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Abstract: Tetrodotoxin (TTX) and its analogues are naturally occurring toxins historically responsible
for human poisoning fatalities in Eastern Asia. It is typically linked to the consumption of pufferfish
and, to a lesser extent, marine gastropods and crabs. In the scope of a comprehensive project to
understand the prevalence of emergent toxins in edible marine organisms, we report, for the first
time, the detection of TTX analogues in the soft tissues of edible crabs, the European fiddler crab
(Afruca tangeri) and green crab (Carcinus maenas), harvested in southern Portugal. No TTX was
detected in the analyzed samples. However, three TTX analogues were detected—an unknown TTX
epimer, deoxyTTX, and trideoxyTTX. These three analogues were found in the European fiddler
crab while only trideoxyTTX was found in the green crab, suggesting that the accumulation of TTX
analogues might be influenced by the crabs’ different feeding ecology. These results highlight the
need to widely monitor TTX and its analogues in edible marine species in order to provide adequate
information to the European Food Safety Authority and to protect consumers.
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1. Introduction

Tetrodotoxin (TTX) is a low-molecular-weight, water-soluble neurotoxin with ap-
proximately 30 known structural analogues, collectively known as tetrodotoxins (TTXs),
named after the Tetraodontidae puffer fish family, from which they were initially isolated
(Table 1) [1]. It is known that TTX toxicity depends on the molecular structure and its
affinity to sodium channels of excitable tissues [1,2]. However, the information on the
relative potencies of individual TTX analogues is still limited [3]. Intoxication by TTX
is common in Japan, Taiwan, Bangladesh, and Southeast Asia, and is caused by eating
puffer fish and other marine organisms such as gastropods and crabs [2,4–10] which could
be TTX vectors and pose a food safety risk in the European Union (EU). Other species
belonging to different phyla of marine and terrestrial animals have also been shown to
contain TTXs [2,8]. The widespread distribution of TTXs has been related to exogenous
sources, specifically accumulation via symbiotic hosting of a TTX producer and food chain
transmission [11,12]. The origin of TTXs is thought to be a result of bacterial metabolism,
namely from the genera Pseudomonas, Pseudoalteromonas, and Vibrio, although it has also
been reported in Actinobacteria, Bacteroides, Firmicutes, and Proteobacteria [13,14].

TTX bearers are typically found in tropical ecosystems of Eastern Asia. However, in
recent years, TTX started to be detected in Mediterranean and Atlantic puffer fish, bivalve
molluscs, marine gastropods, and echinoderms [7,15–19]. To ensure consumer protection
in the EU, the market placement of fish species described as TTX bearers (Tetraodontidae,
Canthigasteridae, Molidae, and Diodontidae) is prohibited by European legislation [20,21].
However, the first and only known TTX human intoxication event reported in the EU was
not due to the ingestion of fish, but of a marine gastropod, the trumpet shell Charonia lampas
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(Linnaeus, 1758) (containing 315,000 µg/kg TTX in the digestive gland) presumably caught
off the Algarve coast, south of Portugal [7]. Since then, TTX was also detected in bivalve
molluscs from Greece, the UK, and the Netherlands [17,19,22], which has led the European
Food Safety Authority (EFSA) to recommend a maximum safe limit of 44 µg TTX equiva-
lent (eq)/kg of shellfish meat [3]. More recently, TTX concentrations 7- to 12-fold higher
than this limit were reported in bivalve molluscs from Italy [23,24]. However, TTX and its
analogues are still not regulated or regularly monitored in the EU.

Table 1. Structure of protonated tetrodotoxin and its analogues and correspondent exact masses.

Structure Analogue R1 R2 R3 R4 Molecular
Formula

[M+H]+

Exact Mass
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Recent studies of TTX seasonal variability in Portugal and Spain concluded that TTX ac-
cumulation by bivalves does not pose a risk to consumers, since only trace levels (below limit
of quantification, LOQ) were reported in most of the samples analyzed [15,25–27]. These
results contrast with the high TTX values (above the EFSA-recommended limit) determined
in benthic marine gastropods (up to 315,000µg/kg) and echinoderms (up to 352,886 µg/kg)
along the Portuguese continental platform and the Azores archipelago [7,15,16,28,29]. Nev-
ertheless, as stated in the EFSA’s scientific opinion, more data are still required to make a
reliable TTX exposure assessment and effectively protect consumer health in the EU [3].

The present study was developed in the scope of an emergent toxins monitoring
project regarding edible marine organisms of the Portuguese coast with the purpose to
build reliable knowledge to support decision making and consumer health. Here, we
identify TTX analogues in the edible European fiddler crab Afruca tangeri (Eydoux, 1835)
and green crab Carcinus maenas (Linnaeus 1758) from southern Portugal, and report for the
first time TTX analogues at concentrations above the EFSA-recommended limit in crabs
harvested in the EU.

2. Results

A total of 24 individuals, collected at three sampling points (Ramalhete Marine Station,
Faro beach, and Culatra Island) in the Ria Formosa lagoon, southern Portugal (Figure 1),
were pooled into 12 samples (each sample containing the soft tissues of 2 individuals of
the same species and sampling point). Samples were screened for the presence of TTX and
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its analogues (Table 1) using liquid chromatography–high-resolution mass spectrometry
(LC–HRMS) [2,30]. The identification of TTX and its analogues was based on the exact
masses of their protonated molecular ions [M+H]+ (m/z, see Table 1), retention times and on
their fragmentation spectra obtained by higher-energy collisional dissociation (HCD). Due
to the unavailability of certified reference materials for TTX analogues, the concentration of
the detected compounds was estimated using the instrumental response to TTX (Figure 2).
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Figure 1. Location of the sampling points in the Ria Formosa lagoon, southern Portugal: Ramalhete
Marine Station, Faro beach, and Culatra Island indicated by the red rhombuses.

The limits of detection and quantification (LOD and LOQ) for TTX in the crabs’ soft
tissue matrix were 5.0 and 16.6 µg/kg, respectively. A strong ion suppression was noted
for TTX in the crabs’ soft tissues matrix; the matrix effect (ME) was 52.6 ± 5.38%.

No TTX was detected in the analyzed tissues. However, three analogues, an unknown
TTX epimer, deoxyTTX and trideoxyTTX, were detected in all European fiddler crab soft
tissue samples collected near Faro beach (Figures 2 and 3). The AM-XIC obtained with the
m/z 320.10884 (theoretical exact mass of TTX and epimers protonated molecular ions) of
these samples had a peak with a retention time, which did not correspond to the retention
times of TTX or its epimer 4-epiTTX (Supplementary materials Figure S1). However, the
fragmentation spectra produced by HCD contained diagnostic TTX fragments (Figure 2B).
As a result, this compound was identified as a hitherto unknown TTX epimer. The con-
centrations of the unknown TTX epimer, deoxyTTX and trideoxyTTX in the European
fiddler crab soft tissue samples collected near Faro beach ranged from 254.8 to 537.3 µg/kg,
419.8 to 725.0 µg/kg, and 2245.0 to 3458.5 µg/kg, respectively. Two of the four pooled
samples of European fiddler crab collected at Ramalhete Marine Station contained these
three analogues above the LOQs (Figure 3). The other two samples had only deoxyTTX
and trideoxyTTX above the LOQs; the unknown TTX epimer was present but below the
LOQ. At this sampling point, the concentrations of the unknown TTX epimer, deoxyTTX
and trideoxyTTX were similar to the concentrations found at Faro beach; and ranged
from 268.9 to 663.6 µg/kg, 295.8 to 667.3 µg/kg and 1344.9 to 4232.5 µg/kg, respectively.
In the green crab samples, only trideoxyTTX was detected in animals caught at Culatra
Island, and its concentrations were above the LOQs in just two samples (i.e., 334.6 and
629.7 µg/kg). These concentrations were 5-fold lower than in European fiddler crab col-
lected near Faro beach and at Ramalhete Marine Station (Figure 3). In the European fiddler
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crab, trideoxyTTX concentrations were 5-fold higher than the concentrations of TTX epimer
and deoxyTTX (Figure 3).
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Figure 2. Accurate mass-extracted ion chromatograms (AM-XIC) and mass spectra of TTX analogues
detected in the soft tissues of European fiddler crab harvest near Faro beach. AM-XIC were gener-
ated from the LC–HR-MS full-scan positive mode (ESI+) chromatograms using the theoretical TTX
analogues m/z with a ±5 ppm extraction window. Mass spectra were obtained under a product ion
scan with higher-energy collisional dissociation (HCD) fragmentation of the TTX analogues, over
the entire chromatographic separation (HCD MS2) and using a normalized collision energy (CE).
Fragment detection had a m/z window of 50 to 350. (A) AM-XIC taken at m/z 320.10884 (TTX epimer).
(B) HCD MS2 spectrum of TTX epimer, 70 CE. (C) AM-XIC taken at m/z 304.11393 (deoxyTTX).
(D) HCD MS2 spectrum of deoxyTTX, 45 CE. (E) AM-XIC taken at m/z 272.12410 (trideoxyTTX).
(F) HCD MS2 spectrum of trideoxyTTX, 70 CE. Arrow indicates the TTX analogue theoretical m/z
being fragmented.
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Figure 3. Concentration (mean ± standard deviation, n = 4) of the TTX analogues: TTX epimer,
deoxyTTX, and trideoxyTTX (µg/kg) in the European fiddler crab (from Ramalhete Marine Station
and Faro beach) and green crab (from Culatra Island) soft tissues.

The total TTX concentration (µg TTX eq/kg) of the European fiddler crab soft tissues
at Ramalhete Marine Station and Faro beach was 1.5- and 2-fold higher than the EFSA-
recommended safety limit of 44 µg TTX eq/kg, respectively (Figure 4). However, in the
green crab it was 16-fold lower than in European fiddler crab, and below the recommended
safety limit (Figure 4). The relative potencies of 0.16 and 0.01 were used for the unknown
TTX epimer and deoxyTTX/trideoxyTTX, respectively, to determine the total TTX concen-
tration, as recommended by the EFSA for 4-epiTTX and 5,6,11-deoxyTTX/5,6,11- trideoxy
TTX [3,31–33].
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3. Discussion

To the best of our knowledge, this is the first report identifying TTX analogues in
the edible European fiddler crab and green crab. These findings are significant as they
provide new occurrence data of TTXs in marine organisms, and they contribute to a better
assessment of the risk these emergent marine toxins pose to human health. Moreover, the
presence of TTXs above the EFSA-recommended safety limit of 44 µg TTX eq/kg highlights
a continued risk to food consumers from TTXs in the Algarve region [3]. European fiddler
crabs and green crabs are caught by shellfish gatherers both for direct consumption and
for sale at markets and restaurants, as well as for use as live bait for fishing. While the
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European fiddler crab’s large male claws are a delicacy mostly caught and consumed locally,
the green crab is of high economic importance in the EU and is harvested along the entire
Portuguese coast [34].

In the European fiddler crab samples from both Faro beach and Ramalhete Marine
station, three TTX analogues (unknown TTX epimer, deoxyTTX, and trideoxyTTX), but no
TTX, were found. In contrast, in green crabs obtained from Culatra Island, trideoxyTTX
was the only analogue detected, and at 5-fold lower concentrations than in European
fiddler crabs. This resulted in samples exceeding the EFSA-recommended safety limits
of TTX concentration in the European fiddler crab but not in the green crab. Given that
the two leading hypotheses for TTX accumulation in organisms are symbiotic hosting of a
TTX producer and food chain transmission [11,12,35,36], it is possible that the observed
differences in TTX concentration between species are due to their feeding ecology. The
European fiddler crab feeds only during low tide (both at night and day), and mostly on
sediment (which contains bacteria, microphytobenthos and detritus), as well as macroalgae,
salt marsh plants and animal carcasses [37,38]. The green crab is a voracious, opportunistic
predator that feeds on a wide variety of prey and is mostly active at night and at high tide.
Its diet can change dramatically due to seasonal changes in diversity and abundance of prey
species as well as preys body size and age, but it is primarily composed of molluscs, crus-
taceans, and polychaetes. However, it is important to note that juvenile green crabs, such
as those used in this study, may also consume biofilm from the sediment surface [39–41],
but to a lesser extent. Therefore, the higher TTX concentrations in European fiddler crab
may be due to TTX-producing bacteria either inhabiting their intestines or the marine
sediments the crabs feed on. Evidence for TTX producing intestinal bacteria has been found
in TTX-bearing crabs from Eastern Asia [42–44], i.e., the xanthid crabs (Xanthidae, primarily
Zosimus aeneus (Linnaeus, 1758), Atergatis floridus (Linnaeus, 1767) and Platypodia granulosa
(Rüppell, 1830)), which are nocturnal and omnivorous crabs feeding on sediment, macroal-
gae, sponges, corals, bivalve molluscs, and gastropods [2,6,9,45]. Moreover, actinobacteria
isolated from marine sediments from Tokyo Bay and the Pacific Ocean have been shown to
produce TTXs [46], suggesting that TTX-bearing crabs may get exposed to TTX from the
sediment. Furthermore, recent studies on the TTX-bearer gastropod, grey side-gilled sea
slug Pleurobranchaea maculata (Quoy and Gaimard, 1832), from New Zealand have provided
evidence on a dietary origin of TTX and suggested that a symbiotic microbial source of TTX
is unlikely in these organisms [35,36]. Future research should focus on the potential TTX
production by bacteria in both the European fiddler crab intestines and the sediment.

TrideoxyTTX concentration in the European fiddler crab samples was 5-fold higher
than the concentrations of the other analogues, and trideoxyTTX was the only analogue
detected in green crab. Thus, contrary to previously assumptions, TTX analogues can be de-
tected in the absence of detectable levels of the parent toxin [47]. Similarly, two trideoxyTTX
isomers, but no TTX above LOQ, were detected in the crab Liocarcinus corrugatus (Pennant,
1777) harvested at the Galician Atlantic coast (northwest Spain) [48]. This is consistent
with our previous findings in the trumpet shell Charonia lampas (a gastropod) caught off
the Algarve coast, in which trideoxyTTX accounted for approximately 19% of the TTX
profile in several tissues while TTX accounted for only 1–2% [29]. An up to 3-fold higher
concentration of 5,6,11-trideoxyTTX in relation to TTX was also reported for trumpet shell
digestive gland caught at a nearby location [7]. Furthermore, the entire trumpet shell
soft body harvested at the northwest Portuguese coast exhibited a 5,6,11-trideoxyTTX
concentration of 6 µg/kg, but no TTX was detected [15]. This same pattern of detection of
trideoxyTTX with no or lower concentration of TTX was also reported in another study of
marine gastropods (off Portuguese coast) and puffer fish (from the Azores archipelago) [16].
Thus, trideoxyTTX is a major analogue of TTX in puffer fish, gastropods and crabs caught
in Portuguese waters, just as previously suggested for puffer fish and marine gastropods
from Eastern Asia [49–52]. Interestingly, 5,6,11-trideoxyTTX is hypothesized to be a pre-
cursor of TTX in TTX-producing marine bacteria [51]. Although the biosynthetic and
metabolic pathways of TTX are still unknown, they are thought to involve a series of oxi-
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dations, i.e., 5,6,11-trideoxyTTX→ 5,11-dideoxyTTX or 6,11-dideoxyTTX→ 5-deoxyTTX,
11-deoxyTTX or 6-deoxyTTX→ TTX→ 11-norTTX-6-ol→ 11-oxoTTX [53–55]. The possi-
bility of trideoxyTTX being oxidized to TTX within the marine organisms remains to be
elucidated. Furthermore, the accumulation mechanism or exact metabolic pathway of TTXs
in crabs remains unclear.

The LOD, LOQ, and ME for TTX in the pooled soft tissue samples used in this study,
are within the values previously reported by us for individual trumpet shell tissues (a
gastropod) using the same extraction and analysis method [29]. In the gastropod, the LOD
and LOQ ranged from 1.2 to 43.7 µg/kg and 4.1 to 151.47 µg/kg, respectively. ME ranged
from 88.6 ± 4.69% (ion suppression) in the mantle to 380.5 ± 12.18% (ion enhancement)
in the stomach [29]. Thus, ME is highly tissue dependent, and its determination is critical
in LC–MS quantitative studies. The ME detected in our soft tissue samples reflect the
pooled average of all crab tissues and are thus not representing the full spectrum of
matrix variations that may occur across tissues. Furthermore, because of their structural
similarity, TTX analogues are assumed to have an equivalent ME to TTX. However, because
almost all TTX analogues are not commercially available, it remains to be confirmed.
Another downside of pooling samples is the dilution effect, which occurs when samples
with quantifiable analyte concentrations are mixed with samples with no or low analyte
concentrations, resulting in a pooled sample with non-quantifiable concentration. This
could have happened in our pooled samples, where the TTX analogues were detected but
their concentration was below LOQ.

Our results highlight the importance of routine preventative monitoring of marine
toxins and their analogues in different commercial species to identify new vectors and
providing adequate health protection within the EU.

4. Materials and Methods
4.1. Sampling

European fiddler crab, Afruca tangeri (Eydoux, 1835), and green crab, Carcinus maenas
(Linnaeus 1758), specimens were captured along the intertidal zone of Ria Formosa lagoon
(Figure 1) at the end of June 2021 (week 26) during low or receding tides and at mid to
low coast height. Eight European fiddler crab individuals were collected in the vicinity of
Faro beach (37◦00′35.9′′ N 7◦59′36.3′′ W) and another eight at Ramalhete Marine station
(37◦00′23.5′′ N 7◦58′10.5′′ W). Eight green crab specimens were collected from Culatra
Island (36◦59′40.7′′ N 7◦49′51.0′′ W) (Figure 1). Within two hours of sampling, the samples
were brought to the CCMAR facilities.

The carapace length (CW) of the specimens was measured using precision vernier
calliper to the nearest 0.01 mm, and the wet weight (WW) was determined using a digital
scale to the nearest 0.01 g. The CW and WW of European fiddler crab collected at Faro
beach were 26.6 ± 2.41 mm and 14.4 ± 1.95 g, respectively, and 24.3 ± 5.19 mm and
11.7 ± 3.97 g for specimens collected at Ramalhete Marine Station. The CW and WW of
green crab were 29.8 ± 4.63 mm and 12.5 ± 2.71 g, respectively. The crabs were dissected
and gills, midgut gland, gonads, stomach, heart, and hypodermis under the carapace were
pooled together with muscle from the claws, legs, and general body. The soft tissues of
two individuals of the same species from the same sampling site were combined to make a
pooled sample (4 pooled samples per station). This pooling was done to obtain the required
tissue weight to perform the TTX extraction according to the Standard Operating Procedure
of the European Union Reference Laboratory for Marine Biotoxins [56]. The samples were
kept at −20◦C until they were processed.

4.2. TTX and Analogues Extraction and Analysis
4.2.1. Materials

The LC–MS grade solvents (water, acetonitrile, and methanol) were purchased from
Carlo Erba (Milan, Italy). The LC–MS grade acetic acid, formic acid, ammonia hydroxide
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(25%), and ammonium formate; as well as the ENVI-Carb SPE cartridges (250 mg/3 mL
volume) were purchased from Sigma-Aldrich (Darmstadt, Germany).

A certified reference standard (CRM), containing certified concentrations of tetrodotoxin
(TTX), 21.0 ± 1.3 µg/g; 4,9-anhydroTTX, 5.44 ± 0.40 µg/g; and 4-epiTTX, 1.67 ± 0.15 µg/g;
in aqueous acetic acid (1 mM), pH 3.91, was purchased from CIFGA Laboratorio S.A.
(Lugo, Spain).

4.2.2. Sample Extraction

The samples were homogenized with an Ultra-Turrax (T 25 easy clean digital, IKA-
Werke GmbH & Co. KG, Staufen im Breisgau, Germany). Sample extraction was carried
out by following the Standard Operating Procedure of the European Union Reference
Laboratory for Marine Biotoxins for the determination of TTX [30,56]. In summary, samples
were homogenized with 1% acetic acid, vortexed for 3 min, boiled in water for 5 min, cooled
to room temperature, vortexed for another 3 min, and centrifuged for 10 min at 2200 g
and 15 ◦C (Mega Star 600 R, VWR, Avantor, Radnor Township, PA, USA). Following cen-
trifugation, ammonium hydroxide (0.025% v/v) was added to the supernatant, which was
then cleaned using solid-phase-extraction (SPE). The SPE procedure was performed manu-
ally as follows: the SPE cartridges were conditioned with 3 mL acetonitrile/water/acetic
acid (20:80:1 v/v/v), followed by 3 mL of water/ammonium hydroxide solution 25%
(1000:1 v/v), with both solutions eluting to waste; then, 500 µL of sample extracts were
loaded onto the conditioned cartridges, washed with 700 µL of Milli-Q water, which were
also both eluted to waste; finally, toxins were eluted into Eppendorf tubes with 2 mL
acetonitrile/water/acetic acid (20:80:1 v/v/v). The eluates were diluted (dilution factor
of 4) with acetonitrile before analysis.

4.2.3. LC–HRMS Conditions

The samples were analyzed by liquid chromatography–high-resolution mass spec-
trometry (LC–HRMS). The analysis was carried out using an Ultimate 3000 UHPLC system
coupled to an Orbitrap Elite mass spectrometer (Thermo Fisher Scientific Inc., Waltham,
MA, USA) equipped with a heated electrospray ionization source (HESI-II). The TTX and
analogues were separated using an ACQUITY Premier BEH Amide (2.1 × 100 mm, 1.7 µm,
Waters, Milford, MA, USA) at 35 ◦C. Samples were held in the autosampler at 4 ◦C. The mo-
bile phase was composed of water with 0.1% formic acid and 10 mM ammonium formate
(A) and acetonitrile with 0.1% formic acid and 2% 100 mM ammonium formate solution (B).
The gradient (in v/v%) started with 5% of B and increased linearly to 95% in 11 min. This
composition was maintained for 1 min and then returned to 5% of B in 1 min and main-
tained at this composition for 2 min before the next run [30]. The flow rate was 0.3 mL/min,
and the injection volume was 10 µL. Data were acquired under positive (ESI+) polarity
using the following ionization parameters: spray voltage, 3.8 kV; sheath gas, 40 arbitrary
units; auxiliary gas, 10 arbitrary units; heater temperature, 300 ◦C; capillary temperature,
325 ◦C; and S-Lenses RF level, 69.06%. The LC–HRMS acquisition was performed under
full-scan with the m/z ranging between 100 and 500. The (HCD) spectra of TTX analogues
were obtained by running the system under product ion scan by fragmentation of the ion
of each analogue over the entire chromatographic separation (LC–HRMS2) and detection
from 50 to 350 m/z, using a normalized collision energy (CE) of 45 for deoxyTTX and 70 for
the unknown TTX epimer and trideoxyTTX.

4.2.4. Quantitation

The LC–HRMS quantitation was performed by generating accurate mass-extracted
ion chromatograms (AM-XIC) obtained from the full-scan positive (ESI+) profiles using
the exact mass (5 decimals) of each TTX analogue protonated molecular ion [M+H]+ (see
Table 1), and a mass extraction window of ±5 ppm. The assignments of the TTX analogues
were based on the exact masses, retention times and the fragmentation spectra obtained by
HCD (Figure 2). The obtained concentrations of TTX analogues were estimated from the
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MS response to TTX standard. All other general MS parameters were adjusted to ensure an
optimum signal for the TTX standard.

Quantification was performed by preparing matrix-matched calibration curves, with
five concentration points, in blank crab extract. A working solution containing approxi-
mately 2 µM of TTX, 0.55 µM of 4,9-anhydroTTX, and 0.16 µM of 4-epiTTX was prepared.
The tissue matrices were spiked with 2, 5, 10, 20, and 40 µL of the working solution
per 200 µL of the matrix. For the determination of the concentration in µg TTX equiva-
lent (eq)/kg, the relative potencies of 0.16 and 0.01 were used for the unknown TTX epimer
and deoxyTTX/trideoxyTTX, respectively; as recommended by the EFSA for 4-epiTTX and
5,6,11-deoxyTTX/5,6,11-trideoxy TTX [3,31–33].

The limits of detection (LOD) and quantification (LOQ) were calculated from the
standard deviations (SD) obtained after five injections of each blank matrix spiked with the
second-lowest concentration (3 × SD and 10 × SD, respectively). The matrix effect (ME)
was obtained after three injections of the third-lowest concentration standard solution and
each non-contaminated blank matrix spiked with this concentration and calculated using
the equation ME (%) = B

A × 100, where A is the average peak area of the standard solution
and B represents the average peak area in the extract spiked with the same concentration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md21060320/s1, Figure S1: Accurate mass-extracted ion chro-
matograms (AM-XIC) generated from the LC-HRMS full-scan positive mode (ESI+) chromatograms
using the theoretical TTX m/z 320.10884 with a± 5 ppm extraction window of TTX certified reference
standard (CRM) in acetonitrile/water/acetic acid solution, containing 4-epiTTX and TTX (A), a real
crab sample, soft tissues of European fiddler crab harvest near Faro beach, containing an unknown
TTX epimer (B), and the same real sample skipped with the TTX CRM, containing an unknown TTX
epimer and TTX (C).
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