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Abstract: A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber
H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues.
Importantly, several chemical depolymerization methods were used to elucidate the structure of the
AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled
with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized
product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from
the free radical depolymerized product, suggesting that the repeating building blocks in a natural
AG should comprise the disaccharide β-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side
chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan
sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types
of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S linked
to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized
products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong
activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency
was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time
(TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could
inhibit the intrinsic and common coagulation pathways.

Keywords: aminoglycan; structural features; keratan sulfate; depolymerization; oligosaccharides;
anticoagulant activity

1. Introduction

The body wall of sea cucumbers is rich in polysaccharides. Over the years, various
polysaccharides from sea cucumbers have been analyzed, including sulfated fucan (SF),
fucosylated chondroitin sulfate (FCS) or fucosylated glycosaminoglycan (FG), glucan and
a novel sulfated polysaccharide composed of N-acetyl hexosamine, galactose and fucose.
Particularly, the structures of FG and SF have been extensively investigated [1–3].

In general, the structure of the FG backbone is formed by alternating 3-linked D-
GalNAc4S6S and 4-linked D-GlcA units (-4-β-D-GlcA-1,3-β-D-GalNAc4S6S-1-), and the
distinct sulfated fucosyl branches are usually attached at the O-3 position of the D-GlcA
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residue. Recently, the structural diversity of FG from different sea cucumber species has
been elucidated, and the structural variants are usually revealed by their unique branches,
especially a sulfation pattern, as well as their monosaccharide composition and number.
For example, the structures differed in the sulfation types of FucS. Namely, most of the FucS
in HfFG (FG from Holothuria fuscopunctata) was L-Fuc3S4S [4], but the FucS in SvFG (FG
from Stichopus variegatus) was L-Fuc2S4S [5], while the FucS in HaFG (FG from Holothuria
albiventer) was L-Fuc3S4S, L-Fuc2S4S and L-Fuc4S [6]. The unique disaccharide branches were
confirmed as α-D-Gal4S(6S)-1,2-L-Fuc3S with the structural elucidation of oligosaccharides
prepared from Thelenota ananas [7].

Regarding the structure of SFs, SFs from sea cucumbers are usually composed of
uniform L-fucose residues, but the glycosidic linkage and the sulfation pattern of these SFs
may vary in different sea cucumber species. For example, the sulfated fucans consisting of
distinctive simple repeating units have been isolated from H. fuscopunctata, T. ananas and
Stichopus horrens, respectively [8]. The structural sequences of these sulfated fucans are
[-4-α-L-Fuc3S-1-], [-4-α-L-Fuc2S-1-] and [-3-α-L-Fuc2S-1-], respectively. Meanwhile, several
SFs are composed of 3-linked α-L-fucose units with 2- and/or 4- sulfation substitutions
within repeating tetrasaccharide building blocks, for example, SFs from Ludwigothurea
grisea [9], Isostichopus badionotus [10], Acaudina molpadioides [11], Holothuria tubulosa [12] and
Thelenota ananas [13].

Additionally, neutral glucans have been found in several sea cucumber species [14,15],
including H. edulis and Pattalus mollis.

Recently, four types of sulfated polysaccharides were investigated in the sea cucumber
H. fuscopunctata [16], indicating the diversity of polysaccharides in the body wall of a sea
cucumber species. A regular FG was identified through a bottom-up strategy [4], and
the trisaccharide repeating unit is -4-[α-L-Fuc3S4S-1,3]-β-D-GlcA-1,3-β-D-GalNAc4S6S-1-.
Particularly, two types of SFs, namely SFI and SFII, have been reported. The tetrasaccharide
repeating units in SFI were elucidated as [-3-α-L-Fuc2S4S-1,3-α-L-Fuc(2S)-1,3-α-L-Fuc2S-
1,3-α-L-Fuc0S-1-]n based on the structure of a series of oligosaccharides released by mild
acid hydrolysis [17]. By combining the application of the β-eliminative and deaminative
depolymerization with glycosidic linkage cleavage selectivity, a highly regular SF (SFII)
was found, and its structural sequence is [-4-α-L-Fuc3S-1-] [8,16]. Interestingly, a sulfated
polysaccharide, composed of D-GlcNAc, D-GalNAc, D-Gal, L-Fuc, and no uronic acid
residues was observed, so it was designated as aminoglycan (AG). However, the precise
structure of the AG based on pure oligosaccharides has not been reported so far.

It is worth noting that keratan sulfate (KS) is a glycosaminoglycan (GAG) consisting
of the repeating disaccharide unit -3-β-Gal-1,4-β-GlcNAc-1- [18,19]. Significantly, KS is the
only GAG type that does not contain any uronic acid residues. In the disaccharide repeating
unit of chondroitin sulfate, dermatan sulfate, hyaluronic acid and heparin/heparan sulfate,
the glucuronic acid or iduronic acid could be observed. According to the monosaccharide
compositions, the AG may be a KS-like polysaccharide found in sea cucumbers. However,
its structure has not been elucidated.

Sulfated polysaccharides exhibit multiple biological activities [2], including antico-
agulation and antithrombosis [1], anticancer, antivirus and immunomodulation. The
anticoagulant activity and molecular mechanism of FCS have attracted extensive atten-
tion. In one of our recent reports, the natural AG showed moderate activated partial
thromboplastin time (APTT) prolonging activity (5.84 IU/mg) compared to FCS with po-
tent activity [16]. However, further work is needed to separate the oligosaccharides to
investigate the structure–activity relationship of the AG.

In this study, we isolated and purified a natural AG from the sea cucumber H. fus-
copunctata. The physicochemical properties and chemical composition of the AG were
investigated. Importantly, the deacetylation and deaminative depolymerization was used
to cleave the AG, and the resulting oligosaccharides were purified and structurally identi-
fied. The commonly used free radical depolymerization was applied to the AG to produce
fragments of different molecular weights, which were used to explore the relationship
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between molecular size and biological activity. Additionally, three oligosaccharides were
obtained and identified. Due to the presence of the fucose residues in the AG, the AG was
further subjected to mild acid hydrolysis, and the released fragments were collected and
analyzed. According to the structures of oligosaccharides, the tentative chemical structure
of the AG was deduced. The anticoagulant activities of the natural AG and its related
compounds were evaluated in vitro in human control plasma.

2. Results and Discussion
2.1. Structural Characterization of AG

As shown in previous studies, the AG could be purified by a combination ofβ-eliminative
depolymerization and strong anion exchange chromatography (Figures S1 and 1A) [16]. The
result of the monosaccharide composition analysis indicated that the homogeneous AG
was composed of GlcN, GalN, Gal and Fuc (Figure 1B), which is consistent with a previous
study [16]. The sulfate content was ~37% as determined through a conductivity titration
method (Figure 1C) [14]. The 1H NMR spectrum of the AG is shown in Figure 1D, and the
signals at the 2.01 ppm and 1.18 ppm with the integral ratio of 1:0.5 could be assigned to the
methyl groups of two N-acetyl hexamines and Fuc, respectively. The 3.50–5.00 ppm region
contains the signals of hydrogens in the sugar ring. The overlapping and broad signals
in the 1H NMR spectrum of the AG were difficult to assign, indicating that the structure
of the AG may be complex [16]. The approach applying specific degradation methods to
cleave the polysaccharide chain to afford fragments has been shown to be effective in the
structural elucidation of complex biomacromolecules [20]. Consequently, the natural AG
was subjected to three chemical degradation treatments as shown in Figure 1A, and the
released fragments were mainly characterized with 1D/2D NMR spectroscopy.

Mar. Drugs 2023, 21, x FOR PEER REVIEW 3 of 19 
 

 

produce fragments of different molecular weights, which were used to explore the rela-

tionship between molecular size and biological activity. Additionally, three oligosaccha-

rides were obtained and identified. Due to the presence of the fucose residues in the AG, 

the AG was further subjected to mild acid hydrolysis, and the released fragments were 

collected and analyzed. According to the structures of oligosaccharides, the tentative 

chemical structure of the AG was deduced. The anticoagulant activities of the natural AG 

and its related compounds were evaluated in vitro in human control plasma. 

2. Results and Discussion 

2.1. Structural Characterization of AG 

As shown in previous studies, the AG could be purified by a combination of β-elim-

inative depolymerization and strong anion exchange chromatography (Figures S1 and 1A) 

[16]. The result of the monosaccharide composition analysis indicated that the homogene-

ous AG was composed of GlcN, GalN, Gal and Fuc (Figure 1B), which is consistent with 

a previous study [16]. The sulfate content was ~37% as determined through a conductivity 

titration method (Figure 1C) [14]. The 1H NMR spectrum of the AG is shown in Figure 1D, 

and the signals at the 2.01 ppm and 1.18 ppm with the integral ratio of 1:0.5 could be 

assigned to the methyl groups of two N-acetyl hexamines and Fuc, respectively. The 3.50–

5.00 ppm region contains the signals of hydrogens in the sugar ring. The overlapping and 

broad signals in the 1H NMR spectrum of the AG were difficult to assign, indicating that 

the structure of the AG may be complex [16]. The approach applying specific degradation 

methods to cleave the polysaccharide chain to afford fragments has been shown to be ef-

fective in the structural elucidation of complex biomacromolecules [20]. Consequently, the 

natural AG was subjected to three chemical degradation treatments as shown in Figure 

1A, and the released fragments were mainly characterized with 1D/2D NMR spectros-

copy. 

 

10 15 20 25 30 35 40 45 50 55 60 65

0

1000

2000

3000

10 15 20 25 30 35 40 45 50 55 60 65

0

30

60

90

120

F
u

c
 

G
a

l

G
lc

G
lc

AG
a

lN

R
h

a

G
lc

N

M
a

n

P
M

P

B

F
u

c
 

G
a

l

G
a

lN

G
lc

N

Rt (min)  

0 500 1000 1500 2000 2500 3000

20

40

60

80

100

120

140

C
o
n
d
u
ct

iv
ity

 (
μ

S
/c

m
)

VNaOH (μL)

C

  

Figure 1. (A) Flow chart for the purification of the AG from the body wall of sea cucumber H. 

fuscopunctata and its related oligosaccharides oAG-1–6 and bAG-1. (B) Monosaccharide composi-

tions of the AG. (C) Conductivity titration curve of the AG. (D) 1H NMR spectra of the AG, partially 

Figure 1. (A) Flow chart for the purification of the AG from the body wall of sea cucumber
H. fuscopunctata and its related oligosaccharides oAG-1–6 and bAG-1. (B) Monosaccharide com-
positions of the AG. (C) Conductivity titration curve of the AG. (D) 1H NMR spectra of the AG,
partially deacetylated AG (deAG) and the high-molecular-weight product of mild acid hydrolysis of
the AG (mAG).
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2.2. Preparation of Oligosaccharides with Deacetylation–Deaminative Depolymerization

Deaminative cleavage of amino sugar glycosides is an effective depolymerization
approach to cleave the glycosidic linkages formed by hexosamine [21]. According to the
reaction mechanism, this process could convert the N-deacylated amino sugars into 2,5-
anhydrohexoses. As for the most common amino sugars in biopolymers, GlcN and GalN
are converted to 2,5-anhydro-mannose (aMan) and 2,5-anhydro-talose (aTal), respectively.
Thus, the oligosaccharide formed in the deamination reaction could be labeled with the 2,5-
anhydrohexose terminal as the new reducing end. Regarding polysaccharides containing
N-acetyl substituted amino sugar residues, the partial deacetylation procedure is required
before deamination with acid [22].

As mentioned above, the AG was composed of four types of monosaccharides, in-
cluding GlcNAc, GalNAc, Gal and Fuc. To elucidate the structure of the AG, its depoly-
merized product dAG was prepared with the method of deacetylation and deaminative
depolymerization. After partial deacetylation through hydrazinolysis (deAG), the integral
of the methyl signals assigned to the acetyl groups of the AG at 2.0 ppm was reduced
(Figure 1D), compared with the natural AG, suggesting the formation of the unsubstituted
amino groups.

After deaminative depolymerization with nitrous acid at pH 4, the low-molecular-
weight product composed of oligosaccharides was obtained. The high-performance gel
permeation chromatography (HPGPC) profile of dAG analyzed on a Superdex Peptide
10/300 GL column showed a series of peaks with different retention times (Figure 2),
indicating that dAG was composed of several oligosaccharides. After separation with GPC
using Bio-gel P10 and P6 columns, three fractions oAG-1, oAG-2 and oAG-3 (Figure 2) were
obtained, which were further subjected to 1D/2D NMR spectroscopy.
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Structural analysis of the purified oligosaccharide oAG-1 was achieved with 1D/2D
NMR spectroscopy (Figures 3 and S2). The carbon number in its 13C NMR spectrum
suggests that oAG-1 should be a monosaccharide. The resonances at 5.54 and 96.05 ppm
could be assigned to the anomeric H1 and C1 of this unit. Starting from the H1 signal at
5.54 ppm in the 1H-1H COSY spectrum (Figure S2), the signals of H2, H3, H4, H5 and H6
could be sequentially attributed according to the observed spin–spin system. The H/C
chemical shifts and coupling constants summarized in Table S1 suggest that it should
be a sulfated galactose in α-anomer (G) according to the comparison with the data of
galactose [23]. 1H/13C resonances of the β-anomer (G′) were also observed. Interestingly,
the C-3, C-4 and C-6 positions should be substituted by sulfate groups based on their
characteristic 1H/13C chemical shifts. Thus, oAG-1 was identified as an α/β-D-Gal3S4S6S
unit (Scheme 1), which should be generated during the deaminative depolymerization
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process, due to the possible loss of 2,5-anhydrohexose residues [24]. Additionally, the
structure of oAG-1 was confirmed by the ESI-Q-TOF MS data (Figure S3).
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Scheme 1. Structures of oligosaccharides oAG-1~oAG-6 and bAG-1. The letters G, G’, A, B, F and F’
in Scheme 1 represent the corresponding sugar residues in the chemical structures of oligosaccharides.
These letters are also used in the 1D/2D NMR spectra. (I) and (II) are the two compounds present in
oAG-5.

The 1D/2D NMR spectra of oAG-2 and oAG-3 are clear and have a good resolution
(Figures 4 and 5), allowing their structure elucidation. The structural analysis of oAG-2
is shown as a representation. In the 1H-1H COSY spectrum (Figure 5A), two spin–spin
coupling systems (A and B) could be clearly observed, suggesting that oAG-2 should be
a disaccharide. Similar to the oligosaccharides produced by nitrous acid from chitosan,
the new reducing end 2,5-anhydro-D-mannose (D-aMan) unit was recognized [25,26].
Obviously, the signals at 5.05 ppm (B1) in 1H NMR and 103.94 ppm in 13C NMR were from
the anomeric resonances of the B unit, indicating that it should be the D-aMan residue
generated by the deaminative cleavage of the D-GlcN residue. The sulfation patterns of
D-aMan could be determined by the downfield shifts of the signal of C-6 (70.02 ppm). The
other signals should be ascribed to the D-Gal residue (A), and the O-4, O-6 positions were
bearing sulfate groups according to the downfield shifted chemical shifts of C-4 (79.20 ppm)
and C-6 (70.41 ppm). The full H/C signal assignments of oAG-2 could be achieved by
extensive analysis of the 1H-1H COSY, TOCSY, ROESY and 1H-13C HSQC spectra and
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are summarized in Table 1. Furthermore, the glycosidic bond between residues A and B
could be identified from the cross peaks in 1H-1H ROESY and 1H-13C HMBC from their
anomeric protons (Figure 5B,C). Specifically, the peaks of A1–B4 (4.647, 88.96 ppm) in
1H-13C HMBC, along with the large value of J1,2 (7.84) of unit A, could indicate D-Gal4S6S
linked to D-aMan6S via the β1,4 glycosidic linkage. Thus, oAG-2 could be identified
as the disaccharide with the structural sequence of β-D-Gal4S6S-1,4-D-aMan6S. Using a
similar approach (Figures 4, 5 and S4, Table 1), complete signal assignments of oAG-3 were
obtained, and oAG-3 was identified as β-D-Gal3S4S6S-1,4-D-aMan6S. The sulfation positions
of the Gal residue in oAG-2 and oAG-3 were different.
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Table 1. 1H/13C chemical shifts of oAG-2 and oAG-3.

oAG-2 oAG-3

A, β-D-Gal4S6S-1, A, β-D-Gal3S4S6S-1,

H1 4.647 J(1,2) = 7.84 C1 103.94 H1 4.732 J(1,2) = 7.68 C1 103.96
H2 4.197 J(2,3) = 10.00 C2 81.03 H2 4.303 J(2,3) = 10.0 C2 78.09
H3 3.923 J(3,4) = 3.28 C3 73.18 H3 4.484 J(3,4) = 3.12 C3 78.10
H4 4.993 J(4,5) = -- C4 79.20 H4 4.993 J(4,5) = -- C4 77.52
H5 4.073 J(5,6) = 3.36 C5 75.01 H5 4.121 J(5,6) = 3.20 C5 74.88
H6 4.242 J(6,6′) = 10.80

C6 70.41
H6 4.239 J(6,6′) = 10.56

C6 70.42H6′ 4.172 J(5,6′) = 8.64 H6′ 4.182 J(5,6′) = 8.80

B, -4-D-aMan6S B, -4-D-aMan6S

H1 5.054 J(1,2) = 5.84 C1 91.88 H1 5.054 J(1,2) = 5.92 C1 91.87
H2 3.748 J(2,3) = 5.52 C2 87.99 H2 3.749 J(2,3) = 5.12 C2 88.14
H3 4.361 J(3,4) = 4.48 C3 79.04 H3 4.375 J(3,4) = 4.32 C3 79.10
H4 4.696 J(4,5) = 5.20 C4 88.96 H4 4.201 J(4,5) = 5.76 C4 89.21
H5 4.234 J(5,6′) = 4.32 C5 82.73 H5 4.249 J(5,6′) = 5.36 C5 82.83
H6 4.168 C6 70.02 H6 4.169 J(5,6) = 3.36 C6 70.15

2.3. Low-Molecular-Weight Products Produced with Free Radical Depolymerization

Free radical depolymerization induced by H2O2 and a metal catalyst is a convenient
approach to obtain low-molecular-weight products with a constant composition from
natural polysaccharides [27]. Then, the AG was subjected to free radical depolymerization.
By controlling the reaction time, nine homogeneous components (dAG1–dAG9) with
different Mws were obtained by further purification.

The molecular mass, including weight-average molecular mass (Mw), number-average
molecular mass (Mn) and molecular weight distribution (Mw/Mn) of dAG1–dAG9 (Figure 6A)
were determined with HPGPC [16]. The 1H NMR spectra of dAG1~dAG8 are shown in
Figure 6B, and they remain essentially consistent with the natural AG, except that the peaks
are well split.
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column and 1H NMR spectra of dAG1–8 (B).

Particularly, since the 1H NMR spectrum (Figure S5) of dAG9 (Mw 1357 Da) was
relatively clearer than that of dAG1–dAG8, it was further purified on a Bio-gel P6 column
to afford the oligosaccharides oAG-4, oAG-5 and oAG-6 (Figure 7).

The chemical structure of the oligosaccharide oAG-4 was analyzed with 1D/2D NMR
spectra (Figures S6 and 8). In the 1H NMR spectrum, the signal at 4.68 ppm was assigned to
the anomeric proton of Gal (A). Moreover, the corresponding chemical shift value of C-1 was
104.51 ppm (Figures S6 and 8). The downfield shifts of C2, C3, C4 and C6 indicated that Gal
was highly sulfated (Table S2). According to 1H-1H COSY, TOCSY (Figure 8A) and 1H-13C
HSQC (Figure 8B), the corresponding proton and carbon signals of the D-Gal2S3S4S6S unit
can be assigned. Additionally, three other signals were observed at 4.11 (B2), 3.91 (B3) and
3.63 (B4) ppm, and the corresponding carbons were at 85.5, 75.5 and 64.63 ppm, respectively.
The connectivity of these three signals was clearly assigned in the overlapped 1H-1H COSY,
TOCSY and ROESY spectra. The 64.63 ppm could be assigned to the methylene -CH2
carbon by comparing the 13C NMR and DEPT 135 spectra (Figure S6). Meanwhile, a
carbonyl carbon signal at 179.30 ppm (B1) should be obtained from a carboxylate group due
to the overoxidation induced by free radicals during the depolymerization process [28,29].
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In the 1H-13C HMBC spectrum (Figure 8B), this carbonyl carbon showed a correlation with
B2. Taken together, fragment B was identified as D-2,3,4-trihydroxybutyric acid, which
should be derived from the GlcNAc6S residue during free radical depolymerization. The
1H-1H ROESY and 1H-13C HMBC spectra revealed that β-D-Gal2S3S4S6S was attached to
position 2 of D-2,3,4-trihydroxybutyric acid (Figure 8A,B).
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Similarly, the oligosaccharides oAG-5 and oAG-6 could be identified as disaccha-
rides composed of a sulfated Gal unit and a fragment derived from the GlcNAc6S unit



Mar. Drugs 2023, 21, 632 10 of 19

(Figures 8C,D, S7 and S8). Specifically, two disaccharides (I and II) with the structural
sequence of I β-D-Gal3S4S6S-1,4-D-GlcUANAc6S and II β-D-Gal2S3S4S6S-1,4-D-GlcUANAc
were identified. Apart from the observed sulfated Gal residue in disaccharides oAG-2
and oAG-3, disaccharides I and II in oAG-5 contained a modified GlcNAc6S at the re-
ducing end (Scheme 1), as revealed by the cross peaks of distinct carbonyl carbons and
protons, respectively. The 1H-1H ROESY and 1H-13C HMBC spectra revealed that Gal was
attached to GlcUANAc6S or GlcUANAc by a 1,4 linkage. The 1D/2D NMR spectra analysis
indicated that oAG-6 is also a disaccharide with the structural sequence β-D-Gal2S3S4S6S-1,4-
D-GlcUANAc6S. The complete signal assignments of oAG-5 and oAG-6 are demonstrated
in Table S2.

The molecular formula and molecular weight of oAG-4, oAG-5 and oAG-6 were
verified with ESI-Q-TOF MS (Figure S9).

2.4. Structure Identification of Oligosaccharide Released with Mild Acid Hydrolysis

Since fucose forms a glycosidic linkage that is more sensitive to acid than that formed
by hexosamines, we attempted to defucosylate the AG using partial hydrolysis with acid.
The released oligosaccharides could be used to provide additional structural information
on the natural AG [7,10,30].

Under mild acid conditions, the high- and low-molecular-weight components in the
hydrolysates were separated with ethanol precipitation (80%, V/V). The oligosaccharides
remained in the supernatant as revealed with HPGPC analysis (Figure 9A), while the
precipitate mainly contained the high-molecular-weight components (mAG). In the 1H
NMR spectrum of mAG (Figure 1), the signals remained consistent with those of the native
AG, whereas the integral ratio of the -CH3 at ~2.0 ppm attributed to N-acetyl hexosamine
and the -CH3 at ~1.1 ppm of fucose units was reduced from 1:0.5 to 1:0.3, indicating that
the glycosidic bonds formed by fucose were partially hydrolyzed.

Mar. Drugs 2023, 21, x FOR PEER REVIEW 10 of 19 
 

 

disaccharides I and II in oAG-5 contained a modified GlcNAc6S at the reducing end 

(Scheme 1), as revealed by the cross peaks of distinct carbonyl carbons and protons, re-

spectively. The 1H-1H ROESY and 1H-13C HMBC spectra revealed that Gal was attached to 

GlcUANAc6S or GlcUANAc by a 1,4 linkage. The 1D/2D NMR spectra analysis indicated 

that oAG-6 is also a disaccharide with the structural sequence β-D-Gal2S3S4S6S-1,4-D-GlcU-

ANAc6S. The complete signal assignments of oAG-5 and oAG-6 are demonstrated in Table 

S2. 

The molecular formula and molecular weight of oAG-4, oAG-5 and oAG-6 were ver-

ified with ESI-Q-TOF MS (Figure S9). 

2.4. Structure Identification of Oligosaccharide Released with Mild Acid Hydrolysis 

Since fucose forms a glycosidic linkage that is more sensitive to acid than that formed 

by hexosamines, we attempted to defucosylate the AG using partial hydrolysis with acid. 

The released oligosaccharides could be used to provide additional structural information 

on the natural AG [7,10,30]. 

Under mild acid conditions, the high- and low-molecular-weight components in the 

hydrolysates were separated with ethanol precipitation (80%, V/V). The oligosaccharides 

remained in the supernatant as revealed with HPGPC analysis (Figure 9A), while the pre-

cipitate mainly contained the high-molecular-weight components (mAG). In the 1H NMR 

spectrum of mAG (Figure 1), the signals remained consistent with those of the native AG, 

whereas the integral ratio of the -CH3 at ~2.0 ppm attributed to N-acetyl hexosamine and 

the -CH3 at ~1.1 ppm of fucose units was reduced from 1:0.5 to 1:0.3, indicating that the 

glycosidic bonds formed by fucose were partially hydrolyzed. 

0 10 20 30 40

0

3000

6000

S
al

ts

Rt (min)

bA
G

-1

A
RID
nRIU

 

 

Figure 9. Cont.



Mar. Drugs 2023, 21, 632 11 of 19Mar. Drugs 2023, 21, x FOR PEER REVIEW 11 of 19 
 

 

 

 

Figure 9. HPGPC profiles of the supernatant (A) from the mild acid hydrolysis of the analyzed AG 

on a Superdex Peptide 10/300 GL column. 1H (B).13C NMR (C). Overlapped 1H -1H COSY (gray), 

TOCSY (red) and ROESY (green) spectra (D) of the oligosaccharide bAG-1. 

The supernatant was further purified on a Bio-gel P6 column, and the major oligo-

saccharide component bAG-1 was obtained. The structure of bAG-1 was determined us-

ing detailed 1D/2D NMR analysis (Figure 9B–D). In the 1H NMR spectrum (Figure 9B) of 

bAG-1, the signals at 1.10–1.15 ppm could be readily assigned to the methyl protons of 

Fuc residues (F and F’), and the signals at ~1.95 ppm could be assigned to the methyl of 

the N-acetyl hexosamines present in the AG, implying that bAG-1 should be a disaccha-

ride. In the 4.9–5.4 ppm region, three signals were observed at 5.02, 5.14 and 5.33 ppm, 

which could be assigned to the α-anomeric protons according to their small coupling con-

stant (Table 2). In the overlapped 1H-1H COSY, TOCSY and ROESY spectra (Figure 9C), 

starting from the above α-anomeric protons, the other protons in the corresponding sugar 

ring could be clearly assigned. Meanwhile, a second set of signals starting from 4.556 ppm 

was observed, which should be assigned to H-1 of the L-Fuc residue in β-configuration. 

Additionally, the 13C NMR spectrum could be assigned through the cross peaks in the 1H-
13C HSQC spectrum (Figure S10A). The 1H/13C chemical shifts are summarized in Table 2. 

The 1H/13C chemical shifts of the hexosamine residue identified it as α-D-GalNAc residue, 

according to the small coupling constant J3,4 = 2.64. The strong downfield shift observed in 

the F3 (3.87/71.30 ppm) of L-Fuc (F and F’), A4 (4.70/79.15 ppm) and A6 (4.23, 4.11/70.79 

ppm) of D-GalNAc (A and A’) indicates the 3-sulfation of the L-Fuc unit (L-Fuc3S) and both 

the 4- and 6-sulfation of D-GalNAc (D-GalNAc4S6S). The correlation peaks of A1 (5.019 

ppm)/F2 (3.636 ppm) and A’1 (5.141 ppm)/F’2 (3.389 ppm) in the ROESY spectrum (Figure 

9D), together with the cross peaks of A1 (H1)/F2 (C-2, 80.55 ppm) and A’1 (H1)/F’2 (C-2, 

82.44 ppm) observed in the HMBC spectrum (Figure S10B) demonstrate that the GalNAc 

residue was attached to O-2 of Fuc. The J1,2 value of A and A’ was 3.92 and 3.76, respec-

tively, confirming that the GalNAc4S6S was attached to Fuc by an α1,2 linkage. 
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TOCSY (red) and ROESY (green) spectra (D) of the oligosaccharide bAG-1.

The supernatant was further purified on a Bio-gel P6 column, and the major oligosac-
charide component bAG-1 was obtained. The structure of bAG-1 was determined using
detailed 1D/2D NMR analysis (Figure 9B–D). In the 1H NMR spectrum (Figure 9B) of
bAG-1, the signals at 1.10–1.15 ppm could be readily assigned to the methyl protons of Fuc
residues (F and F’), and the signals at ~1.95 ppm could be assigned to the methyl of the
N-acetyl hexosamines present in the AG, implying that bAG-1 should be a disaccharide.
In the 4.9–5.4 ppm region, three signals were observed at 5.02, 5.14 and 5.33 ppm, which
could be assigned to the α-anomeric protons according to their small coupling constant
(Table 2). In the overlapped 1H-1H COSY, TOCSY and ROESY spectra (Figure 9C), starting
from the above α-anomeric protons, the other protons in the corresponding sugar ring
could be clearly assigned. Meanwhile, a second set of signals starting from 4.556 ppm
was observed, which should be assigned to H-1 of the L-Fuc residue in β-configuration.
Additionally, the 13C NMR spectrum could be assigned through the cross peaks in the
1H-13C HSQC spectrum (Figure S10A). The 1H/13C chemical shifts are summarized in
Table 2. The 1H/13C chemical shifts of the hexosamine residue identified it as α-D-GalNAc
residue, according to the small coupling constant J3,4 = 2.64. The strong downfield shift
observed in the F3 (3.87/71.30 ppm) of L-Fuc (F and F’), A4 (4.70/79.15 ppm) and A6
(4.23, 4.11/70.79 ppm) of D-GalNAc (A and A’) indicates the 3-sulfation of the L-Fuc unit
(L-Fuc3S) and both the 4- and 6-sulfation of D-GalNAc (D-GalNAc4S6S). The correlation
peaks of A1 (5.019 ppm)/F2 (3.636 ppm) and A’1 (5.141 ppm)/F’2 (3.389 ppm) in the ROESY
spectrum (Figure 9D), together with the cross peaks of A1 (H1)/F2 (C-2, 80.55 ppm) and
A’1 (H1)/F’2 (C-2, 82.44 ppm) observed in the HMBC spectrum (Figure S10B) demonstrate
that the GalNAc residue was attached to O-2 of Fuc. The J1,2 value of A and A’ was 3.92 and
3.76, respectively, confirming that the GalNAc4S6S was attached to Fuc by an α1,2 linkage.
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Table 2. 1H/13C chemical shifts of the branches bAG-1.

bAG-1 bAG-1

A α-D-GalNAc4S6S-1- A’ α-D-GalNAc4S6S-1-

H1 5.019 J(1,2) = 3.92 C1 102.77 H1 5.141 J(1,2) = 3.76 C1 101.05
H2 4.147 J(2,3) = 11.20 C2 52.28 H2 4.123 J(2,3) = 11.20 C2 53.17
H3 4.006 J(3,4) = 2.64 C3 69.34 H3 4.006 J(3,4) = 2.64 C3 69.34
H4 4.706 / C4 79.15 H4 4.718 C4 79.45

H5 4.358 J(5,6) = 2.80
J(5,6′) = 8.88 C5 71.80 H5 4.466 J(5,6) = 4.56

J(5,6′) = 7.92 C5 71.28

H6 4.238 /
C6 70.79

H6 4.195 J(6,6′) = 10.88
C6 70.26H6′ 4.112 J(6,6′) = 11.44 H6′ 4.089 /

C7 177.39 C7 177.39
H8 1.954 / C8 24.71 H8 1.969 / C8 24.75

F -2-α-L-Fuc3S F’ 2-β-L-Fuc3S

H1 5.327 J(1,2) = 3.92 C1 94.29 H1 4.556 J(1,2) = 7.76 C1 97.72
H2 3.636 J(2,3) = 10.32 C2 80.55 H2 3.389 J(2,3) = 10.00 C2 82.44
H3 3.875 J(3,4) = 3.20 C3 71.30 H3 3.716 J(3,4) = 3.44 C3 76.28
H4 3.717 / C4 75.08 H4 3.602 / C4 74.56
H5 4.153 J(5,6) = 6.56 C5 68.75 H5 4.705 J(5,6) = 6.48 C5 73.46
H6 1.106 / C6 18.14 H6 1.151 C6 18.23

Additionally, ESI-Q-TOF MS of bAG-1 (Figure S11) mainly showed three m/z peaks at
548.0367, 526.0546 and 446.0979, which could be identified as [M-Na]−, [M-2Na+H]− and
[M-SO3Na-Na+H]−, respectively, confirming a molecular formula of C14H23NNa2O16S2.
Thus, the disaccharide (bAG-1) released from the AG with mild acid hydrolysis could
be deduced to be α-D-GalNAc4S6S-1,2-L-α-Fuc3S and α-D-GalNAc4S6S-1,2-β-L-Fuc3S. The
ratio of α- and β-anomers was 4:1 based on the integral of the corresponding anomeric
protons of the Fuc unit.

2.5. Structural Characteristic of Natural AG Using a Bottom-Up Strategy

The AG found in the sea cucumber is a sulfated polysaccharide composed of four
types of monosaccharides, including GlcNAc, GalNAc, Gal and Fuc, and its sulfate content
is ~37%. The 1H NMR of the AG showed broad and overlapping signals, which are
difficult to assign. An option to avoid the complex NMR interpretations can be utilized
by employing a “bottom-up” analytical strategy, where oligosaccharides with simpler
structures produced with a suitable depolymerization method are analyzed separately
and then assembled together through a “sum-of-the-parts” approach [31]. However, the
feasibility of the bottom-up analysis of polysaccharides relies on the development of a
methodology for their systematic fragmentation.

Deaminative cleavage with nitrous acid is a successful chemical method for depoly-
merization of heparin and heparan sulfate [21]. After hydrazinolysis of the N-acetyl
hexosamine in the AG, the glycosidic linkage from this residue could be selectively cleaved
in acid, and the resulting fragments were labeled with anhydrosugars at the reducing
end [22]. Here, after partial deacetylation of the AG with hydrazinolysis, it was depoly-
merized by nitrous acid at pH 4.0. Three fragments (oAG-1, oAG-2, oAG-3) were purified,
and their structures were identified. As shown in Scheme 1, oAG-1 is a highly sulfated
galactose α/β-D-Gal3S4S6S, and oAG-2 and oAG-3 are disaccharides with the structural
sequence of β-D-Gal4S6S-1,4-D-aMan6S and β-D-Gal3S4S6S-1,4-D-aMan6S, respectively. The
results indicate that sulfated Gal residues are linked to GlcNAc6S through a β1,4 glycosidic
bond, since the reducing end aMan6S was formed from the 6-sulfated GlcNH2 residue
during deaminative depolymerization. The observed disaccharides are consistent with the
repeating disaccharides of galactose and N-acetyl glucosamine in KS [18,19], suggesting
that the AG may be a type of KS found in sea cucumbers. In KS, both the galactose and
N-acetyl glucosamine can be 6-O-sulfated, but in the AG, galactose is highly sulfated.
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Interestingly, no fragments with 2,5-anhydro-D-talose as the reducing end derived from
GalNAc residues were observed, suggesting that the GalNAc should not be included in the
KS-like chain, and how it is present in the AG needs further investigation.

Additionally, three derivatives of the disaccharides were separated from the free
radical depolymerized products (dAG9) of the AG. The sulfation types of Gal were different
from those observed in oAG-2 and oAG-3, including Gal2S3S4S6S and Gal2S4S6S (Scheme 1),
indicating the diverse sulfation types of Gal residues in the AG. The fragments linked to
the sulfated Gal should be derived from the GlcNAc by oxidation and C–C bond cleavage
during free radical depolymerization, as observed in the free radical depolymerization of
FCS [28].

Notably, the α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S disaccharide was purified from the
released fractions of the AG with mild acid hydrolysis. The results provided the clue that the
natural AG probably contained the disaccharide in the form of side chains. This conclusion
could provide a rational explanation for the four types of monosaccharides composed in
the AG, while no oligosaccharides with 2,5-anhydro-D-talose at the reducing end were
observed in the deaminative depolymerized AG. However, this conclusion requires further
investigation.

Overall, the sulfated polysaccharide (AG) found in the sea cucumber H. fuscopunctata
is clearly composed of GlcNAc, GalNAc, Gal and Fuc, and it does not bear any uronic acid
residues. According to the chemical structures of the oligosaccharides oAG-2~oAG-6, the
repeating building blocks in the AG should comprise the disaccharide β-D-GalS-1,4-D-
GlcNAc6S. Thus, the AG may be a keratan sulfate-like (KS-like) glycose*-minoglycan with
more diverse modifications than those reported for KS, including the sulfation positions of
the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S
linked to the KS-like chain.

2.6. Anticoagulant Activities

It has been reported that the two sulfated fucans (SFI and SFII), a fucosylated chon-
droitin sulfate (FCS) and AG from H. fuscopunctata could prolong APTT in a dose-dependent
manner [4,16]. Particularly, compared with the potent APTT prolonging activity of FCS,
the AG showed a moderate APTT prolonging activity (5.84 IU/mg) [16]. Here, to eluci-
date the effect of Mw on the anticoagulant activity of the AG, the low-molecular-weight
derivatives (dAG1~dAG9) prepared by free radical depolymerization, and three oligosac-
charides (oAG-1~oAG-3) derived from the deacetylation–deaminative cleavage method
were evaluated. Their effects on the APTT, prothrombin time (PT) and thrombin time
(TT) of normal human plasma in vitro were analyzed and compared with those of LMWH
(Table 3). The results showed that the AG, dAG1–dAG7 could prolong APTT in a dose-
dependent manner (Figure 10). The natural AG exhibited significant activity in prolonging
APTT (8.54 µg/mL), which is consistent with our previous results [16]. The depolymerized
products dAG1-dAG5 with Mw higher than 7.5 kDa displayed similar APTT prolonging
activities, while dAG6 (5.3 kDa) and dAG7 (3.7 kDa) showed weak activities, indicating
that the chain length of the AG derivatives is important for maintaining their potent anti-
coagulant activity. Additionally, dAG8 (2.6 kDa) and dAG9 (1.4 kDa) showed negligible
APTT prolonging activity. Interestingly, a highly sulfated disaccharide (oAG-3) with the
structural sequence β-D-Gal3S4S6S-1,4-D-aMan6S displayed APTT prolonging activity at a
concentration of 83.99 µg/mL. Although this activity is very weak, it can be suggested that
this distinct structural sequence may provide some anticoagulant activity.
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Table 3. Average molecular weight of a series of depolymerized products of the AG and their
anticoagulant activities.

Sample Mw a

(kDa)
Mn a

(kDa) PD 2 × APTT b

(µg/mL)
2 × PT

(µg/mL)
2 × TT b

(µg/mL)

LMWH 4.4 / / 5.20 ± 0.06 >128 1.38 ± 0.07
AG 39.1 31.2 1.25 8.54 ± 0.08 >128 15.75 ± 3.82

dAG1 35.9 30.0 1.20 11.37 ± 0.24 >128 19.63 ± 1.04
dAG2 26.7 22.1 1.21 11.11 ± 0.29 >128 23.85 ± 0.17
dAG3 18.6 15.6 1.19 12.27 ± 0.48 >128 44.97 ± 0.81
dAG4 12.3 10.0 1.23 19.97 ± 1.05 >128 >128
dAG5 7.5 6.3 1.19 16.10 ± 0.46 >128 >128
dAG6 5.3 4.5 1.18 36.45 ± 0.14 >128 >128
dAG7 3.7 3.1 1.19 59.42 ± 1.91 >128 >128
dAG8 2.6 2.2 1.18 >128 >128 >128
dAG9 1.4 1.2 1.17 >128 >128 >128
oAG-3 0.73 0.73 1 83.99 ± 1.33 >128 >128
oAG-2 0.63 0.63 1 >128 >128 >128
oAG-1 0.48 0.48 1 >128 >128 >128

a Mw and Mn were determined with HPGPC. b Concentrations required for doubling APTT or TT.
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Regarding the activities in prolonging TT, the AG could also prolong the TT, and the
concentration of the AG required to double TT was 15.75 µg/mL, which was two times
weaker than its activity in prolonging APTT. dAG1, dAG2 and dAG3 could prolong TT
(Figure 10B), and they doubled the TT at 19.63, 23.85 and 44.97 µg/mL, respectively. No
significant effects of dAG4~dAG9 nor oAG-1~oAG-3 were observed at concentrations as
high as 128 µg/mL. Moreover, all the AG related derivatives in this study showed no
influence on PT at the highest concentration of 128 µg/mL. The above results indicate that
the AG could inhibit the intrinsic and common coagulation pathways, while it showed no
effect on the extrinsic coagulation pathway. With the reduction in Mw, the effect on the
common coagulation pathway decreased more than the effect on the intrinsic coagulation
pathway. Nevertheless, further studies are needed to investigate the detailed structure-
activity relationship of oligosaccharides derived from the AG.

3. Materials and Methods
3.1. Materials and Reagents

A natural AG (purity: 99.9% measured with HPGPC, average molecular weight:
39.60 kDa) was isolated from the sea cucumber H. fuscopunctata. Amberlite FPA98 Cl
ion-exchange resin was purchased from Rohm and Haas Co. Hydrazine hydrate (con-
taining about 64 wt% hydrazine in water) was obtained from Aladdin Reagent (Shanghai,
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China). Hydrazine sulfate and NaNO2 were purchased from Damao Chem. Ltd. (Tianjin,
China). D2O (99.9% atom D) was from Cambridge isotope laboratories (Andover, MA,
USA). Agilent 1260 HPLC system was from Agilent Technologies (Santo Clara, CA, USA).
Sephadex G25/50 and Bio-gel P10/P6 were from GE Healthcare (Chicago, IL, USA) and
Bio-Rad Laboratories (Hercules, CA, USA), respectively. All other reagents were commer-
cially available and of analytical grade. The APTT, PT and TT were determined with a
coagulometer (TECO MC-4000, Neufahrn, Germany) using APTT, PT and TT reagents and
normal human plasma.

3.2. Extraction and Purification of Natural AG

The extraction of crude polysaccharide from the body wall of the sea cucumber H.
fuscopunctata was performed as described previously [16]. After preliminary purification
on a FPA98 column, the high-molecular-weight fucan sulfate (SFI) was removed and the
component containing FCS, SFII and the natural AG was collected and subjected to the
β-eliminative depolymerization to cleave FCS into low-molecular oligomers. The high-
molecular components (mFCS, >30 kDa) containing the AG were enriched by membrane
separation on a Pellicon Mini device (Millipore) with a 0.1 m2 membrane with MWCO
of 30 kDa. For further purification of the AG, briefly, 35 g mFCS was applied to an
anion-exchange FPA98 resin column and eluted with NaCl gradient solutions (1.3 M,
1.5 M, 1.8 M). The polysaccharide in the 1.8 M NaCl eluate was obtained after desalination
and lyophilization, which showed a symmetrical HPGPC peak. Further monosaccharide
composition was analyzed according to the PMP derivation HPLC method [16]. The sulfate
content of the AG was determined with a conductimetric titration method [16]. The nature
of the AG was further revealed using 1H NMR spectroscopy.

3.3. Deaminative Depolymerization of AG and Purification of Oligosaccharide

Previous data have suggested that the AG is composed of four types of monosac-
charides, including GlcNAc, GalNAc, Gal and Fuc [16]. According to the deacetylation
and deaminative depolymerization approach, 2 g AG and 500 mg hydrazine sulfate were
dissolved in 48 mL H2NNH2·H2O and reacted at 90 ◦C for 6 h under a nitrogen atmo-
sphere. The solution was then cooled, precipitated with ethanol (80%, v/v) and centrifuged
(3500× g 15 min), and this step was repeated four times. The final precipitate was dis-
solved in 40 mL H2O and dialyzed against H2O with a dialysis bag (MWCO 500–1000 Da,
Spectrum Laboratories Inc., Piscataway, NJ, USA). The retentate was lyophilized, and a
partially deacetylated AG (deAG) was obtained [21,22], and the degree of deacetylation
was identified with the 1H NMR spectrum.

The pH 4 nitrous acid reagent was prepared by adding 0.5 M H2SO4 to 5.5 M NaNO2. A
total of 80 mL of pre-cooled nitrous acid reagent was added to the partially N-deacetylated
AG solution (40 mL), and the solution was kept at 0 ◦C for 10 min. The reaction was
terminated by neutralization with 0.5 M NaOH. The final mixture was dialyzed against
water (MWCO 500–1000 Da) and then lyophilized to provide the depolymerized products
with dAG ~700 mg.

dAG was dissolved in 5 mL of 0.2 M NaCl and applied to a column packed with
Bio-gel P10 and eluted with 0.2 M NaCl solution. The elution profile was monitored at
210 nm. Some of the fractions were applied to HPGPC analysis equipped with a Superdex
Peptide 10/300 GL column (GE Healthcare). Elution was performed with 0.2 M NaCl
solution at a flow rate of 0.4 mL/min. Chromatography was recorded by a refractive
index detector (RID). After repeated GPC (Bio-gel P6) separation, three oligosaccharides
comprising oAG-1, oAG-2 and oAG-3 were collected, desalted by Sephadex G10, and used
for 1D/2D NMR analysis.

3.4. Free Radical Depolymerization

To elucidate the structures and anticoagulant activity of the AG, the low-molecular-
weight products were prepared by free radical depolymerization [32]. Briefly, the AG
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(1.8 g) and 15.12 mg of copper (II) acetate monohydrate were dissolved in 64.8 mL H2O.
Then, 1.11 g sodium acetate and 470.0 mg NaCl were added to the solution. After the
addition of 18.0 mL of 30% H2O2, the mixture was stirred at 50 ◦C for 12 h. Samples
of 15 mL were taken at 4, 6 and 12 h, and precipitated by the addition of four volumes
of ethanol (80%, v/v). Each crude depolymerized product was collected as a precipitate
after centrifugation at 4000 rpm for 20 min, and repeated precipitation was performed
against ethanol four times. The remaining free and associated Cu2+ ions were exchanged
with a cation exchange resin column (001 × 732#, Tianjin Bohong Resin Technology Co.,
Ltd., Tianjin, China). The eluate was concentrated, desalted on a Sephadex G25 column
(3.0 × 150 cm) and lyophilized to obtain the depolymerization products.

The abovementioned depolymerized products were further fractionated using a
Sephadex G50 column (2.0 × 150 cm). The elution curve was detected with UV-Vis absorp-
tion at 210 nm. High-molecular-weight components were collected and further purified
repeatedly with GPC using Sephadex G100, according to the retention time measured on
an Agilent 1260 HPLC system equipped with a Shodex OH-pak SB-804 HQ column. Finally,
nine homogeneous fractions dAG1–dAG9 were obtained after desalting. Their molecular
weights were then determined using the HPGPC method described in Section 3.6.

In particular, dAG9 was fractionated with GPC using Bio-gel P6 column, and three
homogeneous fractions oAG-4, oAG-5 and oAG-6 were obtained for further structure
elucidation [28].

3.5. Mild Acid Hydrolysis of AG

For the presence of Fuc residues in the AG, a native AG was subjected to mild acid
hydrolysis procedures, which could hydrolyze the glycosidic bonds formed by Fuc to
generate fragments [7]. Here, 703 mg of the AG was treated with 140 mL H2SO4 (0.1 M) at
80 ◦C for 0.5 h. After cooling to room temperature, the reaction solution was neutralized
with 6 M NaOH, followed by fractionation with ethanol (80%, v/v). After centrifugation,
the fragments in the supernatant and the components in the precipitate were separated,
and detected with HPGPC. The supernatant was desalted on a Sephadex G10 column,
lyophilized and purified on Bio-gel P6 (medium, 2 × 160 cm). The collected fractions were
monitored by absorbance at 210 nm and analyzed using a Superdex Peptide 10/300 GL
column (GE Healthcare) on an Agilent 1260 HPLC system equipped with RID. Finally, the
oligosaccharide fractions were collected and desalted with Sephadex G10 to obtain bAG-1,
which was analyzed with 1D/2D NMR spectroscopy.

3.6. Determination of Homogeneity and Molecular Weight

The molecular mass, including weight-average molecular mass (Mw), number-average
molecular mass (Mn) and molecular weight distribution (Mw/Mn) of dAG1–dAG9 were
determined with HPGPC according to a previous method [16]. For molecular weight
calculation, the Shodex OH-pak SB-804 HQ column (8 × 300 mm) was calibrated with
standard D-series dextrans (D-0, 1, 2, 3, 4, 5, 6, 7, 8 and 2000) and a FCS fraction from H.
fuscopunctata with known molecular weight (Mw 27,760 Da, Mn 24,380 Da) determined by
size exclusion chromatography with multiple angle laser light scattering [33].

3.7. 1D/2D NMR and ESI-Q-TOF MS Spectroscopy

Each sample (5–10 mg) was dissolved in 0.5 mL 99.9% D2O and exchanged three times
in 99.9% D2O. One-dimensional (1D) and two-dimensional (2D) C/H correlation NMR
spectra (1H-1H COSY, TOCSY, ROESY, 1H-13C HSQC and HMBC) were measured at 298 K
on a Bruker Advance 800 MHz spectrometer equipped with a 13C/1H dual probe in FT
mode. Some 1H NMR spectra were recorded on a Bruker Advance 600 MHz spectrometer,
which have been illustrated in corresponding figures. All the chemical shifts of 1H/13C are
relative to sodium 3-trimethyl [D4] propionate (TSP-d4) [34].

ESI-Q-TOF MS analysis was performed on an Agilent 6540 UHD Accurate-Mass
Q-TOF LC/MS spectrometer as previously described [35].
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3.8. Anticoagulant Activity

The anticoagulant activities of the natural AG, the series of free radical depolymer-
ized products dAG1–dAG9 and the oligosaccharides comprising oAG-1–oAG-3 were
assessed [4,33]. The commercial APTT, PT and TT reagents and standard human plasma
were used to measure APTT, PT and TT on a coagulometer (TECO MC-4000, Berlin, Ger-
many) as previously described [36]. Low-molecular-weight heparin (enoxaparin, LMWH)
was used as a positive control. A series of concentrations (640, 320, 160, 80, 40, 20 and
10 µg/mL) were prepared for each sample. The concentration of the compound required to
double the clotting time was calculated. Experiments were performed in duplicate.

4. Conclusions

Here, a sulfated polysaccharide (AG) was purified from the sea cucumber H. fuscopunc-
tata with strong anion exchange chromatography and chemical depolymerization methods.
The AG was composed of four types of monosaccharides, including GlcNAc, GalNAc,
Gal and Fuc. The sulfate content of the AG was ~37% as determined using a conductivity
titration method. Additionally, several chemical depolymerization methods, including
deaminative depolymerization, free radical depolymerization and mild acid hydrolysis,
were applied to obtain oligosaccharides and then used to elucidate the structure of the
AG using a bottom-up strategy. The compounds oAG-2~oAG-6 were the disaccharide
derivatives of β-D-GalS-1,4-D-GlcNAc6S, indicating that the the repeating building blocks
in the AG should comprise β-D-GalS-1,4-D-GlcNAc6S. Interestingly, the α-D-GalNAc4S6S-
1,2-α/β-L-Fuc3S disaccharide was identified from the mild acid hydrolysates of the AG,
which should be present in the form of branches in the AG. Thus, the AG may be a ker-
atan sulfate-like (KS-like) glycosaminoglycan with more diverse modifications than those
reported for KS, including the sulfation types of the Gal residue and the possible disaccha-
ride branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S linked to the KS-like chain. However, the
position of branches cannot be established in this study since the oligosaccharides with a
high degree of polymerization were difficult to obtain.

The anticoagulant activities of the AG, a series of low-molecular-weight homogeneous
compounds comprising dAG1~dAG9 and three fragments oAG-1~oAG-3 were evaluated
in vitro using control human plasma. The AG could prolong APTT in a dose-dependent
manner, and AG, dAG1, dAG2 and dAG3 could prolong TT, although they have little
influence on PT. The results demonstrated that the anticoagulant activity of the AG was
mainly associated with the inhibition of the intrinsic and common coagulation pathway.
The anticoagulant structure–activity relationship of the AG and a series of depolymerization
products were further investigated. Mw is an important factor in maintaining the APTT
prolonging activity of AGs. This study provides insight into the structural diversity of
polysaccharides in sea cucumbers.
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