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Abstract: We developed an asymmetric fluorescent sensor 1 for Cu2+, based on 4,4-difluoro-4-
bora-3a,4a-diaza-s-indacene (BODIPY), by introducing 4-carboxyphenyl and bis(pyridin-2-
ylmethyl)amine groups at the 5- and 3-positions, respectively, of the BODIPY core. We then
investigated the photophysical and cation-sensing properties of the sensor. BODIPY 1 showed
large absorption and fluorescence spectral shifts on binding to Cu2+. The fluorescence peak at 580 nm
red-shifted to 620 nm. The binding stoichiometry of BODIPY 1 and Cu2+ was 1:3. The ratio of the
fluorescence intensity at 620 nm to that at 580 nm (F620/F580) increased with increasing concentration
of Cu2+ (3–10 equiv); this enabled ratiometric determination of Cu2+. Although BODIPY 1 showed
good selectivity for Cu2+, there was an interfering effect of Fe3+. BODIPY 1 could be used for the
naked-eye detection of Cu2+ in a water-containing sample.

Keywords: boron-dipyrromethene; di(2-picolyl)amine; cation; ion; copper; heavy metal; transition
metal; dye; fluoroionophore; fluorescence

1. Introduction

The conservation of natural environments and their protection from hazardous contaminants are
becoming considerably important. Heavy metals, in particular, have serious risks to the environment
and to human health because of their toxicity. Copper (Cu) is one of the heavy metals, and excess
uptake of Cu into the human body can lead to gastrointestinal disturbance, and liver or kidney
damage [1]. The development of rapid and easy screening methods for heavy metals, including Cu,
is therefore needed. Presently, the most general analytical methods for heavy-metal determination are
inductively coupled plasma (ICP)-optical emission spectrometry, ICP-mass spectrometry, and atomic
absorption spectrometry [2]. Although these analytical methods are precise and sensitive, they are
costly, and always need complicated sample preparation. Furthermore, they are not used in on-site
screening. The development of a cost-effective and easy method for determining concentrations of
heavy metals is therefore necessary.

Fluorescence spectroscopy with fluorescent sensor molecules is an attractive method for
quantifying heavy-metal cations, because of its high sensitivity, operational simplicity, and versatile
instrumentation [3]. In addition, these sensor molecules can determine the free cation concentration of
heavy metals, which is important in natural environments and many biological systems. The design
and synthesis of new fluorescent sensor molecules are active areas of research, and different kinds
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of fluorescent sensors for heavy-metal cations have been reported [4]. Among them, ratiometric
fluorescent sensors that show fluorescence spectral shift caused by interaction with heavy-metal cations
are more sensitive than those that show increase (“turn-on”) or decrease (“turn-off”) of fluorescence
intensity [5]. Ratiometric fluorescent sensors enable reliable measurements of analyte concentrations,
because the ratio of the intensities at two different fluorescence wavelengths is not affected by
fluctuations in the source light intensity and concentration of the fluorescent sensor molecule.

Our strategy for the development of a ratiometric fluorescent sensor for heavy-metal cations
is based on the synthesis of an asymmetric 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)
fluorescent molecule with a cation receptor at the 3-position. BODIPY has many useful characteristics,
such as narrow fluorescence and absorption spectrum, high fluorescence quantum yields, large molar
absorption coefficients, and excellent photochemical stability [6]. In addition, BODIPY derivatives can
be excited with visible light. The most distinctive characteristic of BODIPY derivatives is that their
photophysical properties can be modified by appropriate substitution [7]. Among the eight positions on
the BODIPY core, substitution at the 3- and/or 5-position(s) can cause significant shifts in the absorption
and fluorescence spectra [7]. The introduction of a cation receptor at the 3- and/or 5- position(s)
of BODIPY can therefore be used to create a ratiometric fluorescent sensor [8–13]. However,
the development of a ratiometric fluorescent sensor for Cu2+ is difficult, because Cu2+ often shows
fluorescence quenching with many fluorescent sensors, because of its paramagnetic nature [14–16].
In our previous study, we synthesized four types of 3-[bis(pyridin-2-ylmethyl)amino]-BODIPYs
with bis(pyridin-2-ylmethyl)amine [di(2-picolyl)amine] as the cation receptor at the 3-position of
BODIPY [17]. We found that substitution with the electron-withdrawing sulfonylphenyl group at
the 5-position gives the highest fluorescence quantum yield and largest absorption coefficient in the
presence of Cu2+. In this study, we introduced another type of electron-withdrawing group (i.e.,
a carboxyphenyl group) at the 5- position of 3-[bis(pyridin-2-ylmethyl)amino]-BODIPY, and evaluated
its photophysical properties and Cu2+-sensing ability.

2. Materials and Methods

2.1. Synthesis of BODIPY 1

Unless otherwise stated, all reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA),
Wako Pure Chemical Industries (Osaka, Japan), or Tokyo Chemical Industry (Tokyo, Japan), and used
without further purification. Figure 1 shows the synthetic route to BODIPY 1. High-performance
thin-layer chromatography (HPTLC; silica gel 60 F254, Merck KGaA, Darmstadt, Germany) or thin-layer
chromatography (aluminum oxide 60 F254, basic, Merck KGaA, Darmstadt, Germany) were used to
monitor the reactions. HPTLC plates were visualized under ultraviolet light and/or by staining
with anisaldehyde solution (anisaldehyde/ethanol/sulfuric acid/acetic acid = 1.9/68/2.5/1.2, v/v),
followed by heating for a few minutes. Silica gel 60 (230–400 mesh) or aluminum oxide 90 active basic
(Merck KGaA, Darmstadt, Germany) were used for open-column chromatography. 1H NMR spectra
were recorded with a JEOL 400 (400 MHz) spectrometer (JEOL Ltd., Tokyo, Japan) at room temperature.
Chemical shifts in the NMR spectra are reported in parts per million, relative to tetramethylsilane as
the internal standard (residual CHCl3; 7.26 ppm). Coupling constants (J) are reported in hertz.
Splitting patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; brs,
broad singlet for 1H NMR data. High-resolution mass spectroscopy (HRMS) was performed with a
Thermo Scientific Exactive (Thermo Fisher Scientific K.K., Tokyo, Japan) or JEOL JMS-T100GCv mass
spectrometer (JEOL Ltd., Tokyo, Japan).
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2.1.1. 3-Chloro-4,4-difluoro-5-[4-(methoxycarbonyl)phenyl]-8-(2,6-dimethylphenyl)-4-bora-3a,4a-
diaza-s-indacene (3)

Compound 4 was synthesized according to the previously reported method [17]. Compound 4
(120 mg, 0.33 mmol, 1 equiv), 2-(4-methoxycarbonylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane
(86 mg, 0.33 mmol, 1 equiv), cesium fluoride (150 mg, 0.99 mmol, 3 equiv), and tetrakis
(triphenylphosphine)palladium (5 mol %) were dissolved in dry toluene. The reaction mixture was
stirred at 80 ◦C for 3 h under nitrogen. The mixture was cooled to room temperature, water was added,
and the organic layer was extracted with dichloromethane. The combined organic layers were washed
with brine, and then dried over Na2SO4. The solvent was evaporated and the crude product was
purified by column chromatography on silica gel (hexane/ethyl acetate = 8/1) to yield compound 3
(38%) as a dark-red solid. 1H NMR (400 MHz, CDCl3, Figure S1): δ = 8.15 (d, 2H, J = 8.4 Hz), 8.03 (d,
2H, J = 8.4 Hz), 7.31 (t, 1H, J = 7.6 Hz), 7.16 (d, 2H, J = 7.6 Hz), 6.70 (d, 1H, J = 4.3 Hz), 6.65 (d, 1H,
J = 4.2 Hz), 6.59 (d, 1H, J = 4.2 Hz), 6.36 (d, 1H, J = 4.2 Hz), 3.95 (s, 3H), 2.19 (s, 6H). HRMS (ESI,
Figure S2) m/z calcd for [M + Na]+ C25H20BClF2N2O2Na 486.1203; found 486.1207.

2.1.2. 3-[Bis(pyridin-2-ylmethyl)amino]-4,4-difluoro-5-[4-(methoxycarbonyl)phenyl]-8-(2,6-
dimethylphenyl)-4-bora-3a,4a-diaza-s-indacene (2)

Compound 3 (63 mg, 0.14 mmol, 1 equiv) was dissolved in acetonitrile. Di(2-picolyl)amine (41 mg,
0.20 mmol, 1.5 equiv) and triethylamine (0.57 mL, 4.07 mmol, 30 equiv) were then added to the solution.
The reaction mixture was refluxed with stirring for 2 h under nitrogen. The mixture was cooled to room
temperature, ethyl acetate was added, and the mixture was washed with water and brine. The organic
layer was dried over Na2SO4, and the solvent was evaporated. The crude product was purified by
column chromatography on aluminum oxide basic (hexane/ethyl acetate = 1/1) to yield compound 2
(76%) as a dark-red solid. 1H NMR (400 MHz, CDCl3, Figure S3): δ = 8.53 (d, 2H, J = 4.8 Hz), 8.02 (d,
2H, J = 8.2 Hz), 7.92 (d, 2H, J = 8.3 Hz), 7.64 (td, 2H, J = 7.7, 1.7 Hz), 7.34 (d, 2H, J = 7.8 Hz), 7.23 (t, 1H,
J = 7.6 Hz), 7.19–7.16 (m, 2H), 7.10 (d, 2H, J = 7.6 Hz), 6.55 (d, 1H, J = 5.1 Hz), 6.44 (d, 1H, J = 3.8 Hz),
6.24 (d, 1H, J = 5.1 Hz), 6.16 (d, 1H, J = 3.8 Hz), 5.20 (s, 4H), 3.91 (s, 3H), 2.18 (s, 6H). HRMS (ESI,
Figure S4) m/z calcd for [M + Na]+ C37H32BF2N5O2Na 649.2546; found 649.2553.
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2.1.3. 3-[Bis(pyridin-2-ylmethyl)amino]-4,4-difluoro-5-(4-carboxyphenyl)-8-(2,6-dimethylphenyl)-4-
bora-3a,4a-diaza-s-indacene (1)

Compound 2 (37 mg, 0.06 mmol) was dissolved in methanol (15 mL). An aqueous solution of
sodium hydroxide (0.2 M, 1.5 mL) was then added to the solution. The reaction mixture was refluxed
with stirring for 6 h. The mixture was cooled to room temperature, and then the pH was adjusted
to between 4 and 5, by adding an aqueous solution of hydrochloric acid (2 M). Ethyl acetate was
added and the mixture was washed with water and brine. The organic layer was dried over Na2SO4

and the solvent was evaporated to yield BODIPY 1 (63%) as a dark-red solid. 1H NMR (400 MHz,
CDCl3, Figure S5): δ = 8.54 (d, 2H, J = 4.8 Hz), 8.06 (d, 2H, J = 8.4 Hz), 7.94 (d, 2H, J = 8.4 Hz), 7.64 (td,
2H, J = 7.7, 1.7 Hz), 7.37 (d, 2H, J = 8.0 Hz), 7.23 (t, 1H, J = 7.6 Hz), 7.19–7.16 (m, 2H), 7.10 (d, 2H,
J = 7.6 Hz), 6.95 (d, 1H, J = 3.0 Hz), 6.56 (d, 1H, J = 5.1 Hz), 6.45 (d, 1H, J = 3.8 Hz), 6.28 (d, 1H,
J = 5.1 Hz), 6.17 (d, 1H, J = 3.8 Hz), 5.23 (s, 4H), 2.18 (s, 6H). HRMS (ESI, Figure S6) m/z calcd for
[M + H]+ C36H31BF2N5O2H 613.2570; found 613.2574.

2.2. Fluorescence and UV–Vis Spectroscopic Measurements

Fluorescence spectra were recorded with a Hitachi F-7100 fluorescence spectrophotometer
(Hitachi High-Technologies Corporation, Tokyo, Japan) and absorption spectra were recorded with
a Shimadzu UV-1800 spectrophotometer (SHIMADZU CORPORATION, Kyoto, Japan). Analytical
grade acetonitrile was used for all spectroscopic experiments. Stock solution of BODIPY 1 (40 µM)
was prepared by dissolving BODIPY 1 in acetonitrile, and stock solutions of cations (300 µM) were
prepared by dissolving metallic perchlorate in acetonitrile. Each test sample was prepared by adding
an aliquot of the BODIPY 1 and cation stock solutions to a 10 mL volumetric flask, and then diluting
the sample with acetonitrile. For measurements of absorption spectra, an appropriate volume of the
cation stock solution was added to a reference cell to ensure absorption spectrum of the test solution.
The excitation and emission slit widths were both 5.0 nm. The fluorescence quantum yields of the test
solution were calculated by comparing the area under the corrected fluorescence spectrum of the test
solution with that of an ethanol solution of rhodamine 6G, which has a fluorescence quantum yield of
0.95 [18]. The fluorescence quantum yield of each sample was obtained as

ΦS = ΦR × SS/SR × AR/AS × (ηS/ηR)2, (1)

where Φ is the fluorescence quantum yield, S is the integrated area of the fluorescence spectrum, A is
the absorbance at the excitation wavelength, η is the refractive index of the solvent, and the subscripts,
S and R, refer to the sample and the reference fluorescent dye (i.e., rhodamine 6G), respectively.
All spectroscopic measurements were conducted in at least duplicate.

3. Results and Discussion

3.1. Photophysical Properties of BODIPY 1

Table 1 shows the photophysical properties of BODIPY 1. BODIPY 1 showed a broad absorption
band at around 503 nm, with a large molar absorption coefficient (ε503 = 25,000 M−1 cm−1); it also
showed a fluorescence peak at 580 nm. The fluorescence quantum yield and the Stokes shift were
0.34 and 2600 cm−1, respectively. The absorption and fluorescence maximum wavelengths, molar
absorption coefficient, and Stokes shift of BODIPY 1 were comparable to those of a previously reported
sulfonylphenyl-substituted BODIPY cation sensor [17]. However, the fluorescence quantum yield of
BODIPY 1 was lower than that of the sulfonylphenyl-substituted BODIPY.
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Table 1. Photophysical properties of BODIPY 1 in acetonitrile.

λabs λflu ε503 Φ Stokes Shift

(nm) (nm) (M−1 cm−1) (-) (cm−1)

503 580 25,000 0.34 2600

3.2. Spectroscopic Response of BODIPY 1 toward Metal Cations

Fluorescence and absorption spectroscopic response of BODIPY 1 was investigated with different
metal cations to clarify its cation-sensing ability. Figure 2 shows the absorption and fluorescence
spectra of BODIPY 1 with and without the respective metal cations (100 equiv). The absorption spectra
of BODIPY 1 showed a broad absorption band at around 503 nm. The addition of metal cations
caused the spectra to red-shift. The largest red-shift, to 593 nm, was observed on addition of Cu2+.
Under excitation at 510 nm, Zn2+ and Ni2+ enhanced the fluorescence intensity of BODIPY 1, and the
fluorescence peak was slightly blue-shifted from 580 nm to 574 nm and 579 nm for Zn2+ and Ni2+,
respectively. In contrast, Co2+, Cd2+, and Hg2+ weakened the fluorescence intensities of BODIPY 1.
Fe3+ and Cu2+ induced red-shifts of the fluorescence band of BODIPY 1. In particular, the fluorescence
peak of BODIPY 1 at 580 nm underwent a large red-shift to 620 nm on addition of Cu2+. Figure 3 is the
photos of BODIPY 1 solution with and without the respective metal cations (100 equiv). The changes
in absorption and fluorescence color caused by Cu2+ addition were easily distinguishable by the
naked eye. Based on these results, we expected the Cu2+ selectivity of BODIPY 1, because Cu2+

induced the largest red-shifts of the fluorescence and the absorption spectra of BODIPY 1. Therefore,
the Cu2+-sensing ability of BODIPY 1 was investigated in the next step. The fluorescence spectral shift
enables ratiometric measurement of Cu2+ concentrations.
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3.3. Ratiometric Determination of Cu2+ with BODIPY 1

Table 2 shows the photophysical properties of BODIPY 1 in the presence of Cu2+ (10 equiv).
On addition of Cu2+, the absorption peak red-shifted from 503 nm to 593 nm and the fluorescence
peak red-shifted from 580 nm to 620 nm. Such red-shifted spectra were also observed for previously
reported BODIPY sensors with structural similarities to BODIPY 1 [10,12]. The fluorescence quantum
yield decreased from 0.34 to 0.07. The absorption and fluorescence spectra of BODIPY 1 with a variety
of Cu2+ concentrations in acetonitrile are shown in Figure 4. In the absorption spectra, the absorption
peak was red-shifted by the addition of 1 and 2 equiv of Cu2+. On addition of 3 equiv of Cu2+,
a new absorption peak appeared at 593 nm, and its intensity gradually increased with increasing Cu2+

concentration. In the fluorescence spectra, the intensity of the fluorescence band at around 580 nm
increased on addition of 1 and 2 equiv of Cu2+. On addition of 3 equiv of Cu2+, a new fluorescence
peak appeared at 620 nm, and its intensity gradually increased with increasing concentration of
Cu2+. Absorption and fluorescence spectral changes almost stopped on addition of 10 equiv of Cu2+.
These results indicate that the stoichiometry of the BODIPY 1/Cu2+ complex changes during the
addition of 1–3 equiv of Cu2+ (i.e., 1:1, 1:2, and 1:3 complex of BODIPY 1/Cu2+) because more than two
absorption peaks were observed. The absorption peak at 593 nm and the fluorescence peak at 620 nm
might originate from 1:3 complex of BODIPY 1 and Cu2+, because the distinctive spectral changes
were observed upon addition of 3 equiv of Cu2+. Therefore, we next investigated the stoichiometry of
the system.

Table 2. Photophysical properties of BODIPY 1 with Cu2+ (10 equiv) in acetonitrile.

λabs λflu ε593 Φ

(nm) (nm) (M−1 cm−1) (-)

593 620 59,000 0.07
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Figure 4. Changes in (a) absorption and (b) fluorescence spectra of BODIPY 1 (3 µM) with increasing
Cu2+ concentration (0–30 µM) in acetonitrile. The excitation wavelength was 550 nm.

To investigate the binding stoichiometry of BODIPY 1 and Cu2+, the Job’s method was used [19].
Figure 5a shows the Job’s plot of the absorbance at 593 nm (A593). A593 was highest when the mole
fraction of Cu2+ was 0.7. The intersection of the fitted lines occurred at approximately 0.75 of the
mole fraction of Cu2+, suggesting a 1:3 stoichiometry of BODIPY 1 and Cu2+. Although we did not
introduce the carboxyphenyl group as a cation receptor, the group and acetonitrile might participate in
the binding event. The ratio of the fluorescence intensity at 620 nm to that at 580 nm (F620/F580) was
calculated for ratiometric determination of Cu2+ (Figure 5b). The F620/F580 value was unchanged in the
range 0–6 µM Cu2+ (i.e., 0–2 equiv). In the range 6–15 µM Cu2+, F620/F580 increased linearly from 0.4 to
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10.8. Further addition of Cu2+ led to a gradual increase in F620/F580, and the slope of the plot became
low. These results indicate that Cu2+ concentration can be determined in the range 6–30 µM, and the
limit of quantification for Cu2+ was 6 µM. On the other hand, F620 did not linearly increase depending
on the Cu2+ concentration, which suggests the ratiometric measurement is preferable. To the best of
our knowledge, BODIPY 1 is the third example of a ratiometric fluorescent sensor for Cu2+ based on
BODIPY [17,20]. Compared to these sensors, BODIPY 1 shows better quantitative performance for
Cu2+ because the linearity of the calibration curve is well established.Materials 2018, 11, x FOR PEER REVIEW  7 of 9 
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Figure 5. (a) Job’s plot of BODIPY 1 and Cu2+ system. The total concentration of BODIPY 1 and Cu2+

was 9 µM and absorbance at 593 nm (A580) was plotted. (b) Plot of fluorescence intensity at 620 nm
(F620) and ratio of fluorescence intensities (F620/F580) of BODIPY 1 (3 µM) versus increasing Cu2+

concentration (0–30 µM) in acetonitrile. The excitation wavelength was 550 nm.

The selectivity of BODIPY 1 for Cu2+ was investigated (Figure 6a). Co2+, Ni2+, Zn2+, Cd2+,
and Hg2+ did not increase the fluorescence intensity at 620 nm, which originated from the complex
of BODIPY 1 with Cu2+. Addition of the cations, therefore, did not cause F620/F580 to increase.
However, when Cu2+ was added to these solutions, F620 increased and therefore F620/F580 increased.
This Cu2+ selectivity might be a result of the interaction of BODIPY-bis(pyridin-2-ylmethyl)amine
conjugate and Cu2+, which has a low-lying d–d state nature [10]. Among these cations, Fe3+ is the
main interfering cation in the use of BODIPY 1 as a Cu2+ fluorescent sensor, because the fluorescence
spectrum of the solution containing 10 equiv of Fe3+ overlaps with that of the solution containing Cu2+.
The absorption spectra shown in Figure 2a also suggest the formation of the complex of BODIPY 1
and Fe3+. Therefore, some kind of pretreatment for Fe3+ removal would be necessary for Cu2+ sensing
with BODIPY 1. Fe3+ also has a paramagnetic nature, and interfering effects for Cu2+ sensors were
often reported [21–23]. To investigate the possibility of practical application for Cu2+ screening with
BODIPY 1, we used tap water (pH = 7.4, electrical conductivity=19.7 mS/m) as a real sample. Cu2+ was
spiked with tap water, and the concentration of Cu2+ was adjusted to 30 ppm (470 µM), which is
ten-times higher than the national effluent standards for Cu in Japan. Figure 6b shows the photos
of BODIPY 1 solution containing 10% of prepared tap water. The absorption color changed from
light pink to light purple by the addition of Cu2+. On the other hand, the fluorescence color changed
from orange to red purple. Both color changes were easily distinguishable by the naked eye, which is
valuable for on-site screening of Cu2+.
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Figure 6. (a) Changes in the ratio of fluorescence intensities (F620/F580) of BODIPY 1 (3 µM) on addition
of different metal cations. The gray bars represent the addition of each cation (30 µM). The black bars
represent subsequent addition of Cu2+ (30 µM). The excitation wavelength was 550 nm. (b) Photos
of BODIPY 1 solution (4 µM) containing tap water (acetonitrile/tap water = 9/1, v/v) in the absence
(1, left flask) and the presence of Cu2+ (Cu2+, right flask). Cu2+ was spiked with tap water in advance.
The concentration of Cu2+ in tap water was 30 ppm (470 µM). The fluorescence color was observed
under excitation at 365 nm.

4. Conclusions

In this study, we synthesized BODIPY 1 as a ratiometric fluorescent sensor for Cu2+. BODIPY 1
showed large absorption and fluorescence spectral red-shifts on binding to Cu2+. The fluorescence
quantum yield of the complex was 0.7. The Job’s plot revealed 1:3 stoichiometry of BODIPY 1 and
Cu2+. The ratio of the fluorescence intensity (F620/F580) increased with increasing concentration of
Cu2+ (6–30 µM). Fe3+ was the main interfering cation for Cu2+ sensing with BODIPY 1. In addition,
BODIPY 1 could be used for Cu2+ screening in a water-containing sample. The change in fluorescence
color by Cu2+ could be easily recognized by the naked eye.
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Figure S6: HRMS spectrum of BODIPY 1.
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