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Abstract: In this paper, a complete three-dimensional numerical model of mold filling and
solidification of steel ingots is presented. The risk of powder entrapment and defects formation
during filling is analyzed in detail, demonstrating the importance of using a comprehensive geometry,
with trumpet and runner, compared to conventional simplified models. By using a case study, it was
shown that the simplified model significantly underestimates the defects sources, reducing the utility
of simulations in supporting mold and process design. An experimental test was also performed on
an instrumented mold and the measurements were compared to the calculation results. The good
agreement between calculation and trial allowed validating the simulation.
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1. Introduction

Notwithstanding the percentage of steel semi-products obtained via ingot casting is decreased
during the last years, this method is still fundamental for specific low-alloy steel grades and for special
forging applications, where components of large size are needed, such as mill rolls, turbine rotors,
shafts for power plants, etc. [1–4]. Nowadays, the production of crude steel in the world reaches about
60 million tons [5].

Mold filling of heavy ingot can be performed in two ways: top pouring and bottom pouring,
also called uphill teeming. In the top pouring, the molten stream is more exposed to air, suffering from
reoxidation problems. As the pouring stream impinges on the melt surface inside the mold, it carries
reoxidation products and mold powder, floating on it, back into the bulk, resulting in macro-inclusions.
Moreover, during filling, metal splash adheres to the mold walls and produces surface defects on the
ingot skin, which subsequently needs surface conditioning [6]. This makes the top pouring method
not suitable for high-quality steels, which prefer bottom pouring [7,8]. In bottom pouring, the liquid
steel flows from the ladle down to the trumpet and, passing through the horizontal refractory runner,
it enters the nozzle or ingate upwards, reducing the exposure to air, the entrapment of mold powder
and the occurrence of splashing. The bottom pouring needs a controlled velocity during filling in order
to avoid turbulences and, consequently, powder entrapment or reoxidation defects [7].

The mold shape (round, square or multi-fluted cross section) also contributes to the casting quality.
It is chosen according to the expected quality grade and, above all, to the product shape to be forged.
Hence, in order to obtain sound ingots, mold shape, runners’ cross-section and length, as well as nozzle
diameter and height have to be properly designed. Typically, the design is the result of the factory
know-how but, in last decades, numerical simulation has been progressively applied as a useful tool
for the optimization of mold shape and process parameters, to further improve the ingot quality.
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Different authors focused their investigations preferentially on the solidification phase of steel
ingots production, mainly to predict defects formation [9]. Other authors, studying the solidification
phase, also took into account the fluid field due to thermal buoyancy or melt superheat [10–13].

A more limited number of papers deal with the filling phase. Due to the more time consuming
calculations, typically, the used geometrical models are simplified. In fact, neither the column nor the
horizontal runner is normally considered, and a boundary condition of velocity at the whole cross
section of the bottom inlet is conventionally fixed. Kermanpur et al. [14], for example, showed
the effects of casting parameters, including the pouring rate, but focusing the attention on the
solidification of the steel ingot. They found that pouring the melt under a constant rate in a
mold with a low slenderness ratio and using a proper design for the hot top improve the casting
quality. Tkadlečková et al. [15] investigated the effect of total filling time on porosity formation,
showing that a decrease of the casting temperature together with longer filling time reduce the
porosity level. Tkadlečková et al. [16] also showed a comparison between simulation and real casting.
Zhang et al. [17], by using a simulation, determined two dimensionless factors able to evaluate the
effect of casting parameters on the shrinkage porosity.

Some authors evaluated the effect of the fluid flow characteristics as a function of the entrance
nozzle, like Eriksson et al. [18] who determined, for their case study, that a reduced risk of slag
entrapment can be obtained using a 25 degree angle of the inlet nozzle. Marx et al. [19] assessed the
influence of the feeding system design and the filling rate on ingot quality, also implementing user
defined functions for agglomeration and trapping of inclusions at the free surface.

All these simplifications, even though valid, do not allow properly considering the real flow of the
metal entering the mold. Aside by the teeming rate, in fact, the flow is strongly influenced also by the
height of the column, the geometry of the horizontal runner and the entrance nozzle. To the authors’
knowledge, there is only one paper taking into account the whole geometry including trumpet, runner
channel and mold. In that paper, Tan et al. [20] made a first attempt of comparing the results of a
complete and reduced geometry simulation, but they focused their attention only on the very early
stage of the filling and without considering the heat transfer and solidification.

The aim of this paper is to show the importance of simulating the complete mold geometry to
appropriately predict the risk of defects formation, especially those due to non-metallic inclusions.
As stated by Zigalo [21], in fact, during mold filling by bottom pouring technique inclusions can be
formed because of the entrapment of mold flux. In particular, the emphasis of this analysis is not only
on the initial stage but also on the entire mold filling, taking into account the thermodynamic aspects.

To validate the numerical model, the results of the simulations were compared with the data
collected during an experimental test performed on the industrial mold properly instrumented.

2. Experimental Procedure

The ingot casting test was carried out on a cylindrical four-mold system for the production of
19 ton round section ingots.

The mold consists of four parts made in hematite cast iron: the upper and bottom plates,
the column and the ingot mold. The height of the ingot mold with the hot top (riser) is 5 m and
the diameter is 840 mm; the height of the column is 6 m.

An insulating ring, 33 mm thick and 350 mm high, was placed at the top of each mold.
Pouring basin (trumpet) and running system were built up by using refractory bricks connected

together. The diameter of the trumpet is 90 mm and the diameter of runners is 60 mm. The diverging
entrance nozzle has a length of 260 mm and a diameter increasing from 60 to 80 mm.

Calcium carbonate was used to fill the gap between the refractory bricks and the column and
the plates.

Bags of mold powder were located about 80 mm from the base of the mold. When the molten
steel reached the riser, additional isolating powder was distributed on the metal free surface.

42CrMo4 steel grade was poured at 1560 ◦C with a time dependent flow rate, as explained below.
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Two K-type thermocouples, with a recording rate of 1 per 5 min, were placed on the surface of the
cast iron mold: the first 1430 mm from the top and the second 1400 mm from the bottom, as shown in
Figure 1. The temperature profile of the mold in these two points was recorded for 4 h.
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Figure 1. Four-mold system equipped with thermocouple.

The entire test, from the mold filling to the ingot stripping, was also monitored by means of a
thermo-graphic camera Trotec IC120 (Trotec, Heinsberg, Germany), whose images where analyzed by
IC-Report DuoVision Software (1.08.16S, Trotec).

During the test, no other ingots were cast in the area around the four-mold system to avoid
radiation effects, which can modify the temperature profile of the mold and ingots under investigation.
However, self-radiation between column and molds as well as between the molds themselves is present.

3. Simulation Model

A three dimensional model of the complete four-mold system was created, as shown in Figure 2a.
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Figure 2. Geometry of the four-mold gating system (a); and used model (b).

Considering the double symmetry, to reduce the calculation time, only one mold was finally
considered, applying a boundary condition of symmetry on two planes, as shown in Figure 2b.

The simulation of mold filling and casting solidification was performed by mean of the commercial
software Procast® (2015.0, ESI Group, Paris, France), based on finite element method (FEM). A mesh
of 2,812,180 and tetrahedral elements for the comprehensive model was created. The software uses
a FEM unstructured mesh with a full-layer option, which enables densification of nodes and tetra
elements even if the surface mesh at this location has no interior nodes connecting the boundary edges.
In addition, to increase the detail of flow solution, boundary layer option was applied. This is a very
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thin region of stagnated or even zero velocity flow that develops due to frictional effects with the
wall. According to this accuracy in mesh definition, the results of this paper are mesh independent,
as boundary layer elements allows handling wall stick-slip phenomena without any simplification for
velocity conditions.

A simplified model, without the running system, was also created just eliminating the entire
running system.

To calculate the fluid-dynamic field, the transport equations used in the simulation are
the following:

- Energy equation

ρ
∂H
∂t

+ ρui
∂H
∂xi
−∇

[(
k +

µT
σT

)
∇T
]
− q = 0 (1)

where $ is the temperature dependent density, H is the temperature dependent enthalpy, t is the
time, ui is the component of the velocity, k is the temperature dependent conductivity, µT is the
eddy viscosity, q is the spatial varying volumetric heat source, σT Prandtl number, and T is the
temperature.

- Continuity equation
∂ρ

∂t
+

∂ρi
xi

= 0 (2)

- Momentum equation

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

+
∂

∂xj

[
pδij

(
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∂ui
∂xj

)]
= ρgi −

µ

K
ui (3)

where uj is the component of the velocity, p is the pressure, δij is the Kronecker delta, µ is the
viscosity, gi is the gravity acceleration, and K is the permeability.

- Turbulent kinetic energy equation:

∂
(
ρk
)

∂t
+ uj

∂
(
ρk
)

∂xj
− ∂

∂xj

(
µT
σT

∂k
∂xj

)
= µTG− ρε (4)

where k = 1/2
(
u2 + v2 + w2); u, v and w are the velocity components; ε is the turbulence

dissipation rate; and G =
(
∂ui/∂xj + ∂uj/∂xi

)
∂ui/∂xj is the turbulence generation rate.

Concerning the mushy zone, it was modeled using the dimensionless Niyama approach reported
by Carlson et al. [22]:

N∗Y = Cλ

.
T
−1/3

NY

√
∆Pcr

µlβ∆Tf
(5)

where Cλ is the taken material constant, Ṫ is the cooling rate, NY = G·(Ṫ)0.5 is the Niyama thermal
parameter, G is temperature gradient, ∆P is the pressure drop across the mushy zone, µl is the liquid
dynamic viscosity, and β = ($s − $l)/$l is the total solidification shrinkage, function of the liquid and
solid densities.

Flow solution at free surface is solved by AMG solver (Algebraic Multi-Grid), especially modified
with EBFEM solver (Edge-Based Finite Element Method) [23]. The thermal buoyancy effect is
considered through the variation of steel density and solid fraction as a function of temperature,
in the fluid-dynamics calculations.

To solve the equations, material data, initial and boundary conditions had to be properly defined.
In particular, five different materials are present in the model: hematite cast iron, 42CrMo4 steel,
refractory bricks, calcium carbonate and insulator. The temperature dependent thermophysical
properties of steel and cast iron (conductivity, density, specific heat or enthalpy) are shown in
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Figure 3. They were calculated by means of Computherm Database® (Pan Iron 5.0) available in
Procast, as a function of the measured chemical composition and using the “Back Diffusion” model.
The properties of insulating material and refractory were determined by the data supplied by the
producers, which are in good agreement with those found in literature [12,13].
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The steel was poured at 1560 ◦C. All the other materials were assumed to be initially at room
temperature. External ambient pressure was also considered.

As known, the definition of the proper heat transfer coefficient at the interface between
different domains is a crucial parameter to achieve reliable results in solidification calculation.
The interface coefficient between mold and refractory/insulating materials was set at 100 W·m−2·K−1.
The coefficient between molten steel and refractory/insulating materials was fixed at 200 W·m−2·K−1.
The effect of gap formation at the steel/mold interface due to steel shrinkage was taken into account
using a temperature dependent coefficient ranging between 150 and 500 W·m−2·K−1. All of the used
coefficients were estimated in agreement with literature [9,14,24].

A boundary condition of convection with air was defined for the mold, considering the values
proposed in [9]. Both the emissivity and the increase of air temperature around the mold with time,
due to the solidifying steel, were taken into account. The radiation heat transfer was also assessed,
considering the shadowing effect (or view factors), in order to calculate the interaction between the
components (molds and molds and column) as well as with the environment. Hence, to include the
environment into the model, an artificial “enclosure” was defined, which surrounds the mold and
reproduces the effect of the environment.

The insulating effect of the mold powder, applied on the free surface of the incoming steel,
was considered by reducing the heat exchange coefficient between steel and air to 3 W/m2/K and by
reducing also the emissivity.

As shown in Figure 4, a time dependent teeming flow rate was applied according to the procedure
used in the steel plant for the experimental test. This boundary condition was applied at the top of the
trumpet, considering the nozzle diameter of the ladle. The reported values of the flow rate applied at
the trumpet are a quarter of the total amount, because of the used simplification of double symmetry.
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4. Results and Discussion

As shown in Figure 5, during the first seconds the pouring phase is performed with a high flow
rate to guarantee the complete opening of the nozzle and to avoid steel solidification in the refractory
channels. Subsequently, in about 70 s, the flow rate is reduced down to 1400 kg/min. Because of
this teeming rate, in the early stage of the process, the steel enters the mold at very high velocity,
increasing the risk of air and powder entrapment [7]. In this condition, and without the presence
of insulating seal or powder bags laid on the mold base, the steel spout reaches a height of about
630 mm before falling back under the gravity (Figure 5a). It can be additionally seen that the metal
spout is not centered but shifted of about 225 mm from the center and oppositely to the column
(Figure 5b), as a consequence of the entrance nozzle geometry and of the abrupt variation of flow
direction at the elbow, i.e., from the horizontal runner to the vertical nozzle, whose connection is not
properly designed.

The knowledge of these data allows defining the height where powder bags can be suspended to
avoid premature release of the insulating powder and subsequent entrapment. In fact, if the powder is
released when a small pool of liquid metal has not been already formed and the metal does not occupy
completely the inlet cross section (like in Figure 5a), the molten steel can easily engulf the fluxes, creating
defects in the ingot. After less than 30 s, a pool of liquid is formed inducing a dumping effect on the
incoming steel. The free surface is characterized by a light fluctuating effect, as detectable in Figure 5c,
which stops when the pool reaches a level of about 250 mm and an almost flat free surface is settled.

For comparison, in Figure 5d the result of the conventional simplified simulation is shown,
i.e., where the velocity is imposed at the bottom section of the entrance nozzle to minimize the
calculation time, neglecting the running system. It can be clearly observed that the nozzle cross section
is completely filled by the liquid steel, which enters the mold with a mushroom shape and fills the
base of the cavity without big spout. In this case, no risk of premature release of the powder and
subsequent slag entrapment can be predicted.
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In Figure 6, the bottom view of the liquid steel entering the mold from the nozzle is shown for
both the comprehensive and simplified model. For the complete mold, it can be seen that the jet
occupies less than 55% of the nozzle cross section, inducing an increase of velocity compared to the
simplified case. The corresponding Reynolds number, calculated at the nozzle just before the exit,
resulted in the order of 15,000 and 250,000 for the simplified and comprehensive models, respectively,
demonstrating the presence of a turbulent flow, as stated in [25].
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Figure 7 reports the filling sequence in terms of velocity on the middle longitudinal section for
both the comprehensive and the simplified models. In the case of the complete mold, the main stream
remains shifted oppositely to the column during the entire filling, creating an asymmetric descending
stream that can pull down the slag more easily, contrary to the case of the simplified simulation,
where the main stream is almost centered. An eccentrically located flow can create a slag-free zone,
the so-called eye, close to the wall, which can affect the detachment of slag particles from the main
slag phase, as it happens in ladle stirring [26].
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Additionally, the complete model is characterized by a higher velocity of the jet, related to the not
fully filled cross section of the runner, which induces also a higher velocity of the metal on the free
surface, increasing the risk of powder entrapment. This can be better seen in Figure 8, where a plot of
the velocity at the central point of the nozzle exit as a function of time is shown for both the simplified
and complete simulation. For the comprehensive model, the velocity results higher and with a larger
fluctuation, due to the stronger turbulence.

To reduce the risk of powder entrapment it is fundamental to decrease the deformation of the
free surface, i.e., the jet velocity. This result can be achieved by properly design the running system,
in particular the nozzle angle. Different authors have already shown the advantages of using a
divergent nozzle, also with the addition of a swirl [18,20,27,28]. In this case, the filling should be
strongly improved by increasing the inlet nozzle angle and by adding a shock absorber at the end of
the horizontal channel.
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During mold filling, the powder covering the liquid steel inside the mold forms a slag layer that
floats on top of the rising molten steel [7]. An excessive turbulence at the powder–metal interface
can cause reoxidation and exogenous inclusions. To evaluate the tendency for powder entrapment,
the Weber number was calculated according to the modified equation reported by Erikson et al. [18]:

We =
u2

steel ·ρsteel√
γg
(
ρsteel − ρslag

) (6)

where usteel is the tangential steel velocity on the free surface of the molten steel; $steel and $slag are the
density of the steel and of the powder, respectively; g is the gravity; and γ is the slag-steel interfacial
tension. According to the finding of Xiao et al. [29], no problems occur when Weber number is lower
than 12.3.

The tangential velocity of the liquid steel free surface was determined at 70, 930 and 1810 s,
which correspond to the first variations of flow rate (Figure 3). Additionally, two intermediate times
were also analyzed, i.e., 24 and 480 s, because high velocity values were observed during the first stage
of mold filling. As an example, in Figure 9, the tangential velocity on the free surface at 24 and 930 s
are reported, using different scales for the two models to better visualize the predicted values. It is
evident that in the simplified model the velocity of the steel on the free surface results strongly lower
than in the case of the complete simulation.
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In Table 1, the maximum detected velocity in the above mentioned times are reported.

Table 1. Steel velocity on the free surface as a function of time.

Time (s) vMAX for the Complete Model (m/s) vMAX for the Simplified Model (m/s)

24 1.73 0.35
70 1.18 0.32
480 0.76 0.25
930 0.55 0.20

1810 0.27 0.14

For estimating the Weber number, the powder density was set at 2500 kg/m3, according to the
literature data [18]. Four interfacial tension values were considered, in agreement with the ranges
found in literature: 0.5 N/m [18], 1.0 N/m [30], 1.5 N/m [31] and 2 N/m [18].

In Figure 10, the determined Weber number as a function of the velocity between the steel and the
slag for different interfacial tensions in shown. It can be seen that, in the case of the simplified model,
the Weber number never exceeds the limit, independently from the considered velocity and interfacial
tension, showing that no risk of powder entrapment can be expected.

On the contrary, for the complete model, the Weber number is higher or very close to 12.3 for
a wide range of velocities. Hence, the possibility of entrapping powder can be easily predicted.
Considering the values in Table 1, it can be assessed that since 480 s the risk of defect formation is
extremely high.

At higher teeming time, when the mold is filled enough to reduce the velocity on the free surface,
the risk is strongly reduced and it is disappears over 930 s, corresponding to about one third of the
mold filling.
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In the last steps, the flow rate is progressively reduced to 300 kg/min. Thus, considering the
low velocity and the very high metallostatic head into the mold, the final phases of the filling are not
dangerous for powder entrapment.

Almost at the end of the filling, when the metal reaches the hot top, a covering powder is
additionally applied to insulate the molten steel. This powder has a density of about 250 kg/m3 and,
because of the low velocity of the free surface, no risk of entrapment seems to exist.

To avoid erosion and subsequent macro inclusions in the metal stream, the runners have to
be designed in order to keep the shear velocity lower than 1 m/s, minimizing turbulences [7].
Considering the whole running system, it can be observed that the shear velocity of the molten
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steel flowing through the refractory channels is higher than this limit, particularly closed to the central
distributor brick (Figure 11). This can allow the prediction of defects source and to determine optimal
process parameters, contrary to the simplified model.Materials 2016, 9, 769  10 of 13 
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Figure 11. Shear velocity in the horizontal runner.

Finally, to verify the reliability of the developed simulation model, with complete runner system,
they were compared the temperature profiles recorded by the thermocouples placed close to the top
and close to the bottom of the mold (see Figure 1) and those resulting from the simulation as well as
from the thermo-graphic camera.

As shown in Figure 12, a good agreement was obtained, demonstrating the reliability of the
model. In particular, the increase in the mold temperature when the liquid steel reaches the level of the
thermocouples, starting exchanging heat can be observed.

Slightly higher values of the measured temperatures than the calculated ones can be detected at
during the ingot cooling (solidification is competed in around 3.5 h). This scatter at high temperature
can be related to the limits of the measuring camera, in particular to the small variation of the emissivity,
which was not set accordingly.
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top (b) thermocouples.

Just after the stripping, about six hours from the end of the filling, the measured temperature
distribution on the ingot surface was compared to the predicted one. The good agreement between
simulation and measurement (Figure 13a,b) allowed the further validation of the used model.
The superficial temperature of the mold (Figure 13c) and also of the ingot resulted a little bit higher
oppositely to the column and the adjacent mold, due to the radiation effects.
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The temperature along the middle longitudinal section of the ingot (Figure 13d) shows an almost
symmetric profile, only very limited moved towards the column, counterbalancing the effected induced
by the shifted stream during the filling.Materials 2016, 9, 769  11 of 13 
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slag more easily, contrary to the case of the simplified simulation. A high risk of slag entrapment can 
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entrapment. Considering the whole running system, the shear velocity of the liquid steel along the 
refractory channel showed the risk of refractory erosion and, thus, of macro inclusions formation, 

Figure 13. Temperature of the ingot on the surface just after the stripping phase: (a) measured by the
thermo-camera; (b) simulated on the ingot; (c) simulated on the mold; and (d) temperature along the
middle longitudinal section.

In Figure 14, the heat flux on the surface of ingot and mold just after the stripping is reported,
as well as its variation along an axial and angular profile. It can be seen that the heat flux resulted not
axi-symmetrical mainly because of the radiation effect.
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5. Conclusions

In this paper, the advantages of using complete instead of simplified models for the simulation
of bottom-poured ingot casting was investigated. Starting from an industrial case, the not negligible
effect of the running system on the prediction of mold filling and ingot quality was assessed.

In particular, it was found that: in the early stage of the process, the steel spout is quite high and
shifted oppositely to the column, as a consequence of the design of the running system (elbow and
entrance nozzle geometry). This result can help in defining the position of the suspended bags to avoid
premature release of the powder and subsequent entrapment. No similar prediction can be performed
when the simplified model is used: the main stream remains shifted oppositely to the column also
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during the entire filling, creating a not symmetric descending stream able to drag the slag more easily,
contrary to the case of the simplified simulation. A high risk of slag entrapment can be observed since
the liquid steel reaches about one third of the mold, oppositely to the simplified model where the
Weber number never exceeds the limit, hence establishing no risk of powder entrapment. Considering
the whole running system, the shear velocity of the liquid steel along the refractory channel showed
the risk of refractory erosion and, thus, of macro inclusions formation, particularly close to the central
distributor brick. No remarkable differences in the temperature profiles during the ingot cooling were
observed between the complete and the simplified models. These results determined the importance
of simulating the complete mold when a deep analysis of defects sources is required.

Finally, the good fitting between calculated and recorded temperatures, both during filling and
solidification as well as after the ingot stripping, allowed validating the simulation, demonstrating its
reliability as predictive tool.
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16. Tkadlečková, M.; Machovčák, P.; Gryc, K.; Klus, P.; Michalek, K.; Socha, L.; Kovac, M. Setting a numerical
simulation of filling and solidification of heavy steel ingots based on real casting conditions. Mater. Tehnol.
2012, 46, 399–402.

17. Zhang, C.; Bao, Y.; Wang, M. Influence of casting parameters on shrinkage porosity of a 19 ton steel ingot.
Metall. Ital. 2016, 108, 37–44.

18. Eriksson, Z.; Jonsson, L.; Jönsson, P.G. Effect of entrance nozzle design on the fluid flow in an ingot mold
during filling. ISIJ Int. 2004, 44, 1358–1365. [CrossRef]

19. Marx, K.; Rödi, S.; Schramhauser, S.; Seemann, M. Optimization of the filling and solidification of large
ingots. Metall. Ital. 2014, 11–12, 11–19.

20. Tan, Z.; Ersson, M.; Jönsson, P.G. Mathematical modeling of initial filling moment of uphill teeming process
considering a trumpet. ISIJ Int. 2011, 51, 1461–1467. [CrossRef]

21. Zigalo, I.N. Experimental investigation of metal hydrodynamics during bottom pouring. Steel USSR 1989,
19, 281–284.

22. Carlson, K.D.; Beckermann, C. Prediction of shrinkage pore volume fraction using a dimensionless niyama
criterion. Metall. Mater. Trans. A 2009, 40, 163–175. [CrossRef]

23. ProCast User’s Manual. Available online: https://www.esi-group.com/software-solutions/virtual-
manufacturing/casting/procast-quikcast (accessed on 8 September 2016).

24. Combeau, H.; Nik, M.; Hans, S.; Emmanuel Richy, P. Prediction of macrosegregation in steel ingots: Influence
of the motion and the morphology of equiaxed grains. Metall. Mater. Trans. B 2009, 40, 289–304. [CrossRef]

25. Gür, C.H.; Pan, J. (Eds.) Handbook of Thermal Process Modeling of Steels; CRC Press: Boca Raton, FL, USA, 2008;
pp. 305–306.

26. Fruehan, R.J.; United States Steel Corporation; American Society for Metals. The Making, Shaping and Treating
of Steel, Vol. 2: Steelmaking and Refining Volume, 11th ed.; The AISE Steel Foundation: Pittsburgh, PA, USA,
1998; p. 672.

27. Hallgren, L. Effect of nozzle type and swirl on flow pattern for initial filling conditions in the mould for
up-hill teeming. Steel Res. Int. 2007, 78, 254–259.

28. Ragnarsson, L.; Ek, M.; Eliasson, A.; Du, S.C. Flow pattern in ingot during mould filling and its impact on
inclusion removal. Ironmak. Steelmak. 2010, 37, 347–352. [CrossRef]

29. Xiao, Z.; Peng, Y.; Liu, C. Modelling study of the entrapment phenomena at the slag-metal interface in the
gas-stirred ladle. Chin. J. Mater. Sci. Technol. 1987, 3, 187–193.

30. Petri, S.; Ville-Valtteri, V.; Timo, F. Effect of interfacial tension on the emulsification of slag-considerations on
the CFD modelling of dispersion. Mater. Sci. Forum 2013, 762, 242–247.

31. Rosypalová, S.; Dudek, R.; Dobrovská, J.; Dobrovský, L.; Žaludová, M. Interfacial tension at the interface of
a system of molten oxide and molten steel. Mater. Tehnol. 2014, 48, 415–418.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2355/isijinternational.44.1358
http://dx.doi.org/10.2355/isijinternational.51.1461
http://dx.doi.org/10.1007/s11661-008-9715-y
https://www.esi-group.com/software-solutions/virtual-manufacturing/casting/procast-quikcast
https://www.esi-group.com/software-solutions/virtual-manufacturing/casting/procast-quikcast
http://dx.doi.org/10.1007/s11663-008-9178-y
http://dx.doi.org/10.1179/030192310X12683045806062
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Procedure 
	Simulation Model 
	Results and Discussion 
	Conclusions 

