on C2C12 Myotube Differentiation-Related Factors

To evaluate the effect of SPH on C2C12 myotube differentiation and expression
of related factors, the mRNA expression of MyoD1, myogenic factor 5 (Myf5), and
myogenin was determined by real-time quantitative polymerase chain reaction (qPCR;
Figure 2). SPH did not stimulate MyoD1 mRNA expression on day 2, whereas SPH
(>75 µg/mL) significantly increased MyoD1 expression compared to the control group
on day 4 (p < 0.001). On day 6, only 150 µg/mL SPH showed a significant difference
compared to the control group (p < 0.01). Furthermore, SPH effectively increased MyoD1
expression at the mid-stage (day 4) of myotube differentiation. There was no difference
in Myf5 expression at the initial stage of differentiation (day 2) among the groups. At the
middle (day 4) and late (day 6) stages of differentiation, SPH enhanced Myf5 expression
compared to the control group (p < 0.01 and p < 0.001, respectively). Similarly, myogenin
expression was significantly higher in the 100 and 150 µg/mL SPH groups than in the
control group on day 6 of differentiation (p < 0.01 and p < 0.001, respectively). Collec-
tively, SPH contributed to the increase in myotube length and diameter by increasing
the expression of MyoD1 and Myf5.
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Figure 1. Effect of Spirulina hydrolysate (SPH) on length and diameter of C2C12 myotubes. Data are 

expressed as the mean ± standard deviation (SD). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. CON 

group (analysis of variance (ANOVA) followed by Tukey’s test). CON: control. 
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Figure 1. Effect of Spirulina hydrolysate (SPH) on length and diameter of C2C12 myotubes. Data are
expressed as the mean ± standard deviation (SD). * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. CON
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Figure 2. Effect of SPH on mRNA expression of (A) MyoD1, (B) Myf5, and (C) myogenin in C2C12 

myotubes according to the differentiation duration. Data are expressed as the mean ± SD. ** p < 0.01, 
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Figure 2. Effect of SPH on mRNA expression of (A) MyoD1, (B) Myf5, and (C) myogenin in C2C12
myotubes according to the differentiation duration. Data are expressed as the mean ± SD. ** p < 0.01,
and *** p < 0.001 vs. CON group (ANOVA followed by Tukey’s test). CON: control, SPH: Spirulina
hydrolysate, MyoD1: myogenic differentiation 1, Myf5: myogenic factor 5.

2.4. Effect of SPH on the Protein Expression of MyoD1 and Myogenin of C2C12 Myotubes at
Day 6 of Differentiation

The effect of SPH on the protein expression of myotube differentiation-related factors
in the late stage of differentiation was confirmed by Western blotting (Figure 3). On
day 6 of differentiation, MyoD1 protein expression was significantly increased by SPH
treatment (>75 µg/mL) compared to the CON group (p < 0.01 and p < 0.001; Figure 3A).
In addition, SPH treatment (>75 µg/mL) significantly increased myogenin expression
compared to the CON group (p < 0.05 and p < 0.01, Figure 3B). Therefore, SPH (150 µg/mL)
treatment promoted muscle differentiation by significantly increasing the mRNA and
protein expression of muscle differentiation factors such as MyoD1 and myogenin in the
late stage of differentiation.
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Figure 3. Effect of SPH on the protein expression of (A) MyoD1 and (B) myogenin in C2C12 my-
otubes. Cells were differentiated for 6 days with SPH treatment. Data are expressed as the mean ± SD.
* p < 0.05, ** p < 0.01, and *** p < 0.001 vs. CON group (ANOVA followed by Tukey’s test). CON: con-
trol, SPH: Spirulina hydrolysate, MyoD1: myogenic differentiation 1.

2.5. Effect of SPH on Myotube Length and Diameter in DEX-Treated C2C12 Myotubes

When muscle atrophy is induced, the number and diameter of muscle fibers decrease
through the breakdown of muscle proteins, resulting in a decrease in total muscle mass [19,20].
To evaluate the protective effect of SPH on muscle atrophy, the length and thickness of
muscle fibers were analyzed by Jenner–Giemsa staining (Figure S5). In the CON group
treated only with DEX, the length and width of the myotube were significantly reduced
compared to the NOR group (p < 0.001; Figure 4A,B), confirming that DEX-induced muscle
atrophy was effectively induced. In contrast, SPH (150 µg/mL) treatment significantly
increased muscle fiber length and thickness compared to the CON group (p < 0.001 and
p < 0.01, respectively; Figure 4A,B). Myotube degradation was inhibited by SPH treatment,
indicating that SPH could protect against DEX-induced muscle atrophy.
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2.6. Effects of SPH on the Expression of Atrogin-1, MuRF-1, and Forkhead Box O3a (FoxO3a) in
DEX-Treated C2C12 Myotubes

The effect of SPH on DEX-induced muscle atrophy was evaluated by measuring the
mRNA expression of Atrogin-1 and MuRF1, muscle-specific ubiquitin ligases (Figure 5A,B).
The mRNA expression of Atrogin-1 and MuRF-1 was significantly higher (p < 0.001) in the
control group (cells treated with 50 nM DEX) compared to the normal group. In contrast,
SPH and DEX cotreatment suppressed the DEX-induced increase in Atrogin-1 and MuRF-
1 expression, and a significant inhibitory effect of SPH was revealed at 75–150 µg/mL
concentrations, compared to the control group (p < 0.05 and p < 0.001, respectively).
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Figure 5. Effect of SPH on mRNA expression of (A) Atrogin-1, (B) MuRF-1, and (C) FoxO3a in C2C12
myotubes treated with dexamethasone (DEX; 50 nM). Data are expressed as the mean ± SD. * p < 0.05,
** p < 0.01, and *** p < 0.001 vs. CON group. ### p < 0.001 for CON group vs. NOR group (ANOVA
followed by Tukey’s test). NOR: normal, CON: control, SPH: Spirulina hydrolysate, DEX: dexametha-
sone, Atrogin-1: atrogin-1/a muscle-specific F-box protein, Murf-1: muscle RING-finger protein-1,
FoxO3a: forkhead box O3a.

FoxO3a is a nuclear factor that regulates muscle atrophy and plays a role in regulating
Atrogin-1 and MuRF-1 expression, which promote protein degradation in skeletal muscles.
FoxO3a expression was significantly higher in the control group compared to the normal
group (p < 0.001; Figure 5C). However, SPH decreased Foxo3a expression, which was
increased by DEX, in a dose-dependent manner. In particular, 100 and 150 µg/mL SPH
significantly lowered FoxO3a expression compared to the control group (p < 0.01). These
results suggest that SPH suppressed the DEX-induced increase in the expression of muscle
atrophy factors.

2.7. Effect of SPH on the Protein Expression of Cytosolic Akt and Nuclear Atrogin-1, MuRF-1, and
FoxO3a in DEX-Treated C2C12 Myotubes

To investigate the mechanism underlying the inhibitory effect of SPH on muscle atro-
phy, proteins involved in the cytoplasmic and nuclear signaling pathways were assessed
by Western blotting (Figure 6). Akt, a major factor in signaling pathways related to pro-
tein metabolism, is involved in muscle atrophy. DEX significantly reduced Akt protein
phosphorylation in the control group compared to the normal group (p < 0.001; Figure 6A).
Contrarily, SPH increased Akt protein phosphorylation, which was reduced by DEX, in
a dose-dependent manner. In fact, 150 µg/mL SPH significantly increased p-Akt protein
levels compared to the control group (p < 0.05).

Furthermore, DEX significantly increased the expression of nuclear muscle atrophy-
related proteins, such as Atrogin-1, MuRF-1, and FoxO3a, compared to the normal group
(p < 0.001; Figure 6B–D). However, SPH inhibited the increase in the expression of nucleo-
proteins involved in muscle atrophy in a concentration-dependent manner. The increase
in Atrogin-1 and MuRF-1 protein expression was significantly inhibited by SPH at all
concentrations (75–150 µg/mL; p < 0.05, p < 0.01, and p < 0.001, respectively). Similarly,
100 and 150 µg/mL SPH significantly inhibited the increase in FoxO3a protein expression
compared to the control group (p < 0.05 and p < 0.01, respectively). SPH suppressed the
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DEX-induced increase in mRNA and protein expression of Atrogin-1, MuRF-1, and FoxO3a;
hence, it is a potential therapeutic agent to suppress muscle atrophy.
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Figure 6. Effect of SPH on the protein expression of (A) cytosolic Akt and nuclear (B) FoxO3a,
(C) MuRF-1, and (D) Atrogin-1 in C2C12 myotubes treated with DEX (50 nM). Data are expressed as
the mean ± SD. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. CON group. ### p < 0.001 for CON group
vs. NOR group (ANOVA followed by Tukey’s test). NOR: normal, CON: control, SPH: Spirulina
hydrolysate, DEX: dexamethasone, Akt: protein kinase B, Atrogin-1: Atrogin-1/a muscle-specific
F-box protein, Murf-1: muscle RING-finger protein-1, FoxO3a: forkhead box O3a.

3. Discussion

Muscle atrophy, along with malnutrition and decreased physical activity, is commonly
observed in chronic diseases, and several intracellular changes, such as protein synthesis
regulation, protease activation, ubiquitin conjugation, and autophagy, are known to be
involved [21]. The increase in muscle differentiation capacity and muscle inhibition mini-
mize the loss of muscle mass, along with protein-rich nutrition and physical exercise [22].
Hydrolysates composed of active peptides supply proteins that are easily absorbed and can
prevent age-related diseases. Hydrolysates of microalgal proteins, such as Chlorella vulgaris,
Dunaliella salina, and S. platensis, have high utility value as active peptides [23]. The hy-
drolysate of Spirulina shows antioxidant [24], anti-inflammatory [25], anticancer [26], and
immune-enhancing activities [25]. In this study, the SPH prepared by Collupulin con-
tained 578.27 mg/g protein, 2.09 mg/g C-phycocyanin, and 2.19 mg/g allophycocyanin
(Table 1). Because microalgae are cultured in an environment exposed to high oxidative
stress, they produce pigments with antioxidant activity, such as chlorophyll, carotene,
and phycobiliprotein, making them beneficial for health. BCAAs are involved in muscle
protein synthesis, and, among BCAAs, leucine intake reportedly inhibits muscle loss by
suppressing Atrogin-1 expression and autophagy [27,28]. Here, SPH contained 92.30 mg/g
BCAAs; therefore, SPH may be a useful protein source to inhibit muscle atrophy.

Myogenesis (myogenic differentiation) is a necessary process in muscle regenera-
tion. In this process, several myoblasts fuse and differentiate into myotubes, which are
multinucleated tubular cells [29]. MyoD and Myf-5 are classified as primary myogenic
regulators and play a role in inducing myoblasts, whereas myogenin, Myf-6, and myocyte
enhancer factor 2, which are the secondary myogenic regulators, play a role in differentiat-
ing myoblasts into myotubular cells [18]. In this study, SPH increased the expression of
the representative myogenic factors MyoD1, Myf5, and myogenin (Figure 2). Additionally,
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SPH seemed to significantly contribute to the increase in MyoD1 and Myrf5 expression.
The SPH-mediated increase in the mRNA expression of myogenic factors appeared to be
involved in the formation of long and thick myotubes (Figures 1 and S2), suggesting that
SPH promotes C2C12 myotube differentiation.

Chronic diseases and aging cause muscle protein imbalance, and an increase in pro-
teolysis via activation of the ubiquitin-proteasome pathway is considered to be involved
in this process. Atrogin-1 and MuRF1 are the major ubiquitin ligases directly involved in
muscle protein degradation [30,31]. DEX, a synthetic glucocorticoid, increases the rate of
proteolysis in muscles and induces muscle atrophy in vivo and in vitro [32]. In a muscle
atrophy model, the expression of Atrogin-1 and MuRF1 increased, and that of muscle differ-
entiation factors, such as myogenin and MyoD1, decreased [33]. MuRF-1 mRNA expression
was significantly increased due to DEX (25-100 nM) treatment, but DEX (>75 nM) showed
low cell viability (Figure S4); thus, the concentration of DEX inducing muscle atrophy was
set to 50 nM.

In the present study, SPH suppressed the DEX-induced increase in the mRNA and
protein expression of Atrogin-1 and MuRF1 (Figures 3A,B and 4C,D). The DEX-induced
increase in the mRNA and protein expression of FoxO3a, a muscle-specific transcription
factor in the nucleus, was also suppressed by SPH (Figures 3C and 4B). FoxO3a maintains
cell survival by regulating the cell cycle, differentiation, and proliferation. However,
sustained FoxO3a activation leads to proteolysis and muscle atrophy [34]. Inhibition of
Foxo3a activation suppresses Atrogin-1 induction and DEX-induced muscular atrophy. Akt
phosphorylation inhibits muscle atrophy by blocking the nuclear translocation of FoxO3, an
important downstream target protein of the PI3K/Akt signaling pathway [35]. Blocking the
nuclear translocation of FoxO inhibits FoxO-dependent gene activation. In turn, decreased
nuclear FoxO protein expression reduces Atrogin-1 and MuRF1 protein levels and inhibits
proteolysis [36]. Here, SPH inhibited the DEX-induced decrease in Akt phosphorylation
(Figure 4A).

In conclusion, the inhibitory effect of SPH on muscle atrophy was attributed to the
suppression of the DEX-induced increase in the expression of muscle atrophy-related genes
and proteins in C2C12 myotubes. In particular, the inhibitory effect of SPH on muscle
atrophy was apparently due to the increase in the expression of genes encoding muscle
differentiation factors (MyoD1, Myf5, and myogenin) and downregulation of the induced
gene and protein expression of muscle atrophy factors (Atrogin-1, MuRF-1, and FoxO3a).
SPH showed an inhibitory effect on muscle atrophy via activating the Akt/FoxO3a sig-
naling pathway. Future studies should elucidate the efficacy and mechanism of SPH in
inhibiting muscle atrophy using animal models to develop SPH as a health functional food
material for the prevention, treatment, and improvement of muscle atrophy.

4. Materials and Methods
4.1. Materials

Spirulina powders were purchased from Earthrise Nutritional LLC (Irvine, CA, USA).
Spirulina powder was dissolved in 0.05 M citric acid buffer (pH 5.0, w/v = 1:20), and
Collupulin (DSM Food Specialties, MA Delft, the Netherlands) was added at 3% by weight
of the substrate. After 8 h of enzymatic reaction (50 ◦C, 120 rpm), the enzyme was in-
activated (95 ◦C, 15 min), and the supernatant (SPH) was collected by centrifugation
(5000 rpm, 20 min, 4 ◦C). SPH was lyophilized and stored at −20 ◦C until the experi-
ment. The crude protein and amino-acid content of SPH was measured using an automatic
amino-acid analyzer (Biochrom 20, Pharmacia-Biotech, Freiburg, Germany) [37]. Dul-
becco’s modified Eagle medium (DMEM), fetal bovine serum (FBS), horse serum (HS), and
penicillin/streptomycin (PS) were purchased from WELGENE (Daegu, Korea). DEX and
water-soluble tetrazolium salt-8 (WST-8) assay kits were purchased from Sigma-Aldrich
Chemical Co., Ltd. (St. Louis, MO, USA) and Biomax (Seoul, Korea), respectively. Primary
antibodies against MyoD1 (1:500, sc-12732, SantaCruz, Dallas, TX, USA), Myogenin (1:500,
sc-377460, SantaCruz), MAFbx/Atrogin-1 (1:1000, ab168372, Abcam, Cambridge, MA,
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USA), MuRF1 (1:1000, PA5-76695, Invitrogen, Carlsbad, CA, USA), Akt (1:1000, #9272, Cell
Signaling Technology, Beverly, MA, USA), p-Akt (1:1000, #9271, Cell Signaling Technol-
ogy), FoxO3α (1:1000, #2497, Cell Signaling Technology), p-FoxO3α (1:1000, #9466, Cell
Signaling Technology), GAPDH (1:1000, #5174, Cell Signaling Technology), and Lamin B1
(1:1000, #12586, Cell Signaling Technology) were used for protein analysis. Horseradish
peroxidase-linked anti-rabbit IgG secondary antibodies (1:2000, #7074) were obtained from
Cell Signaling Technology.

4.2. Myotube Differentiation and DEX-Induced Muscle Atrophy of C2C12 Cells

The C2C12 cell line (CRL-1772) was obtained from ATCC (LGC Promochem, Tedding-
ton, UK). C2C12 myoblasts (3 × 105 cells/well) were cultured in six-well culture plates
with growth medium (DMEM containing 10% FBS and 1% PS) for 24 h. When the cells
reached 100% confluence, the medium was replaced with a differentiation medium (DMEM
containing 2% HS and 1% PS) to induce myotube differentiation for 6 days. The differentia-
tion medium was changed every 2 days, and myoblasts were differentiated into complete
myotubes for 6 days. DEX was used to induce muscle atrophy in C2C12 cells. DEX, a
synthetic glucocorticoid, is known to induce muscle atrophy by increasing proteolysis
through modulation of the ubiquitin-proteasome pathway [36]. To induce muscle atrophy,
fully differentiated C2C12 cells were treated with DEX (50 nM) for 48 h for 6 days. SPH
was treated with DEX diluted in DMEM medium (containing 0.5% HS and 1% PS), and
DEX and SPH were freshly supplied every 24 h.

4.3. Cell Viability

The viability of C2C12 myoblasts treated with SPH was confirmed using the WST-8
assay. Briefly, cells were cultured in a 96-well plate (1 × 105 cells/well) in the growth
medium and maintained at 5% CO2 and 37 ◦C. After 24 h, SPH was added at various
concentrations for 24 h or 6 days, and then 10 µL of WST-8 reagent was added. After 1 h,
the absorbance was measured at 450 nm. Cell viability was calculated as the percentage of
the control (0 µg/mL): A450 of SPH-treated cells/A450 of control cells × 100.

4.4. Measurement of Myotube Length and Diameter

Myotube length and diameter were measured using images of Jenner–Giemsa-stained
C2C12 cells [38]. Cultured cells were washed with phosphate-buffered saline (PBS), fixed
with 100% methanol for 5 min, dried for 10 min, diluted three times with sodium phosphate
solution (1 mM PBS, pH 5.6) and Jenner’s staining solution (Sigma-Aldrich Inc.), and
incubated for 5 min. After washing with PBS, the cells were incubated with 1 mL of
20-fold diluted Giemsa stain at 25 ◦C for 10 min, and then washed three times with PBS to
determine the morphological changes of C2C12 cells. To evaluate the shape change, images
were observed at a magnification of 200× using an inverted microscope, and pictures were
captured using the Axio Vision program (Carl Zeiss, Oberkochen, Germany). Myotube
length and diameter were measured and quantified using the ImageJ software (Scion,
Frederick, MD, USA).

4.5. qPCR

Quantification of mRNA expression was performed as described in previous meth-
ods [32] using the SYBR™ Green PCR Master Mix (Applied Biosystems, Foster City, CA,
USA) and StepOne™ Real-Time PCR System (Applied Biosystems). The target mRNA
expression was analyzed by relative quantification using the CT value of glyceraldehyde
3-phosphate dehydrogenase (GAPDH, NM_001289726.1), a widely used housekeeping
gene. The target genes analyzed were MyoD1 (NM_010866.2), Myf5 (NM_008656.5), myo-
genin (NM_031189.2), Atrogin-1/a muscle-specific F-box protein (Atrogin-1, NM_026346.3),
Murf-1 (NM_001039048.2), and FoxO3a (NM_001376967.1).
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4.6. Western Blot Analysis

The prepared cells were lysed according to a previous method [39] using a lysis buffer
containing 250 mM NaCl, 25 mM Tris-HCl (pH 7.5), 10 mM ethylenediaminetetraacetic
acid, 1% NP-40, 0.1 mM phenyl-methyl sulfonyl fluoride, and protease inhibitors. The cell
lysate was centrifuged at 13,000× g and 5 ◦C for 20 min to remove debris. Nuclear fractions
were isolated using NE-PER™ nuclear and cytoplasmic extraction reagents (Thermo Fisher
Scientific Inc., Rockford, IL, USA). After protein quantification, an equal amount of protein
was separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to a nitrocellulose membrane (Schleicher & Schuell GmbH, Keene, NH,
USA). The membrane was probed using an appropriate antibody and enhanced chemilu-
minescence (Amersham Biosciences Corp., Piscataway, NJ, USA) solution to determine
the protein expression. The band of each protein was quantified as the expression ratio
compared to the expression of GAPDH (cytosolic protein) and Lamin B1 (nuclear protein).

4.7. Statistical Analysis

Experimental results are expressed as the mean ± standard deviation. Analysis
of variance was performed to test the significance of the experimental results, and the
results were verified at p < 0.05 using Tukey’s multiple range test. Statistical analysis was
performed using the SPSS statistical program (SPSS12, SPSS Inc., Chicago, IL, USA).

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/md20060365/s1: Figure S1. Cell viability of Spirulina hydrolysate
(SPH)-treated C2C12 cells. C2C12 cells were treated with various concentrations of SPH for 24 h.
Data are expressed as the mean ± standard deviation of three independent experiments. ns: not
significant compared to CON group (ANOVA followed by Tukey’s test). CON: control (0 µg/mL),
SPH: Spirulina hydrolysate; Figure S2. Cell viability of Spirulina hydrolysate (SPH)-treated C2C12
cells. C2C12 cells were treated with various concentrations of SPH for 6 days. Data are expressed as
the mean ± standard deviation of three independent experiments. ns: not significant compared to
CON group (ANOVA followed by Tukey’s test). CON: control (0 µg/mL), SPH: Spirulina hydrolysate;
Figure S3. Photographs of C2C12 myotubes treated with SPH. Jenner–Giemsa staining was performed
on days 2, 4, and 6 of C2C12 cell differentiation; Figure S4. Effect of dexamethasone on (A) cell
viability and (B) relative mRNA expression in C2C12 myotubes. C2C12 cells were treated with
various concentrations of dexamethasone to evaluate cell viability by WST-8 analysis and MuRF-1
mRNA expression by qPCR. C2C12 cells were fully differentiated for 6 days and then exposed to
dexamethasone for 48 h. Data are presented as the mean ± SD. *** p < 0.001 vs. CON group (ANOVA
followed by Tukey’s test). CON: control (0 µg/mL), Murf-1: muscle RING-finger protein-1; Figure S5.
Photographs of C2C12 myotubes treated with SPH in DEX (50 nM)-induced muscle atrophy model.
Jenner–Giemsa staining was performed 48 h after DEX treatment.
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