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Abstract: Dual three-dimensional networks of structural and transport elements were combined to
model the effect of fracture on mass transport in quasi-brittle geomaterials. Element connectivity of
the structural network, representing elasticity and fracture, was defined by the Delaunay tessellation
of a random set of points. The connectivity of transport elements within the transport network
was defined by the Voronoi tessellation of the same set of points. A new discretisation strategy
for domain boundaries was developed to apply boundary conditions for the coupled analyses.
The properties of transport elements were chosen to evolve with the crack opening values of
neighbouring structural elements. Through benchmark comparisons involving non-stationary
transport and fracture, the proposed dual network approach was shown to be objective with respect
to element size and orientation.
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1. Introduction

The influence of fracture and mass transport affects physical processes that govern many
engineering applications, such as deterioration of construction materials and performance of waste
barriers. In these applications, it is important to consider the influence of fracture induced pathways
for the ingress of fluids. Modelling the discrete crack formations, and the mass transport along these
cracks and through the surrounding uncracked material, is challenging. Models for this coupling are
commonly based on continuum mechanics combined with a discrete representation of cracks [1–5].
Alternatively, discrete approaches, such as discrete element method, lattice and network models, have
been proposed to model these processes [6–15].

One network approach, based on the Delaunay tessellation of a random set of points, has been
shown to be suitable for modelling fracture [16–19] and mass transport [20], providing mesh insensitive
results. In this approach, the physical processes are modelled by a multi-dimensional network of
one-dimensional elements, which are placed on the Delaunay edges (Figure 1a); the element properties
are determined by the corresponding Voronoi tessellation. The nodes of the elements of structural
and transport network models coincide, which is suitable for modelling the coupling of continuum
fields. However, once cracks are formed, the transport elements in this approach are orientated
perpendicular to the crack path, which is aligned with the mid-cross-section of the structural elements
(Figure 1b). This misalignment of the transport elements with the crack path complicates the modelling
of crack-assisted transport and its dependence on crack opening. To resolve this deficiency, several
researchers [8,10,13,21] have placed transport elements on the Voronoi edges, whereas the structural
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elements remain on the Delaunay edges (Figure 1c). With this dual network approach, the influence
of fracture on transport is more naturally represented, since the transport elements are aligned with
the potential crack directions. So far, most of this work was either limited to 2D or did not provide
coupling between fracture and transport.

Structural network node
Flow network node

a) b) c)

Figure 1. Network models for coupled problems: (a) common approach in which the structural and
transport network nodes are coincident. Both structural and transport elements are on the Delaunay
edges; (b) simulated crack in structural network; and (c) improved approach in which transport
elements are on the Voronoi edges and therefore aligned with potential cracks.

This work proposes a three-dimensional dual network approach for modelling fracture and mass
transport. Structural elements are placed on the edges of Delaunay tetrahedra and transport elements
are placed on the edges of Voronoi polyhedra. Special attention is given to the discretisation of the
dual networks at domain boundaries. Simple geometric relationships based on Voronoi and Delaunay
tessellations are proposed for describing the change of permeability as a function of crack opening.
By a series of benchmarks, it has been demonstrated that the present approach can describe fracture,
transport, and the increase of permeability due to fracture mesh-independently. Fracture is modelled
by means of a cohesive-frictional approach, which is suitable for geomaterials, such as concrete and
rocks in which the size of the fracture process zone is large compared to the size of the structure.
Transport is modelled by means of Darcy’s flow equation. The proposed model is designed to describe
the effect of cohesive fracture on conductivity.

2. Network Approach

The new network approach uses one-dimensional elements connected in a three-dimensional
network to describe continuum fields as well as evolutions of discontinuities in the form of fracture
process zones. In the present section, the discretisation and mechanical equations of the structural and
transport parts are discussed. At the end of each section, the input parameters for the individual parts
are presented. A list of symbols can be found in Table 1.

Table 1. Nomenclature.

Symbol (Units) Definition

At (m2) cross-sectional area of the tetrahedron face
a (Pa) parameter in van Genuchten model

B1, B2 matrices expressing rigid body kinematics
c (s2/m2) capacity of the material

Ce (m s2) element capacity matrix
C (m) centroid of mid-cross-section
cs ratio of compressive and tensile strength
De (Pa) material stiffness matrix
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Table 1. Cont.

Symbol (Units) Definition

dmin (m) minimum distance between nodes
ep, eq (m) eccentricities between the midpoint of the network element and the centroid C

E (Pa) Young’s modulus
fs (N) acting structural forces
fd loading function
ft (Pa) tensile strength
fq (Pa) shear strength
fc (Pa) compressive strength
f (kg/m2) outward flux normal to the boundary

GF (J/m2) fracture energy
h (m) length of structural element
ht (m) length of transport element
I unity matrix
Ip (m4) polar moment of area

I1 and I2 (m4) two principal second moments of area of the cross-section
K element stiffness matrix
Kr rotational stiffness at point C
lc (m) crack length
L (m) length of specimen
m parameter in van Genuchten model

n, p, q (m) coordinates of mid-cross-sections
Pc (Pa) capillary suction (tension positive)
Pw (Pa) pressure in the wetting fluid
Pd (Pa) pressure in the non-wetting fluid
qs ratio of shear and tensile strength
S degree of saturation
t (s) time

un, up, uq (m) displacement discontinuities
ux, uy, uz (m) translational degrees of freedom

ue vector of degrees of freedom of structural element
ut (m) vector of translational part of degrees of freedom
ur vector of rotational part of degrees of freedom
uC (m) vector of displacement discontinuities
V (m3) volume

Vavail (m3) available volume to be filled
Vtot (m3) total volume of the specimen

wn, wp and wq (m) crack opening components
wf (m) displacement threshold which determines the initial slope of the softening curve
w̃ (m) equivalent crack opening

x, y, z (m) Cartesian coordinates
α0 (s) initial conductivity of the undamaged material
αc (s) change of the conductivity due to fracture
α (s) conductivity
αe conductivity matrix
γ input parameter, which controls Poisson’s ratio of the structural network

Γ1, Γ2 boundary segments
δ (m) load-point-displacement
ε strain vector

εn, εp, εq strain components
ε0 strain threshold
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Table 1. Cont.

Symbol (Units) Definition

θ (kg/m3) moisture content
θr (kg/m3) residual moisture content
θs (kg/m3) saturated moisture content
κ (m2) intrinsic permeability

κd history variable in damage model
κr relative permeability
µ (Pa s) dynamic (absolute) viscosity
ξ tortuosity factor
ρ (kg/m3) density of the fluid

σc (Pa) continuum stress
σ (Pa) stress vector

σn, σp, σq (Pa) stress components
φx, φy, φz rotational degrees of freedom

ω damage variable
∇ divergence operator

2.1. Discretisation

The dual network approach is based on the Delaunay and Voronoi tessellations of a set of points
placed randomly within the domain. The points are placed sequentially while enforcing a minimum
distance dmin between all points; trial points that fail the minimum distance criterion are rejected.
The Delaunay tessellation decomposes the domain into tetrahedra whose vertices coincide with the
randomly placed points; the Voronoi tessellation divides the domain into polyhedra associated with the
random points [22]. These geometrical arrangements of Delaunay and Voronoi tessellations are used to
define the structural and transport elements. Figure 2a shows a Delaunay tetrahedron and the Voronoi
facet associated with Delaunay edge i–j. The structural elements are placed on the Delaunay edges
with their mid-cross-sections defined by the facets of the Voronoi polyhedra (Figure 2b). Analogous to
the structural network, the transport elements are placed on the edges of the Voronoi polyhedra, with
their cross-sections formed by the facets of the Delaunay tetrahedra (Figure 2c).

(a) (b) (c)

Figure 2. Spatial arrangement of structural and transport elements of the 3D transport-structural
network approach: (a) geometrical relationship between Delaunay and Voronoi tessellations;
(b) structural element with cross-section defined by the associated Voronoi facet; and (c) transport
element with cross-section defined by the associated Delaunay facet.
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The discretisation of boundaries of the domain requires special attention. The procedure used in
this work is illustrated in Figure 3.

(a) (b)

Figure 3. Discretisation of domain boundaries: (a) Voronoi facet of Delaunay edge i–j located on the
surface of the domain after initial tessellation; and (b) modified arrangement used for definition of
transport nodes and elements.

Prior to the sequential, random filling of points within the domain, points are placed randomly
on the domain surfaces. The minimum distance criterion is enforced during the placement of all
of these points. Each interior point is then mirrored with respect to all surfaces of the domain,
similar to the procedure of Yip et al. [23]. The tessellations for this set of random points results in
Delaunay edges located on the domain surfaces, with their corresponding Voronoi facets traversing the
domain boundaries as shown in Figure 3a. Here, Delaunay edge i–j lies on the surface of the domain.
Furthermore, Voronoi vertices 1 and 5 are inside, and 2, 3 and 4 are outside the domain. In constructing
the transport network, the Voronoi edges within the domain are retained. For edges that cross a surface,
only the portion within the domain is kept. For example, edges 1–2 and 4–5 become edges 1–2′ and
4′–5, respectively, where nodes 2′ and 4′ lie on the surface (Figure 3b). These truncated edges define
transport elements that are perpendicular to the surface. The modified set of Voronoi edges defines the
mid-cross-section of the structural element associated with nodes i and j.

Information exchange between the structural and transport networks is based on the geometrical
relationship between neighbouring elements. Herein, a one-way coupling is considered, in which
crack openings supplied by the structural network affect the conductivity of the associated transport
elements. Details regarding this coupling are provided in Section 2.3. The input parameter for the
discretisation is the minimum distance dmin which controls the average lengths of structural and
transport elements.

2.2. Structural Network Model

For the 3D structural analysis, the equilibrium equation for the quasi-static case without body
forces [24] is

∇σc = 0, (1)

where ∇ is the divergence operator and σc is the continuum stress. This equilibrium equation is
approximated by a network of structural elements.

2.2.1. Structural Element

The discrete version of Equation (1) for the structural element shown in Figure 2b is

Kue = fs, (2)
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where K is the stiffness matrix, ue are the vector of degrees of freedom and fs are the acting
forces. The formulation of the structural element is presented in the local coordinate system,
i.e., the coordinate system (x, y and z) of the nodal degrees of freedom coincides with the
coordinate system (n, p and q) of the quantities used for evaluating the constitutive response.
Each node has three translational (ux, uy and uz) and three rotational (φx, φy and φz) degrees
of freedom. The degrees of freedom of a structural element with nodes i and j are grouped in
translational and rotational parts as ue =

{
uT

t , uT
r
}T , where ut =

{
uxi, uyi, uzi, uxj, uyj, uzj

}T and

ur =
{

φxi, φyi, φzi, φxj, φyj, φzj
}T . These degrees of freedom ut and ur are used to determine

displacement discontinuities uC =
{

un, up, uq
}T at point C by rigid body kinematics [25] as

uC = B1ut + B2ur, (3)

where B1 and B2 are two matrices containing the rigid body information for the nodal translations and
rotations, respectively, which are

B1 =
(
−I I,

)
(4)

and

B2 =

 0 −eq ep 0 eq −ep

eq 0 −h/2 −eq 0 −h/2
−ep h/2 0 ep h/2 0

 , (5)

where I is a 3× 3 unity matrix. In matrix (5), ep and eq are the eccentricities between the midpoint
of the network element and the centroid C in the directions p and q of the local coordinate system,
respectively (Figure 2b). The local coordinate system is defined by the direction n, which is parallel to
the axis of the element, and p and q, which are chosen as the two principal axes of the mid-cross-section.

The displacement jump uC in Equation (3) is transformed into strains ε =
{

εn, εp, εq
}T

= uC/h,

where h is the length of the structural element. The strains are related to stresses σ =
{

σn, σp, σq
}T by

means of a material stiffness D = (1−ω)De, where De = diag {E, γE, γE}. Here, E is the Young’s
modulus and ω is the damage variable, which is further discussed in Section 2.2.2. Furthermore, γ is
an input parameter, which controls Poisson’s ratio of the structural network. For γ = 1, Poisson’s ratio
equal to zero is obtained, which is used in this study. For this case, the structural network is elastically
homogeneous under uniform modes of straining.

For the case that the global coordinate system coincides with the local one, the element stiffness
matrix is

K =
A
h

(
BT

1 DB1 BT
1 DB2

BT
2 DB1 BT

2 DB2

)
+

(
0 0
0 BT

1 KrB1

)
(6)

Here, Kr is a matrix containing the rotational stiffness at point C defined as

Kr =
(1−ω)E

h

Ip 0 0
0 I1 0
0 0 I2

 , (7)

where Ip is the polar moment of area, and I1 and I2 are the two principal second moments of area of
the cross-section. The factor 1− ω in matrix (7) ensures that the rotational stiffness reduces to zero
for a fully damaged cross-section (ω = 1). For an elastic constitutive model, the present structural
element is identical to the one described in Berton and Bolander [26]. All geometrical information
of the network element is contained in the element formulation. In this way, the constitutive model
relating stresses to strains depends only on properties of the material. This structure is preferred over
one that incorporates geometrical information in the constitutive model, since it facilitates the adoption
of constitutive modelling frameworks that are commonly used for continuum approaches.
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2.2.2. Structural Material

The inelastic structural response of the material during fracture is described by a scalar damage
model [27] of the form

σ = (1−ω)Deε. (8)

The damage variable ω is a function of the history variable κd [28], which is, in turn, determined
by the loading function

fd(ε, κd) = εeq (ε)− κd, (9)

and the loading–unloading conditions

fd ≤ 0, κ̇d ≥ 0, κ̇d fd = 0. (10)

The equivalent strain

εeq(εn, εp, εq) =
1
2

ε0 (1− cs) +

√(
1
2

ε0(cs − 1) + εn

)2
+

csγ2 (εp + εq
)2

q2
s

(11)

corresponds to an ellipsoidal envelope in the stress space. For pure tensile loading, the stress is limited
by the tensile strength ft = Eε0. For pure shear and pure compression, the stress is limited by the shear
strength fq = qs ft and the compressive strength fc = cs ft, respectively.

The damage function is determined by using an exponential stress-crack law in pure tension of
the form

σn = ft exp
(
−wn

wf

)
, (12)

where wn = ωhεn is the crack opening under monotonic tension and εn is the tensile strain. This crack
opening is the first component of the crack opening vector w = ωhε, which is used for the coupling of
the structural and mass transport model. The normal stress in Equation (12) is also expressed in terms
of the stress-strain law in Equation (8) as

σn = (1−ω) Eεn. (13)

Comparing the right-hand sides of Equations (12) and (13), and replacing εn by κd, since a
monotonically increasing tensile strain is assumed, the nonlinear equation

(1−ω) Eκd = ft exp
(
−ωhκd

wf

)
(14)

is obtained from which the damage parameter ω is determined iteratively using a Newton method.
In Equation (12), parameter wf determines the initial slope of the softening curve and is related to the
fracture energy as GF = ftwf. The input parameters for the structural part of the model are the Young’s
modulus E, the tensile strength ft, fracture energy GF, shear strength fq and compressive strength fc.
These input parameters can be determined from inverse analysis of elementary structural tests of the
specific geomeaterial of interest.

2.3. Transport Model

For the transport part of the model, a 3D network of 1D transport elements is used to discretise
the nonstationary transport equation [29]

∂Pc

∂t
− div (αgradPc) = 0, (15)
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subject to
Pc = g (x) on Γ1, (16)

and
f = −∂Pc

∂n
on Γ2, (17)

where Pc is the capillary suction, t is the time, α is the conductivity, f is the outward flux normal to the
boundary (n-direction) and x is the position in the domain Ω. Furthermore, Γ1 and Γ2 are the boundary
segments with prescribed suction and flux, respectively. The capillary suction Pc in an unsaturated
material is defined as Pc = Pd − Pw, where Pd is the pressure in the drying fluid and Pw is the pressure
in the wetting fluid. Here, Pd is assumed to be zero, which is a common assumption for modelling the
water retention in unsaturated materials subjected to ambient temperatures [29].

2.3.1. Transport Element

The discrete form of Equation (15) for a 1D transport element shown in Figure 2c is

Ce
∂Pc

∂t
− αePc = f, (18)

where αe and Ce are the 1D element conductivity and capacity matrices, respectively, and f are the
external fluxes [20,30]. The degrees of freedom of the transport elements are the capillary suction
Pc = (Pc1, Pc2)

T . Within the context of a one-dimensional finite element formulation [30], Galerkin’s
method is used to construct the elemental capacity matrix Ce as

Ce = c
Atht

12

(
2 1
1 2

)
, (19)

where c is the capacity of the material, At is the cross-sectional area of the tetrahedron face associated
with the transport element (Figure 4), and ht is the length of the transport element.

Figure 4. Influence of cracking on transport.

Likewise, based on Galerkin’s method [30], the elemental conductivity matrix is defined as

αe =
At

ht
α

(
1 −1
−1 1

)
, (20)
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where α is the conductivity of the material, which is the sum of two components

α = α0 + αc, (21)

where α0 is the initial conductivity of the undamaged material and αc is the change of the conductivity
due to fracture.

2.3.2. Transport Material

In the present example, the network approach is applied to mass transport in a general unsaturated
geomaterial using techniques introduced originally by van Genuchten for soils [31], but also applied
to other geomaterials, such as cementitious materials [32]. According to van Genuchten in [31],
the conductivity of the undamaged material α0 is defined as

α0 =
ρκ

µ
κr (S) , (22)

where ρ is the density of the fluid, µ is the dynamic (absolute) viscosity, κ is the intrinsic permeability
and κr is the relative permeability as a function of the degree of saturation. This degree of saturation is
defined as

S =
θ − θr

θs − θr
, (23)

with the moisture content θ, the residual moisture content θr and the saturated moisture content θs of
the specific geomaterial [31]. Furthermore, the relative permeability κr is

κr (S) =
√

S
(

1−
(

1− S1/m
)m)2

, (24)

where m is a model parameter [31]. The saturation is related to the capillary suction as

S (Pc) =

1 +
(

Pc

a

) 1
1−m


−m

(25)

where a is another model parameter. Physical justification of parameters m and a in Equations (24)
and (25) are given by van Genuchten [31]. The second term in Equation (21) describes the influence of
fracture on conductivity. It is defined as

αc = ξ
ρ

12µAt

3

∑
i=1

w̃3
i lci, (26)

where w̃i and lci are the equivalent crack openings and crack lengths (see Figure 4) of neighbouring
structural elements, which are located on the edges of the cross-section, and ξ is a tortuosity factor.
For mortars, crack tortuosity considered by ξ may reduce flow by a factor of 4 to 6, relative to
that between smooth parallel plates [33]. Here, w̃ = |w| is the magnitude of the crack opening w
defined in Section 2.2.2. The relation in Equation (26) expresses the well known cubic law, which has
shown to produce good results for transport in fractured geomaterials [34]. In Equation (26), wi is
assumed to act over lci (i.e., the equivalent crack opening is uniform over the element crack length).
The approach adequately represents variations in opening along the crack trajectory, provided the
mesh is sufficiently fine.

The way that the crack openings in the structural elements influence the conductivity of a transport
element is schematically shown in Figure 4. For instance, for the transport element o–p, three structural
elements (i–k, k–j and i–j) bound the cross-section of the transport element. Thus, the conductivity
will be influenced by these three elements according to Equation (26) in proportion to their equivalent
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crack widths and the crack lengths. This crack length (shown by blue double lines in Figure 4) is
defined as the length from the midpoint of the structural element to the centroid Ct of the transport
element cross-section.

The capacity c in Equation (19) is defined as c = −ρ∂θ/∂Pc. Using Equation (23), this expression
can be written as

c = −ρ
∂S
∂Pc

(θs − θr) . (27)

It is assumed that c is independent of the cracking described by the structural part. The input
parameters of the transport part are the density ρ and dynamic viscosity µ of the wetting fluid, the
permeability of the saturated uncracked material κ, the saturated and residual wetting fluid content,
θs, and θr, respectively. Furthermore, parameters m and a of the van Genuchten constitutive model,
and the tortuosity parameter ξ are needed.

The structural network is adept at simulating fracture in multi-phase representations of concrete,
in which the matrix, aggregates, and matrix-aggregate interfaces are explicitly represented [18,35].
Study of the influence of interface fracture on effective permeability is one potential application of the
proposed dual-network approach.

3. Analyses

In the proposed coupled network approach, the transport elements, which describe both the
transport through continuum and fractures, are placed on the edges of the Voronoi polyhedra.
This differs from the commonly used approach in which the elements are located at the edges
of the Delaunay tetrahedra [20]. The performance of this new approach is investigated by three
benchmark tests. The numerical analyses are performed with OOFEM, an open-source object-oriented
finite element program [36] extended by the present authors.

3.1. Steady-State Potential Flow

For the first benchmark, a homogeneous material is discretised as shown in Figure 5a.

Figure 5. Steady-state simulation of potential flow: (a) Voronoi tessellation of domain; (b) conventional
network solution; and (c) proposed network solution.

The Delaunay/Voronoi discretisation of the domain is based on a set of randomly inserted nodes.
Table 2 compares the numbers of nodes/elements forming both network types depicted in Figure 1:
the conventional approach (in which transport elements are on the Delaunay edges) and the proposed
approach (in which transport elements are on the Voronoi edges). It is clear that the proposed approach
is computationally more expensive.
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Table 2. Network feature counts.

Network Type Node Definition Element Definition Nodal Count * Element Count *

Conventional Delaunay vertex Delaunay edge 330 1800
Proposed Voronoi vertex Voronoi edge 2880 5440

* rounded to nearest ten.

The material is subjected to a pressure difference between the x-faces of the domain: Pc(x=0)=0
and Pc(x = L) = 1. For this test, a special case of the constitutive model presented in Section 2.3.2
has been used by assuming the conductivity and capacity to be constant with values of α = c = 1.
Both networks accurately represent the steady-state solution, as shown by the nodal potentials plotted
in Figure 5. Pressure values are not plotted for the nodes associated with prescribed boundary
conditions. The discrete error norms presented in the figures are:

||r||∞ = max
m=1,...,M

|rm|, (28)

||r||2 =

(
1
M

M

∑
m=1
|rm|2

)1/2

, (29)

where rm = Pc(xm) − Pch(xm) is the difference between the theoretical and numerical solutions,
respectively, at the position of node m; and M is the number of unconstrained nodal points.

3.2. Nonstationary Transport Analysis

For the second benchmark, nonstationary mass transport through undamaged material was
studied. The geometry and boundary conditions are shown in Figure 6. The two ends of the specimen
are subjected to zero pressure whereas all other boundaries are considered to be sealed. For this test,
again the special case of α = c = 1 for the constitutive model presented in Section 2.3.2 has been used.

The initial condition at all nodes is Pc (x, t) = P0 sin
(πx

L

)
. This assumption allows for a comparison

with the analytical solution Pc = P0 sin
(πx

L

)
exp

(
−π2

L2 t
)

reported in [20].

sealed

sealed

Figure 6. Geometry and boundary conditions for the nonstationary transport benchmark.

Three transport networks with minimum distances between Delaunay vertices of dmin/L = 0.06,
0.045 and 0.03 are used. The coarse network with dmin/L = 0.06 is shown in Figure 7.

Figure 7. Coarse network for the transport analysis.
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The capillary suction distributions for four time steps and the three different network sizes are
shown in Figure 8 for a symmetric portion of the model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

t/L
2
 = 0

0.025

0.05

0.1

0.2

P
c
/P

0

x/L

Coarse network
Medium network
Fine network
Analytical solution

Figure 8. Capillary suction distributions due to non-stationary transport.

For comparing the network results with the analytical results, the vertices were divided into
groups with respect to their x-coordinate. For each group of vertices the mean of the x-coordinate
and capillary suction are presented. The Voronoi-edge based network agrees well with the analytical
solution of the capillary suction distribution without exhibiting any dependence on the element size.
Any differences between the numerical and analytical solution originate from the time discretisation,
rather than the new spatial discretisation.

3.3. Coupled Structural-Transport Benchmark

In the third benchmark, the structural and transport models are coupled. Firstly, a double
cantilever beam is used to assess the capability of the structural model to describe fracture without
any pathological network dependence. Then, fluid transport through the fractured specimen at an
intermediate loading stage of the structural analysis is modelled for different networks with different
element sizes. The geometry and loading setup for the structural and transport tests are shown in
Figure 9a,b, respectively. For the structural analysis, the load is applied at x = 0.25L.

notch

rigid plates

(a)

sealed

sealed
sealed

(b)

Figure 9. Geometry and loading setup of the structural (a) and transport (b) benchmark.
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For the transport component of the analyses, three networks with minimum distances between
Delaunay vertices of dmin/L = 0.06, 0.045 and 0.03 were used. The structural and transport networks
with dmin/L = 0.06 are shown in Figure 10a,b, respectively. As noted earlier, transport elements local
to the boundaries are perpendicular to the specimen surfaces. The input parameters for the structural
constitutive model are E = 30 GPa, ft = 3 MPa and GF = 120 N/m, which are representative of
concrete materials. A notch of length 0.25L is introduced by reducing the tensile strength ft of elements
crossing the notch to 1% of the original value.

(a)

(b)

Figure 10. The coarse dual networks (dmin/L = 0.06) for (a) structural and (b) transport analysis.

The load-displacement curves from the structural benchmark for the three networks are shown in
Figure 11.

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1

F
 [
k
N

]

δ [mm]

Coarse network
Medium network

Fine network

Figure 11. Load versus load-point-displacement results for three networks.
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There is little difference between the responses obtained with the three networks. Fracture is
indicated by shading the mid-cross-sections of elements in which the equivalent crack opening has
reached a threshold value. The mid-cross-sections of elements with damage corresponding to an
equivalent crack opening w̃ > 10 µm are shown in Figure 12 for the three different networks at a
load-point-displacement of δ = 0.15 mm in Figure 11.

(a)

(b)

(c)

Figure 12. Crack patterns for (a) coarse; (b) medium; and (c) fine network for a load-point-displacement
of δ = 0.15 mm in Figure 11. The shaded polygons represent the mid-cross-sections of elements with
w̃ > 10 µm.

The transport network uses the same geometry as in the nonstationary transport test in Section 3.2.
However, the boundary and initial conditions, and the material input parameters, are changed so that
the influence of fracture could be studied more effectively. On the left-hand side of the model, the
boundary is subjected to Pc = 0. Furthermore, the initial capillary suction of all other nodes is set
to Pc = 1.736 MPa, which for the chosen material parameters corresponds to an initial saturation of
Sinit = 0.5. Other input parameters for the transport problem are: α0 = 1× 10−17 m2, θs = 0.1, θr = 0,
a = 1 MPa, m = 0.5 and ξ = 0.001. The transport analysis is performed for crack patterns obtained at
a displacement of δ = 0.15 mm in Figure 11.

Results for the cumulative volume of inflow at the left side of the specimen normalised by the
available volume to be filled, from the time of initial wetting, are presented in Figure 13. The available
volume to be filled is Vavail = (1− Sinit) θsVtot, where Vtot = L× 0.25L× 0.25L is the total volume of
the specimen. The inflow is practically independent of the element size.

Furthermore, contour plots of the capillary suction Pc are shown for the three networks for
the x–z plane (at y = 0.125 m) and for the y–z plane (at x = 0.3 m) in Figure 14. Darker regions
correspond to lower values of capillary suction, which indicate higher amounts of intruded water.
Slight broadening of the intrusion zone, lateral to the crack direction, is expected for the coarser network
design. Otherwise, the network model simulates the transport field element size independently.
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Figure 13. Influence of element size on the cumulative volume of inflow normalised by the
domain volume.
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Figure 14. Contour plots of capillary suction Pc at 3.33 h for the (a) x–z plane at y = 0.125 m and
(b) y–z plane at x = 0.3 m.

Whereas this example involves mode I fracture, the scalar damage model presented in
Section 2.2.2 allows for damage development under more general loading patterns. Modification of
conductivity to account for fracture, according to Equations (21) and (26), is appropriate when the
crack is open (i.e., when wn > 0). In this sense, the proposed model should be applicable to cases
of mixed-mode loading within the tension-shear regime. Residual influences after crack closure,
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or possible modification of conductivity due to damage in the compression-shear regime, require
additional study.

4. Conclusions

A new three-dimensional network approach for modelling the effect of fracture on mass transport
has been proposed. The Delaunay tessellation of an unstructured set of points defines the structural
network, which represents material elasticity and fracture. The edges of the corresponding Voronoi
diagram define the network of transport elements, which simulate mass transport. A distinctive
feature of the dual network approach is the alignment of transport elements with potential pathways
for crack propagation. Several benchmark comparisons have been presented involving non-stationary
transport, fracture, and their coupling. The following conclusions and remarks can be made.

• The network of structural elements, defined by the Delaunay edges, provides element geometry
and size independent load-displacement curves, as demonstrated through cohesive fracture
simulations of double cantilever beams. The traction free condition is approached without stress
locking. Local deviations of the fracture path due to random network generation has very little
influence on the load-displacement curves.

• The network of transport elements, defined by the Voronoi edges, provides results for
non-stationary transport which are in very good agreement with analytical solutions, and
are independent of element geometry and size. The proposed discretisation scheme for the
transport network facilitates the enforcement of boundary conditions. Local to a domain
boundary, transport elements have one node on the boundary and are directed perpendicular to
the boundary.

• The proposed method for coupling the effect of crack opening, determined by the structural
network, with transport properties of the transport network yields objective results with respect
to element geometry and size. This dual network approach facilitates the simulation of transport
along crack paths and from crack faces into the bulk material.

The proposed coupling is limited to the effect of fracture on transport. A two-way coupling of
field quantities (i.e., including the dependence of structural behaviour on the transport field [13]) is a
natural extension of this work.
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