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Abstract: The marine environment offers a vast array of resources, including plants, animals, and
microorganisms, that can be utilized to extract polysaccharides such as alginate, carrageenan, chitin,
chitosan, agarose, ulvan, porphyra, and many more. These polysaccharides found in marine environ-
ments can serve as carbon-rich precursors for synthesizing carbon quantum dots (CQDs). Marine
polysaccharides have a distinct advantage over other CQD precursors because they contain multiple
heteroatoms, including nitrogen (N), sulfur (S), and oxygen (O). The surface of CQDs can be naturally
doped, reducing the need for excessive use of chemical reagents and promoting green methods. The
present review highlights the processing methods used to synthesize CQDs from marine polysac-
charide precursors. These can be classified according to their biological origin as being derived
from algae, crustaceans, or fish. CQDs can be synthesized to exhibit exceptional optical properties,
including high fluorescence emission, absorbance, quenching, and quantum yield. CQDs’ structural,
morphological, and optical properties can be adjusted by utilizing multi-heteroatom precursors.
Moreover, owing to their biocompatibility and low toxicity, CQDs obtained from marine polysac-
charides have potential applications in various fields, including biomedicine (e.g., drug delivery,
bioimaging, and biosensing), photocatalysis, water quality monitoring, and the food industry. Using
marine polysaccharides to produce carbon quantum dots (CQDs) enables the transformation of
renewable sources into a cutting-edge technological product. This review can provide fundamental
insights for the development of novel nanomaterials derived from natural marine sources.

Keywords: carbon quantum dots; marine polysaccharides; drug delivery; biosensing; bioimaging

1. Introduction

In recent years, research in the area of nanomaterials has increased due to their es-
sential role in the development of technologies related to food, agriculture, energy, and
medicine [1–5]. Biopolymer nanoparticles have been used in different fields of medicine and
healthcare [6,7], including drug delivery systems [8], bioimaging [9], and biosensing [10].
Other applications of biopolymer nanoparticles include fluorescent biosensors [11], wastew-
ater treatment [12], edible films [13], and packaging materials [14].

Biopolymers are environmentally friendly and have unique biocompatibility, biodegrad-
ability, and non-toxicity properties. They can be obtained from natural sources such as
plants, animals, microorganisms, and agricultural wastes [15]. Organisms from marine
ecosystems also represent an important source for polysaccharide extraction. For instance,
carrageenan, sodium alginate, ulvan, agarose, chitosan, chitin, and other polysaccharides
are extracted from marine algae, marine crustaceans, fish, and microorganisms [16]. Marine
polysaccharides are abundant, low-cost, non-toxic, biodegradable, and biocompatible. They
have been used for the development of novel nanomaterials including nanofibers [17],
nanoparticles [18], nanocrystals, nanogels [19], as well as carbon quantum dots [1].

Quantum dots are nanoparticles featuring fluorescence activity; i.e., they emit light
of specific wavelengths after absorbing an initial radiation. This fluorescence activity is
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evidence of the quantum confinement effect that may take place in nano-sized systems.
Traditionally, quantum dots were synthesized from heavy metals such as Cd and Pb. How-
ever, quantum dots can also be obtained from carbon. Carbon quantum dots (CQDs)
were first prepared during the purification of single-wall carbon nanotubes (SWCNs) [20].
These CQDs can be synthesized from organic materials and exhibit excellent water solu-
bility, antibacterial properties, selectivity, and sensitivity, which makes them suitable for
applications in many fields, including bioimaging, biosensing, cancer therapy [21], gene
delivery [22], drug delivery, metal ion detection, and water treatment [23–27]. CQDs feature
robust and tunable fluorescence properties, which make them suitable for the fabrication
of optoelectronic devices [28], sensors [29], photocatalytic solar cells [30], and even smart
packaging films [31].

CQDs are usually synthesized from organic materials. They are mainly formed by
C, H, and O. Several authors have modified the surface of these CQDs with the addition
of different types of heteroatoms such as N, S, and P to obtain a variety of heteroatom-
doped CQDs (N-CQDs, S-CQDs, and P-CQDs). Doped CQDs feature an increase in the
fluorescence emission intensity and exhibit a colorful luminescence since the emission
wavelength shifts to the near-infrared or blue regions as compared to non-doped CQDs.

CQDs can be synthesized by different methods that use a great variety of precursors as
raw materials, including small molecules such as citric acid, glucose, amino acids, diamine,
and phenylenediamine [32,33] and biopolymers extracted from natural sources such as
chia [34], crown flower (Calotropis gigantea) [12], silk (Bombyx mori) [35], tapioca [36], and
zein [37], among others. Marine polysaccharides have also been reported to be used
as a carbon source for the synthesis of CQDs. Most importantly, the great content of
heteroatoms such as N and S in marine polysaccharides makes them especially useful for
the preparation of naturally doped CQDs. In contrast to land polysaccharides, many marine
polysaccharides have been shown to be sustainable precursors for sulfur- and nitrogen-
containing carbon nanomaterials. In fact, a high number of marine polysaccharides are
decorated with sulfate ester groups, including carrageenans, agarans, fucoidans, and ulvans,
among others [38]. Carrageenan is one of the most important sulfated polysaccharides.
It features a content of about 25–39 wt.% of ester sulfate. Another important marine
polysaccharide is chitosan, which is rich in nitrogen content (7 wt.%) and has been used in
the preparation of N-doped carbon nanomaterials [39]. Doping is one of the most effective
treatments used to tune the properties of QCDs. The doping of heteroatoms can manipulate
the photoluminescence properties of QCDs in both the intrinsic and surface electronic
structures. This changes the amount of energy needed for the photoexcitation process to
take place. The effect of dopants will be further discussed in Section 2.

The methods most widely used for the preparation of CQDs are hydrothermal and
microwave carbonization. These facile and low-cost procedures allow for the preparation
of uniform-sized CQDs. During these processes, N-self-doping, S-self-doping, and N-S-self-
doping can occur in the carbon skeleton. Heteroatom doping on CQDs enables significant
changes in optical and surface properties.

The present review will focus on the recent progress regarding carbon quantum dots
(CQDs) based on marine polysaccharides such as chitosan, chitin, carrageenan, alginate,
porphyra, agarose, chondroitin sulfate, and ulvan. As CQDs have outstanding optical
properties, understanding the primary mechanisms related to their fluorescence emission,
absorbance, quenching, and quantum yield is highly important. We also highlight the pro-
cessing routes, properties, and classified CQDs used in applications related to biosensing,
bioimaging, drug delivery, fluorescence sensors, film packaging, and others. In addition,
we place a particular emphasis on the natural heteroatom doping of the CQDs produced
from marine polysaccharides, which improves their optical and surface properties. This
review can provide fundamental insights for the development of novel nanomaterials
based on marine polysaccharides from various natural sources.
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2. Optical Properties of Carbon Quantum Dots (CQDs)

CQDs are nanostructures in which the movement of electrons in the three directions
of Euclidean space is confined. This phenomenon is known as the quantum confinement
effect and takes place when the particle size approaches the Bohr radius. The quantum
confinement effect produces the discretization of the energy levels (i.e., Fermi energy levels)
due to the modification of the electronic structure. This discretization of energy forms
bands: the valence and the conduction bands, which are separated by a finite energy gap
called the “bandgap”. The size of the bandgap depends on the size of the particles. That
is, if the size of the particles decreases, the size of the bandgap increases. The larger the
bandgap size, the more energy is required to bring the electron from its ground state to an
excited state. This determines the amount of energy emitted as the electron descends from
the excited state to the ground state. That is, the more energy absorbed, the more energy
emitted. For this reason, the size of the bandgap influences the optical properties of the
CQDs described in this section.

2.1. Absorbance Properties

Absorbance refers to the absorption of external light in the form of a photon. If the
energy of such a photon matches the difference between the energy levels of the excited and
ground state, the electron jumps to a higher energy level. When carbon dots are exposed
to radiation, they exhibit optical absorption peaks due to electronic transitions. Figure 1
shows UV–vis absorption spectra of different marine polysaccharide-derived CQDs. The
intrinsic absorption of π-π* transition is related to C=C and –C–C– bonds present in the
sp2 carbon electrons in the core structure of the CQDs. It can be seen that the peak related
to π-π* transition can be led to a red shift of the wavelength depending on the CQDs
precursors. For example, chondroitin sulfate, carrageenan, chitosan, and agarose show a
peak at 230 nm, 240 nm, 270 nm, and 287 nm, respectively.
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Figure 1. UV–vis absorption spectra of (a) CQDs based on agarose; (b) chondroitin sulfate; (c) car-
rageenan; (d) chitosan. Reproduced with permissions from (a) [40]; (b) [41]; (c) [42]; (d) [43].

Additional peaks can appear depending on the functional groups present on the
exterior surface of CQDs. The UV–vis spectra (Figure 1b,c) of CQDs derived from chon-
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droitin sulfate and carrageenan depict the n-π* transition attributed to C=O bonds and
oxygen-containing compounds at about 324 nm and 282 nm, whereas the absorption of n-π*
transition in agarose-derived CQDs (Figure 1a) is associated with amine (–NH2) at 290 nm
and carboxylic group (–COOH) at 320 nm. Wu et al. (2022) reported that the n-π* transition
for chitosan-derived CQDs is also associated with –C=N at 310 nm and multiple surface
defect states in the 320–350 nm range. The above indicates that the optical properties of
CQDs are influenced by the functional groups present on their surface.

2.2. Photoluminescence Properties

Photoluminescence is the emission of light (photon) caused by incident external energy
in the form of a photon. The absorption of this photon excites an electron in the valence
band, which moves into the conduction band. This phenomenon occurs if the photon’s
energy equals or exceeds the bandgap energy. The excited electron returns to the ground
state, releasing energy in the form of light (photons). There are two types of light emission:
fluorescence and phosphorescence. Fluorescence occurs very shortly after photoexcitation,
whereas phosphorescence continues long after photoexcitation.

The light emitted by CQDs depends on the size of the quantum dots (Figure 2). As the
size of the CQDs decreases, the bandgap increases, which means that the energy required
to excite the electron will be higher than the energy emitted. For example, Figure 2 depicts
that the small graphite-based CQDs (average 1.2 nm), medium CQDs (1.5 nm–3 nm), and
large CQDs (3.8 nm) give UV light, visible light, and near-infrared emission [44]. The
photoluminescence spectra of the four-sized blue-, green-, yellow-, and red-emitting CQDs
are shown in Figure 2c. In Figure 2d, band gap energies are presented as a function of the
four sizes of CQDs. It can be seen that the energy gap increases with a decrease in the
CQDs’ size [44].
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Figure 2. Photographs of (a) an aqueous dispersion of CQDs of different sizes under daylight (left)
and UV light (right); (b) the size distribution for blue-, green-, yellow-, and red-emitting CQDs;
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Dopant heteroatoms can also alter the photoluminescence characteristics of QCDs.
Dopants act as substitutional guests with different valences and modify the electronic states
of the host material. Common dopants used with marine polysaccharide-based QCDs are
sulfur (S) and nitrogen (N). These dopants introduce an additional energy state within
the energy gap between the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (HOMO–LUMO gap). This tends to result in a red-shifted
spectrum due to the electronic donor effect of nitrogen and sulfur, resulting in lower energy
for photoexcitation [45].

The emission wavelength can also be tuned as a function of the excitation wavelength
and the functional groups on the surface of the CQDs. Figure 3 shows the photolumines-
cence spectrum of QCDs synthesized from chitosan-acrylamide (CQDs-NH2) and chitosan-
acrylic acid (CQDs-COOH). The emission wavelength (color of the light emitted) depends
on the incident wavelength [46]. The fluorescence spectra of CQDs-NH2 and CQDs-COOH
showed a maximum emission with a peak at 409 nm and 448 nm, respectively, when using
excitation wavelengths of 330 nm and 360 nm.
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2.3. Quenching Mechanism

Quenching is a process in which the intensity of emitted light (fluorescence) decreases
completely due to the interaction between a fluorophore (i.e., a molecule with fluorescence
properties) and other molecules or metal ions (i.e., Fe2+, Fe3+, and Cu2+, among others) [47].
There are two types of fluorescence-quenching mechanisms: static and dynamic quenching,
which can be determined by measuring the fluorescence lifetime. Static quenching occurs
when a non-fluorescent complex is formed between a fluorophore and a quencher in the
ground state. The photoluminescence lifetime of the fluorophore remains constant as a
function of the concentration of the quencher (e.g., metal ions). For instance, when Cu2+

is added to a phosphorus-doped carbon quantum dots (P-CQDs) solution, fluorescence
quenching occurs because the functional groups on the surface of carbon dots act as
electron donors. In contrast, copper ions act as electron acceptors, forming P-CQDs–Cu+2

complexes [48]. These cupric complexes generate a shift in the emitted wavelength.
The quencher interacts with the fluorophore in an excited state in the dynamic

quenching mechanism, and the photoluminescence lifetime is variable. For example,
κ-Carrageenan-derived CQDs were used as a sensing probe to detect Fe3+ ions [49]. The
fluorescence decay curves of κ-Carrageenan-derived CQDs with and without Fe3+ ions
were evaluated. The average lifetime of κ-Carrageenan-derived CQDs decreased from
4.40 ns to 3.04 ns after adding Fe3+ ions. The change observed in the lifetime of the CQDs
could be attributed to the electron transfers from excited κ-Carrageenan-derived CQDs to
half-filled 3d orbitals of Fe3+ ions, leading to the fluorescence of the CQDs turning off.
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2.4. Quantum Yield

The quantum yield (QY) is defined as the efficiency of converting absorbed light into
emitted light (fluorescence). It is calculated as the ratio between the number of emitted
and absorbed photons [50]. The quantum yield of CQDs is calculated using Equation (1),
considering quinine sulfate (QS) as a reference material with a high quantum yield (54%)
in sulfuric acid [51].

QYCQDs = QYQS ×
[

ICQDs

IQS

]
×

[
AQS

ACQDs

]
×

[
nCQDs

nQS

]2
× 100% (1)

where “I” stands for the measure of the integrated photoluminescence (PL) intensities
(emission wavelengths) at a specified excitation wavelength, “A” refers to the UV–vis
absorbance or optical density, and “n” is the refractive index.

3. Marine Polysaccharides Precursors for the Synthesis of CQDs

Marine polysaccharides are environmentally friendly materials that can be used as
precursors for synthesizing novel carbon dots. The most common marine polysaccharides
used include chitosan, chitin, carrageenan, ulvan, alginate, agarose, and porphyra. The
different marine polysaccharides used as a precursor can be classified according to their
biological origin, such as polysaccharides from marine algae, crustacean exoskeletons, and
fish. Table 1 summarizes the various types of marine polysaccharides utilized as precursors
and the primary properties reported for the synthesized CQDs.

Table 1. Marine polysaccharides classified by origin and main properties of CQDs synthesized using
them as precursors.

Source Marine
Polysaccharide

CQDs Properties

Size (nm) Color Synthetic
Yield (%)

Quantum
Yield (%)

Heteroatoms
Content (%) Ref.

Marine
algae

Carrageenans 1.5–30
0.63–3.92 c

Yellow-brown a, Yellow a,
Green b 4.4 2–69.27 S%: 2.7–5.29%

N%: 8.18% [42,52–57]

Alginates 2–20
100

Yellow a, Brown a, Green
b, Blue b – 5.42–48.7 N%: 0.02% [22,58–60]

Others 1–40 Dark brown a

Green b, Blue b – 56–62
O%: 26.98–32.34%

S%: 3.15%
N%: 2.41–8.12%

[40,61–64]

Crustaceans

Chitins 1–20.5 Yellow a, Brown a,
Orange a, Blue b, Green b 6.7–9.9 5.1–35

O%: 4.67–28.54%
S%: 0.38–1.54%

N%: 2.63–18.25%
[26,65–71]

Chitosans 0.6–11
2.7–3 c

Transparent a, Brown a,
Yellow a, Blue b, Green b 85.3–90 3.3–40 O%: 1.47–51.67%

N%: 0.02–9.63%
[24,27,29,
31,72–87]

Fish

Chondroitin sulfate
(shark cartilage) 19.6–60

Yellow-brown a

Yellowish-green b

Blue b
– 20.46 C% and O% > 90%

S% < 10% [41]

Collagen and chitin
(Fish scales) 13 – – 17.3 O%: 26%

N%: 8% [88]

a, under daylight; b, under UV lamp; c, hydrodynamic size obtained by dynamic light scattering.

3.1. Polysaccharides Extracted from Marine Algae
3.1.1. Carrageenan

Carrageenan is a linear sulfated polysaccharide extracted from red algae. There are
three types of carrageenan, i.e., κ-Carrageenan,
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Emma H. and Ahmed H. [52] used k-carrageenan to synthesize CQDs with a diameter
of 2.1 nm. Other authors have reported that CQDs prepared with κ-Carrageenan had
diameters ranging from 0.93 nm to 30 nm and quantum yield values reaching up to
69.27% [53] (Table 1). Leuterio et al. [42] used (к-,
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-, and λ-) carrageenan and galactose
as carbon precursors for synthesizing CQDs. The carrageenans and galactose CQDs
suspension in water showed a yellow color under daylight, while a luminous green color
appeared under UV irradiation (Figure 4A,B). The morphology and size of the as-prepared
CQDs were studied by TEM and dynamic light scattering (DLS), as shown in Figure 4.
Figure 3c depicts quasi-spherical shapes, and the hydrodynamic sizes of the carrageenans
and galactose CQDs are in the range of 1.7 nm–3 nm (Figure 4D). The authors proved that
the sulfate content in carrageenan CQDs plays a critical role in their acidity properties. The
starting materials к-,
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[53] (Table 1). Leuterio et al. [42] used (к-, ɩ-, and λ-) carrageenan and galactose as carbon 
precursors for synthesizing CQDs. The carrageenans and galactose CQDs suspension in 
water showed a yellow color under daylight, while a luminous green color appeared un-
der UV irradiation (Figure 4A,B). The morphology and size of the as-prepared CQDs were 
studied by TEM and dynamic light scattering (DLS), as shown in Figure 4. Figure 3c de-
picts quasi-spherical shapes, and the hydrodynamic sizes of the carrageenans and galac-
tose CQDs are in the range of 1.7 nm–3 nm (Figure 4D). The authors proved that the sulfate 
content in carrageenan CQDs plays a critical role in their acidity properties. The starting 
materials к-, ɩ-, and λ- carrageenan have one, two, and three sulfated groups per disaccha-
ride, in contrast to galactose, which has the same sugar structure as carrageenan but no 
ester sulfate groups. The pH values of к-, ɩ-, and λ-carrageenan CQDs and galactose CQDs 

-, and λ- carrageenan have one, two, and three sulfated groups per
disaccharide, in contrast to galactose, which has the same sugar structure as carrageenan
but no ester sulfate groups. The pH values of к-,
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[53] (Table 1). Leuterio et al. [42] used (к-, ɩ-, and λ-) carrageenan and galactose as carbon 
precursors for synthesizing CQDs. The carrageenans and galactose CQDs suspension in 
water showed a yellow color under daylight, while a luminous green color appeared un-
der UV irradiation (Figure 4A,B). The morphology and size of the as-prepared CQDs were 
studied by TEM and dynamic light scattering (DLS), as shown in Figure 4. Figure 3c de-
picts quasi-spherical shapes, and the hydrodynamic sizes of the carrageenans and galac-
tose CQDs are in the range of 1.7 nm–3 nm (Figure 4D). The authors proved that the sulfate 
content in carrageenan CQDs plays a critical role in their acidity properties. The starting 
materials к-, ɩ-, and λ- carrageenan have one, two, and three sulfated groups per disaccha-
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-, and λ-carrageenan CQDs and galactose
CQDs suspension in water were 2.34, 2.22, 1.86, and 3.08, respectively. This result indicates
that the degree of sulfation in CQDs plays a role in the final acidity properties.
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by introducing heteroatoms (oxygen and sulfur) on the surface of CQDs [49].  

Emma H. and Ahmed H. [52] used k-carrageenan to synthesize CQDs with a diame-
ter of 2.1 nm. Other authors have reported that CQDs prepared with κ-Carrageenan had 
diameters ranging from 0.93 nm to 30 nm and quantum yield values reaching up to 69.27% 
[53] (Table 1). Leuterio et al. [42] used (к-, ɩ-, and λ-) carrageenan and galactose as carbon 
precursors for synthesizing CQDs. The carrageenans and galactose CQDs suspension in 
water showed a yellow color under daylight, while a luminous green color appeared un-
der UV irradiation (Figure 4A,B). The morphology and size of the as-prepared CQDs were 
studied by TEM and dynamic light scattering (DLS), as shown in Figure 4. Figure 3c de-
picts quasi-spherical shapes, and the hydrodynamic sizes of the carrageenans and galac-
tose CQDs are in the range of 1.7 nm–3 nm (Figure 4D). The authors proved that the sulfate 
content in carrageenan CQDs plays a critical role in their acidity properties. The starting 
materials к-, ɩ-, and λ- carrageenan have one, two, and three sulfated groups per disaccha-
ride, in contrast to galactose, which has the same sugar structure as carrageenan but no 
ester sulfate groups. The pH values of к-, ɩ-, and λ-carrageenan CQDs and galactose CQDs 

-, and λ- carrageenan and galactose CQDs in water under day-
light and (B) UV light; (C) representative TEM image of κ-Carrageenan CQDs, scale bar: 10 nm;
(D) hydrodynamic size of as-prepared CQDs. Reproduced with permissions from [42].

Das et al. (2018) [53] synthesized nitrogen and sulfur co-doped CQDs (NSCQDs)
using κ-Carrageenan and urea as a precursor and passivating agent, respectively. The
average particle size of the NSCQDs was 3.5 nm, with a quasi-spherical and amorphous
nature. The fluorescence lifetime and quantum yield of the NSCQDs were 4.06 ns and
69.27%, respectively. The stability of the aqueous dispersion of NSCQDs was evaluated via
fluorescence intensities over two months. No alteration was detected at 360 nm excitation,
and no precipitation was observed. In another study, Das et al. (2019) [54] reported CQDs
with a two-centered emission using κ-Carrageenan with lemon juice as sulfur and carbon
sources and benzalkonium chloride as the quaternizing agent. The obtained KLBC dots
had a spherical and monodisperse form with an average size of 4.53 nm. The fluorescence
properties revealed that the KLBC dots, with a quantum yield of 62.54%, had two fluores-
cence lifetimes of 7.47 ns and 5.79 ns at 295 nm and 375 nm excitation, respectively. The
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stability of the aqueous solution of the KLBC dots related to its fluorescence activity lasted
for more than 90 days.

Supchocksoonthorn et al. (2021) [55] used
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N %: 8% 

[88] 
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had a high value of zeta potential (−45.5 mV), which enhanced the solubility of the CQDs
in an aqueous solution. This is attributed to the presence of oxygen and sulfate ions.

3.1.2. Agarose

Agarose is a linear polysaccharide derivative of agar, which is extracted from red
algae. One of the common uses of agarose in laboratories and industry is in the form of
a gel. Agarose gels are used in biological tests, including antimicrobial, antifungal, and
electrophoresis. At the end of these assays, agarose gel residues are generated. This can
be considered an environmental issue due to its potential contamination with bacteria,
viruses, or mutagenic and carcinogenic chemicals. In this context, Chauhan et al. (2020) [40]
synthesized, for the first time, CQDs using agarose waste as a carbon precursor. The size
of the as-prepared CQDs was distributed in the range from 2 to 10 nm, with a distorted
spherical shape. The optical properties of the CQDs achieved up to 62% quantum yield
and revealed the presence of an sp2 hybridized graphitic core structure, according to the
π-π* transition of –C=C– and –C–C–. Chauhan et al. pursued the development of CQDs
from agarose waste to evaluate their use as fluorescent sensors [61,89]. These applications
will be discussed further in Section 5.

3.1.3. Sodium Alginate

Alginate is a linear biopolymer extracted from brown algae and some bacterial strains
(Azotobacter sp. and Pseudomonas sp.). The chemical structure of alginate polysaccharide
includes block sequences of α-
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Alginate can also serve as an efficient carbon precursor to develop graphene quan-
tum dots (GQDs). The resulting GQD, with 10–20 nm of length and 1–1.5 nm of thickness, 

-guluronic acid and β-D-manuronic acid. Both units contain
carboxyl and hydroxyl groups that can serve for sensing cations ions. They can even be
chemically modified to tune their final characteristics. As an example, to enhance the
fluorescent performance of CQDs derived from sodium alginate, Sun et al. (2020) [58]
used glutaraldehyde as a cross-linking agent to modify sodium-alginate chains through the
acetylation of aldehyde and hydroxyl groups. The acetylation treatment allows an increase
in the value of the quantum yield of the as-prepared CQDs from 2.5% to 11%. The authors
associated the increase in the fluorescence intensity with the restriction of non-radiative
vibrational processes. This phenomenon results from the restriction of the vibration and
rotation of subfluorophores (C=O, C–O), thus enhancing the fluorescence.

Ganguly et al. (2020) [90] proposed modifying the surface carbon moieties of al-
ginate CQDs by using urea. This approach allows for an increase in the number of hy-
drophilic groups (–OH, –COOH, and –CONH2) attached to the surface of the alginate CQDs
(Figure 5). The average diameter of the as-prepared alginate-urea CQDs (AUCQDs) was
greater (5.6 nm) than other alginate CQDs reported by Sun et al. (2020) (2–5 nm) [58]
and lesser compared to the CQDs reported by Zhou et al. [22]. According to Ganguly
et al. (2020), the AUCQDs exhibited fluorescence stability for more than 9 months, with a
high quantum yield of 48.7%. The alginate-urea CQDs dispersion in water was yellow and
transparent under visible light and exhibited blue fluorescence under UV light, as shown
in Figure 5b.
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Alginate can also serve as an efficient carbon precursor to develop graphene quantum
dots (GQDs). The resulting GQD, with 10–20 nm of length and 1–1.5 nm of thickness,
exhibited blue emission (Atienzar et al. [59]). The authors also reported that the dimensions
of the GQDs depend on the number of laser shots during the ablation process. Thus, GQDs
with few layers were obtained after 40 min of ablation.

3.1.4. Other CQDs Derived from Algae Polysaccharides

Fucoidan is a fucose-enriched and sulfated polysaccharide that can be isolated from
brown algae. Recently, fucoidan was used as a carbon precursor for developing dark-brown
CQDs powder (Tang et al. [62]). The average size of the fucoidan-derived CQDs (FCQDs)
was 7.15 nm with a spherical shape. The aqueous solution of the FCQDs was yellow
under sunlight, emitting green fluorescence under 365 nm UV light excitation. The authors
reported that the FCQDs had a maximum excitation wavelength of 362 nm and a maximum
emission wavelength of 453 nm. Since fucoidan is a sulfated polysaccharide, the sulfur
content was measured to confirm the presence of SO4

2−, and it was found to be 3.15%.
Moreover, the zeta potentials of FCQDs reveal that these nanoparticles have a negative
charge of −15.80 mV, which agrees with the S content. The sulfate content in fucoidan
has been associated with its antibacterial activities on oral pathogenic bacteria such as
H. pyroli and S. mutans. The antibacterial efficiency against E. faecalis in the presence of raw
fucoidan and FCQDs was studied. Compared with raw fucoidan, the FCQDs showed a
higher inhibition ratio (85%). This was associated with the size of FCQDs, which increases
their bacterial permeability. In addition, sulfate groups damage bacterial cytoplasmic
membranes and cause the dissolution of proteins and other essential molecules in bacteria.

Another algae-derived sulfated polysaccharide is porphyra, extracted from red algae.
Porphyra comprises a linear sequence of alternating 3-linked β-D-galactopyranosyl and
4-linked α-
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Alginate can also serve as an efficient carbon precursor to develop graphene quan-
tum dots (GQDs). The resulting GQD, with 10–20 nm of length and 1–1.5 nm of thickness, 

-galactosyl 6-sulfate units. Chen et al. (2017) reported the use of porphyra
polysaccharide for the first time in developing CQDs [63]. These novel carbon precursors
allowed for the production of PCQDs with spherical shapes ranging from of 1 to 9 nm. The
optical properties of the PCQDs reveal that the quantum yield was 56.3%. The PCQDs
had blue fluorescence under 365 nm UV light excitation, and the maximum excitation
wavelength and emission wavelength appeared at 356 nm and 448 nm, respectively. Despite
porphyra being a sulfated polysaccharide, the zeta potentials of PCQDs reveal that these
nanodots have a positive charge of 23.54 mV. This result can be associated with the use of
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a surface passivation agent (ethylenediamine). The surface modification of PCQDs with
ethylenediamine provided an efficient carrier for genes.

In addition to red and brown algae, green algae from the genus Ulva have been
proposed as a carbon-rich source for developing CQDs. Singh et al. (2018) used U. lactuca,
an ulvan-rich polysaccharide source, to obtain CQDs through a carbonization process [64].
The quantum yield of the synthesized CQDs achieved an increase of up to 68% and showed
a spherical shape in the range of 20–40 nm. The size reported could be associated with a
lower carbonization temperature (90 ◦C) than other procedures for obtaining CQDs from
algae sources.

3.2. Polysaccharides Extracted from the Exoskeletons of Crustaceans
3.2.1. Chitin

Chitin, poly(β-(1-4)-N-acetyl-D-glucosamine, is an amino polysaccharide com-
monly extracted from seafood waste products (i.e., lobster, prawn, crayfish, and shrimp
shells) [91–93]. The crustacean shell is treated with acid and alkaline reagents to remove
minerals and proteins in order to obtain chitin. Other processing routes include the use
of lactic acid bacteria and enzymes such as Lactobacillus sp. and proteinase K to obtain
chitin [94,95].

The presence of nitrogen in chitin has driven an increasing interest in its use as a
precursor for developing nitrogen-doped CQDs (NCQDs). According to Jiang et al. (2020),
NCQDs can be synthesized by hydrothermal carbonization of chitin. It allows for the
introduction of nitrogen atoms into the carboxylic ring [26]. For instance, prawn shells
have been used to fabricate NCQDs with an average diameter of 4 nm and 9% quantum
yield [65]. The NCQDs solution (20 µg/mL) exhibited yellowish and blue luminescence
under normal light and UV excitation wavelengths of 365 nm as well as a maximum
emission intensity at 405 nm under excitation at 330 nm. The fluorescence response of these
NCQDs to Cu2+ ions has been evaluated. NCQDs exhibited good selectivity toward Cu2+

(with a detection limit of 5 nm) in the presence of various metal ions, including Co2+, Hg2+,
and Fe2+.

Jiang et al. (2020) demonstrated the capability of NCQDs to be considered fluorescent
sensors. NCQDs (with a diameter of approximately 4.21 nm) were obtained from com-
mercial chitin via a hydrothermal process and were used for detecting hypochlorite ions
(ClO−) [26]. These NCQDs displayed strong fluorescence with a quantum yield of 25.8%.
The authors attributed this high quantum yield to ammonia, an additional nitrogen source
in the synthesis process. The optical properties of such NCQDs under daylight and a UV
lamp of 365 nm exhibited a light-yellow color and brilliant blue fluorescence, respectively.
These NCQDs have blue fluorescence with a maximum emission intensity at 433 nm under
excitation at 360 nm. The detection limit of ClO− was 1.47 µm in the presence of different
ions and anions, such as Ca2+, Co2+, Fe2+, I−, Cl−, and HCO3−.

Chitin-based materials have also been used as precursors for the preparation of NC-
QDs. Chitin nanofibers (CNFs) were used as a new carbon source to obtain NCQDs via a
microwave-assisted hydrothermal route [66]. The NCQDs were synthesized with a spheri-
cal shape, a size of about 2–12 nm, and a quantum yield of 5.1%. The optical properties
of the NCQDs revealed strong blue fluorescence with a maximum emission at 480 nm
under excitation at 370 nm. In addition, the fluorescence of the as-prepared NCQDs was
quenched with Cu2+ ions. The results showed that the NCQDs could be a sensing system
for determining D-penicillamine (DPA). A good selectivity toward DPA was found in the
presence of several molecules, such as ascorbic acid, tyrosine, cysteine, glycine, uric acid,
and even ion metals (Ca2+, K+, Mg2+, and Cl−).

3.2.2. Chitosan

Chitosan is a partially deacetylated form of chitin. In chitosan, a fraction of the
N-acetyl-D-glucosamine is converted into D-glucosamine. Chitosan is a biopolymer featur-
ing excellent properties such as biocompatibility, biodegradability, and non-toxicity [91–93].
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Chitosan has been used as a precursor for the synthesis of CQDs. For instance, Feng
et al. (2022) synthesized CQDs using chitosan as a precursor following a hydrothermal
carbonization route [27]. They obtained CQDs with 4–11 nm diameters and a quantum
yield of 16.81%. Other researchers have reported chitosan-derived CQDs with higher
quantum yield values. Quantum yield values of 31.8% have been reported using a hy-
drothermal carbonization route [72] and 27% through microwave-assisted hydrothermal
carbonization [43].

The optical properties of chitosan-derived CQDs have been assessed. These CQDs
have been excited at different wavelengths to study their fluorescent behavior. For a
maximum excitation peak at 510 nm, a maximum emission peak was found at 550 nm [73].
Wang et al. (2016) evaluated the fluorescence response of CQDs to detect Hg2+ [72]. These
CQDs showed excellent selectivity toward Hg2+ in the presence of Co2+. Other authors have
studied the detection of different metal ions, such as Fe3+, Ag+, Cr (IV), and NO2- [27,74],
demonstrating good selectivity and sensitivity of these chitosan-derived CQDs in the
presence of metal ions.

Mu et al. (2021) employed chitosan-derived CQDs synthesized via hydrothermal
carbonization to detect alkaline phosphatase (ALP) [24]. These CQDs were 1.5–3.1 nm in
diameter with an amorphous structure. The optical properties of such CQDs exhibit strong
blue fluorescence with a maximum emission at 412 nm under an excitation wavelength
of 290 nm and with a fluorescence lifetime of 5.56 ns. These CQDs were used to develop
a novel ratiometric fluorescence assay. The fluorescence was quenched by adding Eu3+

and calcein. This system (CQDs + calcein + Eu3+) was used for the detection of alkaline
phosphatase. In the presence of alkaline phosphatase, calcein significantly increased its
fluorescence intensity. In contrast, the fluorescence of CQDs decreased as the concentration
of alkaline phosphatase in the assay increased. The assay showed excellent selectivity for
ALP detection in the presence of different enzymes (HRP, TG, ATP, and β-GC).

3.3. Polysaccharides Extracted from Fish and Other Marine Animals

Fish scales are plywood-like structures of closely packed collagen fiber layers re-
inforced with a mineral phase of calcium-deficient hydroxyapatite [96,97]. Alongside
collagen, chitin and gelatin are also components of interest in fish scales. These components
make the scales rich not only in carbon and hydrogen but also in oxygen and nitrogen [88].
Zhang et al. [98] prepared highly fluorescent carbon dots with the incorporation of N and
O functionalities through a hydrothermal reaction using fish scales of the crucian carp
as a precursor. These CQDs exhibited strong fluorescent emissions at 430 nm, with a
relative quantum yield of 6.9%, low cytotoxicity, and robust fluorescence stability against
photobleaching. They found that these CQDs can be quenched by Fe3+ ions, which enables
their application as fluorescent Fe3+ nanoprobes. Wu et al. [99] used fish-scale wastes for
the preparation of N-doped photoluminescent QCDs with a nitrogen content of 14.6%. The
prepared CQDs were 2 nm in size and displayed a narrow photoluminescence emission
band (400–490 nm), with a high quantum yield up to 17%.

There are other polysaccharides that can be extracted from other marine animals. For
instance, chondroitin sulfate is a long, linear polysaccharide extracted from cartilaginous
marine animals such as sharks, sturgeons, and squid. Kim et al. (2020) synthesized CQDs
via hydrothermal carbonization from chondroitin sulfate polysaccharide obtained from
shark cartilage [41]. The fabricated CQDs, with diameters ranging from 19 to 60 nm and
an intrinsic quantum yield of 20.46%, exhibited multicolor photoluminescent properties
(Table 2). They showed a clear yellowish-brown color under daylight as well as a yellowish-
green and light blue under UV excitation at 430–440 nm and 365 nm, respectively. In
addition, they exhibited a maximum emission intensity at 490 nm under 390 nm excitation.
Due to their excellent photoluminescence properties and low toxicity, they were used for
in vivo bioimaging of zebrafish larvae. They emitted green and blue fluorescence emissions
in the gut of such larvae.
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Table 2. Processing routes, properties, and applications of carbon quantum dots derived from marine polysaccharide.

Precursor Marine
Polysaccharide Processing Route Size (nm) Color Quantum Yield

(%)

Maximum
Excitation

Wavelength (nm)

Maximum FL
Emission

Wavelength (nm)
Applications Ref.

Algae

κ-Carrageenan Hydrothermal
carbonization 0.93–2.47 c Yellow-brown a

Green b, – 340 435 Degradation of dyes [42]

κ-Carrageenan Hydrothermal
carbonization 2.1 Yellow a – 340 454 Antitumor, antiviral [52]

κ-Carrageenan Hydrothermal
carbonization 1.5–5.5 Yellow a,

Green b 69.27 360 432 Acetone sensing [53]

κ-Carrageenan Hydrothermal
carbonization 2.75–6.25 Green b 62.54 340 448

Cr (VI) in environmental
water and

intracellular imaging
[56]

κ-Carrageenan Hydrothermal
carbonization 3.2 Yellow a, Bluish

green b 14.64 380 470
Drug Delivery of

anti-diabetic
drug Metformin

[54]

κ-Carrageenan Hydrothermal
carbonization 1.8 Yellow a, Green b 20.6 340 420 Sensing of Fe3+ [49]

κ-Carrageenan Microwave 25–30 Brownish-yellow a,
Green b 21 340 434 Bioimaging of plant

cell biology [57]
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3.1. Polysaccharides Extracted from Marine Algae 
3.1.1. Carrageenan 

Carrageenan is a linear sulfated polysaccharide extracted from red algae. There are 
three types of carrageenan, i.e., κ-Carrageenan, ɩ-carrageenan, and λ-carrageenan. The dif-
ference between these types of carrageenan is the number and position of ester-sulfate 
groups. In addition to the presence of ester-sulfate groups, carrageenan includes hydroxyl 
(-OH) groups. These groups can improve the water solubility and quantum yield of CQDs 
by introducing heteroatoms (oxygen and sulfur) on the surface of CQDs [49].  

Emma H. and Ahmed H. [52] used k-carrageenan to synthesize CQDs with a diame-
ter of 2.1 nm. Other authors have reported that CQDs prepared with κ-Carrageenan had 
diameters ranging from 0.93 nm to 30 nm and quantum yield values reaching up to 69.27% 
[53] (Table 1). Leuterio et al. [42] used (к-, ɩ-, and λ-) carrageenan and galactose as carbon 
precursors for synthesizing CQDs. The carrageenans and galactose CQDs suspension in 
water showed a yellow color under daylight, while a luminous green color appeared un-
der UV irradiation (Figure 4A,B). The morphology and size of the as-prepared CQDs were 
studied by TEM and dynamic light scattering (DLS), as shown in Figure 4. Figure 3c de-
picts quasi-spherical shapes, and the hydrodynamic sizes of the carrageenans and galac-
tose CQDs are in the range of 1.7 nm–3 nm (Figure 4D). The authors proved that the sulfate 
content in carrageenan CQDs plays a critical role in their acidity properties. The starting 
materials к-, ɩ-, and λ- carrageenan have one, two, and three sulfated groups per disaccha-
ride, in contrast to galactose, which has the same sugar structure as carrageenan but no 
ester sulfate groups. The pH values of к-, ɩ-, and λ-carrageenan CQDs and galactose CQDs 
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-Carrageenan Hydrothermal
carbonization 0.68–3.92 c Yellow-brown a,

Green b – 340 435 Degradation of dyes [42]

λ-Carrageenan Hydrothermal
carbonization 0.63–1.37 c Yellow-brown a,

Green b – 320 425 Degradation of dyes [42]
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Table 2. Cont.

Precursor Marine
Polysaccharide Processing Route Size (nm) Color Quantum Yield (%)

Maximum
Excitation

Wavelength (nm)

Maximum FL
Emission

Wavelength (nm)
Applications Ref.

Sodium alginate Hydrothermal
carbonization 2–5 Brown a,

Blue b 11 360 467 Anti-ultraviolet
ageing additives [58]

Sodium alginate
Microwave-

irradiated thermal
coupling method

5.6 Yellow a,
Green b 48.7 330 ~405 Drug delivery [90]

Sodium alginate
Ultrasonic-assisted

nanoprecipitation in
acidic solvent

100 – 5.42 340 440 nm Fe3+ sensing [60]

Sodium alginate Laser
ablation–pyrolysis

10–20 nm
(length)

1–1.5 nm (depth)
– 350 430 – [59]

Fucoidan Hydrothermal
carbonization 4–10 Dark brown a,

Green b – 362 453 Endodontic infections [62]

Agarose Hydrothermal
carbonization 8–10 Black-brownish a,

Blue b 56 310 550 Dopamine sensing [61]

Agarose Thermal treatment 2–10
Milky coloration a,

Blue b 62 300 ~420
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Ulvan Hydrothermal
carbonization 20–40 – 0.68 360 435 Detection of nonylphenol [64]

Crustacean
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carbonization 4 Yellow a,

Blue b 9 330 405 Cu 2+ sensing [65]

Chitin (DA ≥ 90%) Hydrothermal
carbonization 4.21 Yellow a,

Blue b 25.8 360 433 ClO − sensing [26]

Chitin (85% DD) Hydrothermal
carbonization 2.8 Yellow a,

Blue b 35 330 400 Bacterial imaging [67]

Chitin Hydrothermal
carbonization 1–10 Yellow a,

Blue b 5.77 380 ~470 Fe3+ sensing [68]

Chitin Hydrothermal
carbonization 4–8 Brown a,

Blue b – 300 440 – [69]

Chitin Ionic liquid +
thermal treatment 2.8 Orange a – 400 503 Non-Newton nanofluids [70]
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Table 2. Cont.

Precursor Marine
Polysaccharide Processing Route Size (nm) Color Quantum Yield (%)

Maximum
Excitation

Wavelength (nm)

Maximum FL
Emission

Wavelength (nm)
Applications Ref.

Chitin
Deep eutectic

solvent method with
simple heating

20.5 Green b 8.9 380 ~510 Fe3+ detection [71]

Chitin (nanofibers) Microwave assisted-
hydrothermal 2–12 Blue b 5.1 370 480 DPA sensing [66]

Chitosan (85% DD) Hydrothermal
carbonization 3 c Yellow-brown a,

Blue b – 350 400 – [66]

Chitosan (85% DA) Hydrothermal
carbonization 1.2–3.6 Yellowish

transparent a, Blue b 9.3 340 ~395 Fe3+, Ag + sensing [75]

Chitosan (85% DA) Hydrothermal
carbonization 1–1.8 Yellowish

transparent a, Blue b 15.3 340 ~415 Fe3+, Ag + sensing [75]

Chitosan Hydrothermal
carbonization 4–11 Blue b 16.81 330 408 Cr (IV) sensing [27]

Chitosan Hydrothermal
carbonization 1.5–3.1 Blue b – 290 412 PO4

3− sensing, bioimaging [24]

Chitosan Hydrothermal
carbonization 0.5–4 Brown a,

Blue b 38 457 533 Trace water detection [76]

Chitosan (80–95%
DD)

Hydrothermal
carbonization 1–3 Blue b 28.32 340 420 Packaging [31]

Chitosan Hydrothermal
carbonization 3

Brown-yellow a,
Green b 19 390 520 Enrofloxacin, NO2

− sensing [74]

Chitosan (75% DD) Hydrothermal
carbonization 3–6 Blue b – 320 ~405 Organophosphorus

herbicide glyphosate sensing [77]

Chitosan (91% DD) Hydrothermal
carbonization 2.6–5 Yellow a,

Blue b 31.8 360 ~440 Hg 2+ sensing [72]

Chitosan (DD ≥
95%)

Hydrothermal
carbonization 2–10 Yellow a,

Blue b 6.6 310 418 Fe3+ detection [78]

Chitosan Hydrothermal
carbonization 6 Dark brown a,

Blueb 4.36 380 340 Solid-state emission
component [79]

Chitosan Hydrothermal
carbonization 4.02 Yellow b 40 430 513 Solid-state emission

component [80]
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Table 2. Cont.

Precursor Marine
Polysaccharide Processing Route Size (nm) Color Quantum Yield (%)

Maximum
Excitation

Wavelength (nm)

Maximum FL
Emission

Wavelength (nm)
Applications Ref.

Chitosan Solvothermal 4 Blue b 10.4 360 ~450 Bioanalytical and bioimaging [81]

Chitosan (85% DD) Carbonization 3 c – – 510 550 Drug delivery [73]

Chitosan Carbonization 1–6
Transparent a,

Blue b 4.34 310 390 Cellular imaging [82]

Chitosan Thermal + freeze
drying + milling 2–6 Blue b – 340 432 Fe3+ sensing [83]

Chitosan (77.7% DD) Microwave 2.7 c Yellow a,
Blue b – 360 ~410 Detection of heavy metal ions [84]

Chitosan Microwave 0.6–8.7 c Yellow a,
Blue b – 300 334 – [85]

Chitosan Microwave heating
method 3–4.8 Blue b 25 350 450 Sensor for water detection in

organic solvents [29]

Chitosan Microwave pyrolysis 2.7–6.5 Yellow-brown a 6.4 338 440 – [86]

Chitosan (DD ≥
95%)

Microwave assisted-
hydrothermal 4.8

Brown-yellow a,
Green b 27 460 502 Sensing, security, and

energy storage [43]

Chitosan (85% DA) Acid dehydration 1–2 Yellowish
transparent a, Blue b 3.3 340 ~405 Fe3+, Ag+ sensing [75]

Chitosan quaternary
ammonium salt

Hydrothermal
carbonization 1.74 Yellow a,

Blue b 9 340 ~460 Visual treatment of
bacterial infection [87]

Fish

Chondroitin sulfate
(shark cartilage)

Hydrothermal
carbonization 19.6–60

Yellow-brown a,
Yellowish-green b,

Blue b
20.46 390 490 Bioimaging [41]

Collagen and chitin
(fish scales)

Hydrothermal
carbonization 13 – 17.3 372 450 – [88]

Mixtures

Chitosan and
κ-Carrageenan

Hydrothermal
carbonization 8 Yellow a,

Blue b 59.31 365 440 Fe3+, AA sensing [100]



Mar. Drugs 2023, 21, 338 16 of 30

Table 2. Cont.

Precursor Marine
Polysaccharide Processing Route Size (nm) Color Quantum Yield (%)

Maximum
Excitation

Wavelength (nm)

Maximum FL
Emission

Wavelength (nm)
Applications Ref.

Chitosan and silk
fibroin

Hydrothermal
carbonization 1.5–4.5 Yellow a,

Blue b 39–66 350 430 5-FU drug delivery [101]

Chitosan and gum
tragacanth

Hydrothermal
carbonization 20 – – 317 413 Bioimaging [102]

Chitosan and
acrylamide

Hydrothermal
carbonization 1–3 Blue b – 360 438 Osteolytic diseases [93]

Chitosan and
acrylamide

Microwave-assisted-
hydrothermal

synthesis
– Blue b 12.17 330 409 Fe2+ detection [46]

FL, fluorescence; AA, ascorbic acid; 5-FU, 5-fluorouracil; CdS, cadmium sulfide; DPA, D-penicillamine; DD, degree of deacetylation; DA, degree of acetylation; a, under daylight; b, under
UV lamp; c, hydrodynamic size obtained by dynamic light scattering.
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4. Processing Routes of Marine Polysaccharide-Based CQDs

A variety of processing routes has been developed to synthesize CQDs. The processing
routes most commonly used with marine polysaccharide precursors include hydrothermal
carbonization, microwave-assisted-hydrothermal synthesis, thermal acid dehydration,
solvothermal dehydration, and pyrolysis. Table 2 shows the different processing routes
reported for synthesizing CQDs from marine polysaccharides.

4.1. Hydrothermal Carbonization

Hydrothermal carbonization is the most common processing route used to synthesize
single- and doped-carbon quantum dots. The parameters used in the carbonization reaction
(i.e., temperature, pressure, and time) and the carbon source influence the final properties
of CQDs, such as size, quantum yield, and optical properties [23]. It features a facile
one-step synthesis procedure, low cost, and is referred to as an environmentally friendly
process [22]. Following this route, quantum dots are synthesized from the homogenization
of carbon-rich precursors (i.e., marine polysaccharides) in an aqueous solution in a pressure
vessel (Figure 6a). After the carbonization is finished, the carbon dots are present as
an aqueous sludge. Then, waste products and excess fluid need to be removed using
complementary procedures such as dialysis and freeze drying, among others, to obtain a
solid powder of carbon quantum dots. Even many authors have reported the use of syringe
filter membranes (0.22 µm–0.45 µm) at different stages of the carbonization process to
obtain transparent solutions before pouring them into an autoclave reactor and to remove
the carbonized precipitate (Figure 6a).

Overall, the mechanism during hydrothermal carbonization to obtain CQDs in-
cludes depolymerization, dehydration, carbonization, aromatization, nucleation, and
growth [52,53,72]. First, marine polysaccharides are depolymerized or fragmented, and con-
tinuous intramolecular dehydration occurs during the heating process. Re-polymerization
and aromatic clusters (C=C double bonds and aromatized molecules) are formed from
the molecules obtained under carbonization conditions. Nucleation and growth of carbon
substances will occur instantaneously after the concentration of aromatic clusters in the
aqueous solution reaches the critical supersaturation point [52,53,72].

Previous steps are sometimes needed before proceeding with hydrothermal carboniza-
tion. Sun et al. (2021) synthesized nitrogen-doped carbon quantum dots from chitosan [67].
They reported that prior to carbonization, the chitosan mixture was filtered through a
0.45 µm membrane to remove any insoluble substances. The purified mixture was poured
into an autoclave at 180 ◦C for 12 h. The carbon dots obtained after the process were
subjected to a second filtration through a 0.22 µm membrane and finally centrifuged for
15 min. Supchocksoonthorn et al. (2021) reported the use of hydrogen peroxide as a cata-
lyst, which was used to form hydroxyl radicals that can react with the carbon precursors
(κ-Carrageenan) and generate hydrophilic functional groups on the resulting CQDs [55]. In
order to neutralize the as-prepared CQDs, NaOH was used. The same procedure was used
by Zhou et al. (2016) to develop CQDs from alginate [22]. The authors used ultrasonication
to homogenize sodium alginate with hydrogen peroxide at 3%. The homogenized mixture
was then transferred into a sealed autoclave where carbon dots were synthesized. The
temperature used by the autoclave was in the range of 180 ◦C–240 ◦C for 12–24 h. The
carbon dots produced were filtered through a 0.22–0.45 µm nylon membrane in order to
remove the unreacted or non-solubilized parts [22].
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4.2. Microwave-assisted-hydrothermal Synthesis

Another facile and low-cost procedure to obtain CQDs is the microwave-assisted
method (Figure 6b). Compared to hydrothermal carbonization, the advantage of using
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this method is that a shorter carbonization reaction period is needed. Other advantages
include uniform heating, less power consumption, and the size-controllable dots that can
be obtained [23]. This microwave-assisted method has been used to synthesize CQDs from
k-carrageenan [57], sodium alginate [90] and chitosan [86]. For instance, Xiao et al. (2013)
synthesized CQDs from chitosan [86]. An aqueous chitosan solution was first transferred
to a microwave oven, where solvent molecules provided uniform heating, leading to the
formation of CQDs. This procedure was carried out over minutes. After the sample was
cooled down to room temperature, it was diluted in distilled or double-distilled water
while being stirred and sonicated for 10–30 min. Then, the sample was centrifuged at a
high rotation speed for 15–30 min to obtain a solution of CQDs. Finally, the sample was
freeze-dried to obtain a powder of CQDs.

4.3. Other Processing Routes

In addition to hydrothermal and microwave processes, pyrolysis has been performed
in argon atmosphere at 900 ◦C to obtain multilayer graphitic quantum dots derived from
alginate. This multilayered graphitic structure can be converted into graphene quantum
dots after laser ablation treatment. As a result, the dimensions of the alginate-derived
graphene quantum dots vary as a function of the number of laser pulses and the ablation
time [59].

Chauhan et al. [40,61,89] reported using an incineration process (450 ◦C–600 ◦C) to
prepare CQDs from agarose gel waste. After cooling down to room temperature, a blackish-
brown powder was obtained. The powder obtained was dispersed in deionized water and
centrifuged. The collected supernatant was sieved through a 0.22 µm filter membrane and
heated at 100 ◦C–130 ◦C for 1–2 h to obtain powder CQDs.

An ultrasonic-assisted nanoprecipitation in acidic solvent can also be used to syn-
thesize CQDs [60]. It involves the formation of polysaccharide nanoparticles using an
ultrasonic approach with a strong acid solvent as a dehydrating agent. Then, CQDs are
prepared by carbonization of the as-prepared nanoparticles.

The solvothermal dehydration method is a variation of the hydrothermal method in
which ammonia, alcohol, or an inorganic solvent is used instead of water [103]. Zhang
et al. [81] utilized chitosan as a precursor to synthesize carbon dots through solvothermal
carbonization. In this case, ethanol was used as the solvent, and the resulting product was
suggested to have utility in electrochemical imaging sensors.

Zattar et al. [75] utilized a thermal acid dehydration technique to synthesize carbon
quantum dots (CQDs) from chitosan. In the first stage, a carbonaceous material was
obtained after the combination of sulfuric acid and chitosan at 80◦ C under magnetic
stirring at 700 RPM for 40 min. The reaction was stopped by adding distilled water. Water
and ethanol were subsequently used to wash the product by vacuum filtration to remove
the excess of acid. The material was then dried in an oven at 70 ◦C, followed by oxidation
through the addition of nitric acid. Carbon dots were finally obtained after undergoing a
second heating process, neutralization, and centrifugation of the material.

Based on the above, one of the parameters used to evaluate the convenience of using a
specific processing route is the synthetic yield. Synthetic yield (SY), also known as product
yield (PY), is defined as the efficiency of converting the precursor into CQDs. It is calculated
as the ratio between the mass of the obtained CQDs (mCQDs) and the precursor’s mass
(mprecursor). SY is calculated following Equation (2).

SYCQDs =

[
mCQDs

mprecursor

]
× 100% (2)

Table 1 shows the yield (SY) for several processing routes used to synthesize CQDs
from marine polysaccharides. The highest SY (90%) was obtained through hydrothermal
carbonization using chitosan as a precursor to synthesize solid-state carbon dots (SS-CDs).
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5. Applications
5.1. Drug Delivery

Fluorescent CQDs based on sodium alginate and urea (AUCQDs) were used to load
a chemotherapeutic agent known as DOX (doxorubicin). The strategy of using sodium
alginate and urea was to obtain different functional groups (–OH, –COOH, and –CONH2)
attached to the surface of the alginate-urea CQDs that promote interactions with drug
molecules [90] (Figure 7a). As a result, the AUCQDs at concentrations of 0.186–0.3 mg/mL
were not toxic to MCF-7 human breast cancer cell lines (Figure 7b). The loading efficiency
of DOX onto the surface of AUCQDs was 70% at pH 7.4. The cumulative release of DOX at
different pH values was studied over 80 h (Figure 7c). It was found that around 20% of
the release takes place after 72 h. This gradual release is associated with better control of
DOX administration, thus preventing the initial-burst drug release when no CQDs carrier
is used (95% after 20 min).
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In another study, CQDs based on κ-carrageenan and phenyl boronic acid were used to
load metformin, an anti-diabetic drug for diabetes mellitus. The drug-loading efficiency
was 71.6%, and the drug release was around 60% during the first ten minutes [54]. In
comparison with the accumulative release of pristine drug, which showed a burst-release
phenomenon (92% after 5 min), the CQDs based on κ-carrageenan showed potential for
use as a vehicle for metformin delivery.

In addition to drug delivery, CQDs derived from marine polysaccharides can be
employed for gene delivery. Currently, no gene vector possesses the property of self-
imaging. In this context, sodium-alginate-derived CQDs were proposed to act as a self-
tracking gene carrier [22]. The complexes (CQDs/pDNA) were obtained using plasmid
TGF-b1 (pDNA) and the alginate-derived CQDs. The results showed that the CQDs/pDNA
were not cytotoxic against 3T6 cell lines. Furthermore, the CQDs/pDNA complex produced
a transfection efficiency similar to Lipofectamine 2000, a common transfection reagent.
The process of entering cells was monitored using green and blue fluorescence. The
blue fluorescence corresponds to the CQDs/pDNA complex and allows it to be located
at the periphery of the nucleus, while the green fluorescence derived from YOYO-1 dye
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contributes to the visualization of pDNA transfection in the nucleus. These results indicated
that the alginate-derived CQDs are nanomaterials with the potential for dual roles as both
gene carriers and bioimaging probes.

5.2. Bioimaging

Due to carbon dots’ fluorescence properties, many researchers aim to develop in vitro
and in vivo monitoring and detection applications to diagnose cancer cells and other
diseases. In this regard, developing probes for detecting abnormal levels of alkaline phos-
phatase, a biomarker for detecting diseases and cancer cells in human serum, is vital. For
this reason, Mu X. et al. (2021) developed a fluorescent probe from chitosan-doped carbon
dots using chitosan as a precursor with calcein to detect alkaline phosphatase [24]. To detect
alkaline phosphatase in cells, the researchers evaluated the cell viability of carbon dots
using HepG2 cells. They obtained more than 80% viability at concentrations greater than
0.05 mg/mL of carbon dots. Thanks to their biocompatibility and selectivity for alkaline
phosphatase detection, they evaluated the intracellular bioimaging of alkaline phosphatase
in HepG2 cells. HepG2 cells incubated with the carbon dots and calcein mixture showed
strong green fluorescence from calcein and weak blue fluorescence from carbon dots. How-
ever, cells incubated with the mixture of carbon dots, calcein, and Eu3+ showed a decrease
in green fluorescence from calcein, as determined in their previous fluorescence studies.
When pNPP was added to the incubation medium, it was hydrolyzed by endogenous
alkaline phosphatase, generating PO4

3−. This phosphate anion combined with Eu3+, which
released free calcein. Consequently, it caused an increase in the green fluorescence inten-
sity of calcein in HepG2 cells and a decrease, an almost complete quenching, of the blue
fluorescence intensity of the carbon dots.

On the other hand, Sun et al. (2021) reported on the bioimaging of E. coli and B. subtilis
bacteria using a fluorescent probe made from nitrogen-doped carbon dots [67]. For this
reason, they performed toxicity studies of the carbon dots derived from chitosan at different
concentrations (20–400 µg/mL) for the two bacteria used in the research. The results
showed more than 93% bacterial cell viability, indicating low cytotoxicity of the nitrogen-
doped carbon dots. The bacteria incubated with the carbon dots showed blue, green,
and red fluorescence at different excitation wavelengths: 405 nm, 470 nm, and 560 nm,
respectively (Figure 8). The results in the fluorescence images indicated that the carbon
dots could pass through the cell membranes, causing bacterial cell staining.
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5.3. Biosensing

Due to their luminescence properties, fluorescent stability, and good biocompatibility,
carbon dots present a promising perspective as fluorescent carbon nanomaterials for molec-
ular biological sensing. According to the literature, a high level of iron ion content and/or
iron deficiency in the body could increase human health problems. For this reason, it is
essential to develop effective and straightforward methods for detecting ionic iron. In this
instance, Liu et al. (2019) developed a carbon probe for the selective and sensitive detection
of Fe2+ ferrous ions using carbon dots derived from chitosan and acrylamide [46]. To per-
form the arrest, they analyzed the fluorescence intensities of the carbon dots, which showed
chelating metal properties in the presence of different metal ions, including Pb2+, Cr3+,
Cu2+, Hg2+, Fe3+, and Fe2+, among others, at a concentration of 300 µm. The fluorescence
intensity of the carbon dots in the presence of Fe2+ was quenched, with a 55% attenuation.
Xu et al. (2021) reported the sequential detection of Fe3+ iron ions and ascorbic acid through
probes based on carbon dots derived from chitosan and κ-carrageenan co-doped with
nitrogen and sulfur [100].

Mu et al. (2021) developed a fluorescent probe with good stability based on the
ratiometric fluorescence method from chitosan-doped carbon dots, using chitosan and
ethylenediamine as precursors together with the metal ion indicator calcein, for the de-
tection of alkaline phosphatase [24]. Different assays were performed to detect alkaline
phosphatase by measuring ratiometric fluorescence through fluorescence emission spectra.
In the first instance, they demonstrated the quenching effect that calcein has on the carbon
dots, presenting two fluorescence emission peaks. For the case of the carbon dots, the peak
was less than 1000 a.u. at about 412 nm emission wavelength, and for calcein, the peak was
4000 a.u. at about 512 nm emission wavelength. The fluorescence signal of calcein was
quenched when Eu3+ was added to the mixture. However, by adding the enzyme alkaline
phosphatase at different concentrations in the range of 0.09–2 mU/mL to the mixture of
carbon dots, calcein, and Eu3+, they saw an increase in the fluorescence intensity of calcein
and a decrease in the fluorescence intensity of carbon dots (Figure 9). Subsequently, in order
to evaluate the ratiometric fluorescent detection of alkaline phosphatase activity, they used
human serum samples. They determined that their detection was 0.295 to 0.297 mU/mL of
alkaline phosphatase in 100-fold diluted human serum.
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A non-enzyme-based glucose sensor for determining blood sugar using boronic-acid-
functionalized κ-carrageenan CQDs was developed [54]. The authors developed a glucose
sensor utilizing a Whatman paper strip soaked in a CQDs dispersion. The paper strip was
then dried. The biosensor based on κ-carrageenan CQDs features linearity in the range of
0–210 µM, with a detection limit at a concentration of 1.7 µM. The fluorescence quenching
revealed that the paper-based sensor was selective for glucose over other molecules such
as fructose, lactose, and maltose. Another important biomolecule is dopamine, which is
essential to monitor in order to diagnose mental diseases such as Parkinson’s, schizophrenia,
and bipolar disorder, among others. Chauhan et al. (2021) reported a noticeable fluorescence
quenching of agarose waste CQDs toward dopamine, with a detection limit of 0.128 µM [61].
In addition, they proved the selectivity of dopamine over more than ten interferences,
including biomolecules (glycine, glucose, ascorbic acid, and urea), amino acids (ι-Serine,
ι-Valine, ι-cysteine, and ι-alanine), and ions (Na+, K+, Mg2+, and Ca2+).

Das et al. (2018) developed a fluorescence sensor using nitrogen- and sulfur-co-doped
CQDs to monitor the acetone level in biological samples such as blood and urine [53]. These
co-doped CQDs (NSCQDs) were synthesized using urea and κ-carrageenan. The NSCQDs
revealed effective selectivity for acetone molecules in biological fluids, with a detection
limit of 7.2 × 10−7 M. The fluorescence properties showed that acetone could quench the
NSCQDs in a range of 0–0.05 M and 0–0.01 M for blood and urine samples.

5.4. Sensing

It is important to assess water quality according to the ion and metal content as well
as environmentally polluting dyes. For example, Jun Zhan et al. (2019) used carbon
dots to detect metal ions [78]. The fluorescence-quenching tests with different metal ions
determined that CQDs exhibited higher detection selectivity for Fe3+ at 1 mM. They also
studied the carbon dots’ quenching behavior at different Fe3+ concentrations. As a result,
they found that as the concentration increased, the fluorescence intensity decreased. The
quenching of the fluorescence of the carbon dots in the presence of the metal ion Fe3+ was
due to chelation between the ion and the phenolic hydroxyl groups.

Fong et al. (2015) synthesized alginate CQDs and used them to evaluate their fluores-
cence properties for sensing ferric ions [60]. CQDs fluorescence was quenched at different
concentrations of Fe3+ (0–25 µM). The result exhibited good selectivity toward ferric ions
(Fe3+) in the presence of several cations, including Na+, Mg2+, Cr2+, Mn2+, Co2+, Cu2+,
Hg2+, and Pb2+, with a detection limit of 1.06 µM.

Wang et al. (2021) used CQDs derived from κ-carrageenan as a fluorescent detector of
metal ions [49]. Such CQDs exhibited high fluorescence intensity and excellent stability,
with a quantum yield of 20.6%. The fluorescence intensities of these CQDs were modified
with the addition of Fe3+ and oxytetracycline (Otc), demonstrating their good selectivity
and sensitivity for the detection of metal ions. The detection limit was 0.21 µM in the
presence of ions such as Al3+, Ca2+, Pb2+, Na2+, and Hg2+, among others. With the addition
of Otc, these CQDs showed a detection limit of 0.05 µM in the presence of ions such as Na+,
Mg2+, Ca2+, Zn2+, and SO4

− as well as other substances such as sucrose, glucose, glycine,
urea, ethanol, vitamin C, and oxalic acid.

Sun et al. (2021) reported the synthesis of carbon dots from N-doped chitosan to detect
nitrite (NO2−) present in tap water and lakes [67]. On the other hand, Sun et al. (2020)
reported carbon dots synthesized from carbon alginate with good fluorescence properties in
mild acidic/basic and metal ion environments [58]. Bera and Mohapatra (2020) developed
a sensor/probe based on chitosan-derived carbon dots integrated with CdTe to detect
organophosphate herbicides such as glyphosate in an aqueous medium [77]. The detection
was based on the photoelectron transfer strategy. The fluorescence of CdTe in the presence
of glyphosate turns on as the disintegration of CdTe and carbon dots occurs.

Chauhan et al. (2020) reported the use of CQDs derived from agarose gel waste to
develop a fluorometric sensor for detecting Zn2+ and CO3

2− ions [40]. The data showed
that the detection limit of the agarose-waste CQDs sensor was 0.26 nM and 0.17 nM for
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Zn2+ and Co3
2− ions, respectively. These lower concentration levels can provide green,

non-toxic, and cost-effective solutions for water treatment.
Several industries, including textiles, cosmetics, and paints, use large quantities of

synthetic dyes that harm aquatic ecosystems. Recently, Leuterio et al. (2022) compared
the degradation of methylene orange dye using (к-,
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Others 1–40 
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O %: 26.98–32.34%  
S %: 3.15% 

N %: 2.41–8.12% 
[40,61–64] 

Crustaceans 
Chitins 1–20.5 

Yellowa, Browna, Orangea, 
Blueb, Greenb 6.7–9.9 5.1–35 

O %: 4.67–28.54%  
S %: 0.38–1.54% 

N %: 2.63–18.25% 
[26,65–71] 

Chitosans 
0.6–11 
2.7–3c 

Transparenta, Browna, Yel-
lowa, Blueb, Greenb 

85.3–90 3.3–40 
O %: 1.47–51.67% 
N %: 0.02–9.63% 

[24,27,29,31,7
2–87] 

Fish 

Chondroitin sul-
fate (shark carti-

lage) 
19.6–60 

Yellow-browna 

Yellowish-greenb 
Blueb 

– 20.46 
C % and O % > 90% 

S % < 10% 
[41] 

Collagen and chi-
tin (Fish scales) 

13 – – 17.3 
O %: 26% 
N %: 8% 

[88] 

a, under daylight; b, under UV lamp; c, hydrodynamic size obtained by dynamic light scat-
tering. 

3.1. Polysaccharides Extracted from Marine Algae 
3.1.1. Carrageenan 

Carrageenan is a linear sulfated polysaccharide extracted from red algae. There are 
three types of carrageenan, i.e., κ-Carrageenan, ɩ-carrageenan, and λ-carrageenan. The dif-
ference between these types of carrageenan is the number and position of ester-sulfate 
groups. In addition to the presence of ester-sulfate groups, carrageenan includes hydroxyl 
(-OH) groups. These groups can improve the water solubility and quantum yield of CQDs 
by introducing heteroatoms (oxygen and sulfur) on the surface of CQDs [49].  

Emma H. and Ahmed H. [52] used k-carrageenan to synthesize CQDs with a diame-
ter of 2.1 nm. Other authors have reported that CQDs prepared with κ-Carrageenan had 
diameters ranging from 0.93 nm to 30 nm and quantum yield values reaching up to 69.27% 
[53] (Table 1). Leuterio et al. [42] used (к-, ɩ-, and λ-) carrageenan and galactose as carbon 
precursors for synthesizing CQDs. The carrageenans and galactose CQDs suspension in 
water showed a yellow color under daylight, while a luminous green color appeared un-
der UV irradiation (Figure 4A,B). The morphology and size of the as-prepared CQDs were 
studied by TEM and dynamic light scattering (DLS), as shown in Figure 4. Figure 3c de-
picts quasi-spherical shapes, and the hydrodynamic sizes of the carrageenans and galac-
tose CQDs are in the range of 1.7 nm–3 nm (Figure 4D). The authors proved that the sulfate 
content in carrageenan CQDs plays a critical role in their acidity properties. The starting 
materials к-, ɩ-, and λ- carrageenan have one, two, and three sulfated groups per disaccha-
ride, in contrast to galactose, which has the same sugar structure as carrageenan but no 
ester sulfate groups. The pH values of к-, ɩ-, and λ-carrageenan CQDs and galactose CQDs 

-, and λ-) carrageenan CQDs and
galactose CQDs [42]. The authors proved that the sulfate content in carrageenan CQDs
plays a critical role in the degradation of the methylene orange dye. It is related to the
acidic nature of CQDs based on carrageenan that allows the dye to be protonated, thus
destroying its aromatic structure and degrading it over time. The dye degradation efficiency
was 3%, 21%, and 22% using к-, λ-, and
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3.1. Polysaccharides Extracted from Marine Algae 
3.1.1. Carrageenan 

Carrageenan is a linear sulfated polysaccharide extracted from red algae. There are 
three types of carrageenan, i.e., κ-Carrageenan, ɩ-carrageenan, and λ-carrageenan. The dif-
ference between these types of carrageenan is the number and position of ester-sulfate 
groups. In addition to the presence of ester-sulfate groups, carrageenan includes hydroxyl 
(-OH) groups. These groups can improve the water solubility and quantum yield of CQDs 
by introducing heteroatoms (oxygen and sulfur) on the surface of CQDs [49].  

Emma H. and Ahmed H. [52] used k-carrageenan to synthesize CQDs with a diame-
ter of 2.1 nm. Other authors have reported that CQDs prepared with κ-Carrageenan had 
diameters ranging from 0.93 nm to 30 nm and quantum yield values reaching up to 69.27% 
[53] (Table 1). Leuterio et al. [42] used (к-, ɩ-, and λ-) carrageenan and galactose as carbon 
precursors for synthesizing CQDs. The carrageenans and galactose CQDs suspension in 
water showed a yellow color under daylight, while a luminous green color appeared un-
der UV irradiation (Figure 4A,B). The morphology and size of the as-prepared CQDs were 
studied by TEM and dynamic light scattering (DLS), as shown in Figure 4. Figure 3c de-
picts quasi-spherical shapes, and the hydrodynamic sizes of the carrageenans and galac-
tose CQDs are in the range of 1.7 nm–3 nm (Figure 4D). The authors proved that the sulfate 
content in carrageenan CQDs plays a critical role in their acidity properties. The starting 
materials к-, ɩ-, and λ- carrageenan have one, two, and three sulfated groups per disaccha-
ride, in contrast to galactose, which has the same sugar structure as carrageenan but no 
ester sulfate groups. The pH values of к-, ɩ-, and λ-carrageenan CQDs and galactose CQDs 

-carrageenan CQDs. Compared to CQDs based
on galactose (Gal-CQDs) with the same sugar structure as carrageenan but with no ester
sulfate groups, the results showed that Gal-CQDs did not affect the methylene orange dye,
and no degradation efficiency was reported.

5.5. Food

Recently, interest in applying carbon dots in the food industry has increased. Carbon
quantum dots derived from polysaccharides exhibit antioxidant and antibacterial activities,
excellent biocompatibility, and non-toxicity. Additionally, they can provide UV protection.
Based on the above, CQDs can be used as additives for manufacturing packaging materials,
as sensors to evaluate food quality and safety, and even as a tool to study plant-related
diseases [57,104].

For instance, Fu et al. (2022) developed an improved bio-nanocomposite film by
integrating chitosan-derived carbon dots through hydrothermal synthesis into the mixture
of gelatin and chitosan [31]. Photoluminescence studies of the carbon dots showed that
they could emit blue light with a peak wavelength of 420 nm. The composite film of
gelatin/chitosan/carbon dots presented a homogeneous and flexible appearance. When
exposed to sunlight, the films became more yellowish as the content of carbon dots
(0–20%) in their composition increased. Moreover, the fluorescence of the films increased
when exposed to UV light. This fluorescence property of the carbon dots was used as an
indicator of the fish’s freshness since changing the fish’s pH changes the film’s fluorescence
brightness. On the other hand, antibacterial activity studies of the film were carried out
using E. coli (Gram-negative) and S. aereus (Gram-positive) bacteria. It showed significant
increases in the zone of inhibition in films composed of carbon dots.

Organic compounds such as capsaicin are an essential indicator of the quality of
commercial spicy foods. The study of ref. [55] (2021) evaluated capsaicin detection using
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precursors for synthesizing CQDs. The carrageenans and galactose CQDs suspension in 
water showed a yellow color under daylight, while a luminous green color appeared un-
der UV irradiation (Figure 4A,B). The morphology and size of the as-prepared CQDs were 
studied by TEM and dynamic light scattering (DLS), as shown in Figure 4. Figure 3c de-
picts quasi-spherical shapes, and the hydrodynamic sizes of the carrageenans and galac-
tose CQDs are in the range of 1.7 nm–3 nm (Figure 4D). The authors proved that the sulfate 
content in carrageenan CQDs plays a critical role in their acidity properties. The starting 
materials к-, ɩ-, and λ- carrageenan have one, two, and three sulfated groups per disaccha-
ride, in contrast to galactose, which has the same sugar structure as carrageenan but no 
ester sulfate groups. The pH values of к-, ɩ-, and λ-carrageenan CQDs and galactose CQDs 

-carrageenan CQDs. The authors found a detection limit of 5.4 nM, a linear range from
0.05–500 µM, and good selectivity towards capsaicin over other molecules found in food,
including glucose, citric acid, and ascorbic acid.

Sun et al. (2020) reported the use of carbon dots derived from sodium alginate and
glutaraldehyde through hydrothermal carbonization [58]. These were added to sodium-
alginate films to prevent their aging when exposed to UV radiation. The films were uniform
in color and transparent. Since these films have applications for food coating, a cell viability
test was performed on them, indicating that the carbon dots showed more than 72% cell
viability at different concentrations (0.16, 0.32, 0.61, 1.25, and 2.50). Additionally, the
transmittance of the films with carbon dot additives was 4.8% in the UV region, a value
much lower than the film without additives, which was 95.1%. Tensile strength tests were
carried out to verify their anti-ultraviolet performance. The films were subjected to UV
irradiation for three days, and when tested, it was confirmed that they only showed a
15% decrease in the initial resistance. This property was attributed to the fact that the
carbon dots converted the absorbed UV light into thermal energy, accelerating the loss
of water molecules and making the internal structure of the films more compact. These
results revealed that carbon dots as additives provided the property of UV-initiated ageing
resistance to sodium-alginate films.
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6. Future Perspective

Polysaccharides are the most abundant and complex organic molecules in the ocean [38].
A wide range of CQDs can be obtained by utilizing a diverse selection of polysaccharides as
both precursors and doping agents. The main challenges that hinder the full development
of a novel carbon dots industry are related to the processing routes and the photolumines-
cence characteristics of CQDs. Regarding processing methods, the main challenge is still to
produce CQDs with high QYs using simple, one-step techniques. Novel methodologies
must enable the control of optical properties to achieve tunable emission. Most investiga-
tions on CQDs have shown that it is relatively easy to synthesize blue- and green-fluorescent
carbon nanoparticles with high fluorescence quantum yields [105]. In fact, CQDs typically
exhibit strong absorption in the ultraviolet (UV) range and dominant emissions in the blue
range [106]. However, for applications in the biological field, red-luminescent CQDs are
needed because blue and green emissions cannot penetrate tissue deeply and are likely to
cause auto-fluorescence in biosamples [107,108]. Therefore, the synthesis of CQDs with
strong red/near-infrared (NIR) emission/excitation has been identified as a crucial factor
in advancing their applications in the biomedical field [109–111].

Zhu et al. [106] reviewed the process of producing red CQDs from various precursors.
They discovered that several of the precursors utilized in synthesizing red CQDs contain
heteroatoms that create new energy bandgaps, resulting in a shift towards red-shifted
spectra. Marine polysaccharides such as carrageenan and chitosan feature sulfur and
nitrogen heteroatoms, which could be used to fabricate red CQDs with narrowed elec-
tronic bandgaps. Future studies should develop processing routes that capitalize on the
heteroatoms found in marine polysaccharides to produce red-emitting CQDs.

7. Conclusions

In this review, we report that marine polysaccharides extracted from sources such
as algae, crustacean shells, and fish waste are excellent precursors for obtaining carbon
quantum dots (CQDs). These polysaccharides contain heteroatoms such as nitrogen, sul-
fur, and oxygen in their structure, which makes them ideal for CQD synthesis. CQDs
doped with these heteroatoms show improvements in their optical properties, photolu-
minescence, quantum yield, and quenching mechanism. These essential properties make
CQDs applicable in several fields, such as drug delivery, bio-imaging, bio-sensing, and
metal ion detection. Further studies will enable the development of new types of CQDs,
including red-emitting CQDs, which will expand the range of applications for CQDs in the
biomedical field.

This review will guide researchers to explore new sources such as marine microorgan-
isms or microalgae biomass, which can be used as precursors for carbon quantum dots,
generating a new area of research.
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