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Abstract: Nanoporous metals represent a fascinating class of materials. They consist of a
bi-continuous three-dimensional network of randomly intersecting pores and ligaments where
the ligaments form the skeleton of the structure. The open-pore structure allows for applying a
thin electrolytic coating on the ligaments. In this paper, we will investigate the stiffening effect of a
polymer coating numerically. Since the coating adds an additional difficulty for the discretization of
the microstructure by finite elements, we apply the finite cell method. This allows for deriving a mesh
in a fully automatic fashion from the high resolution 3D voxel model stemming from the 3D focused
ion beam-scanning electron microscope tomography data of nanoporous gold. By manipulating
the voxel model in a straightforward way, we add a thin polymer layer of homogeneous thickness
numerically and study its effect on the macroscopic elastic properties systematically. In order to
lower the influence of the boundary conditions on the results, the window method, which is known
from homogenization procedures, is applied. In the second part of the paper, we fill the gap between
numerical simulations and experimental investigations and determine real material properties of an
electrolytic applied polypyrrole coating by inverse computations. The simulations provide an estimate
for the mechanical properties of the ligaments and the polymeric coating and are in accordance with
experimental data.
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1. Introduction

Nanoporous gold (NPG) represents a fascinating class of nanoporous metals. An overview
over their morphologies and mechanical properties can be found, for example, in [1,2] and [3,4].
NPG consists of a three-dimensional network of randomly intersecting pores. Ligaments form the
skeleton of the structure. Their diameter can be controlled by altering dealloying conditions, thus
allowing for examining the impact of the ligament size on the macroscopic mechanical properties [5–8].
The open-pore structure of NPG enables creating gold–polymer composites (NPG-composites) either

by fully infiltrating the porous metal by epoxy resins [9,10] or by adding a thin electrolytic coating
layer of a conjugated polymer (such as polyaniline or polypyrrole) on top of the ligaments [11–14].
The latter strategy has resulted in novel hybrid materials with improved mechanical behavior along
with substantially enhanced functional properties [14]. The suggested potential application of such
nanocomposites as mechanical actuators requires a detailed understanding of the impact of the
polymer layer on the effective mechanical response. This study thus aims to elucidate the effects of a

Materials 2019, 12, 2178; doi:10.3390/ma12132178 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma12132178
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/12/13/2178?type=check_update&version=2


Materials 2019, 12, 2178 2 of 23

thin polymeric coating on the macroscopic stiffness of the NPG-composites numerically. However,
finite element modeling of NPG alone is challenging due to its complex 3D network structure. The
existing literature can be categorized in models based on simplified unit cells with defined coordination
number and ligament geometry [15–23], artificial structures generated with the help of physical or
semi-physical models for a given solid fraction [22,24–27], and models that are derived from 3D
tomography data obtained from nanoporous gold samples [28,29]. Thus far, the simulation of the
elastic-plastic deformation behavior is essentially restricted to the approaches making use of Finite
Element Method (FEM) beam models, which are on the one hand highly efficient, but have on the other
hand some limitations concerning the quantitative prediction of macroscopic properties due to the
effect of the nodal masses in the connecting nodes [15,17,21]. Motivated by this, a nodal corrected beam
model is developed that corrects the softening inherent in the FEM beam model by a parametrization
of the diameter and Young’s modulus of the beam elements in the region of the nodal mass [18]. This
nodal corrected beam model is able to predict the stress–strain behavior up to more than 10% strain
with high computational efficiency. However, the parametrization for the nodal correction is so far only
available for ball-and-stick models with cylindrical ligaments connected in spherical nodal masses. As
the parametrization of the nodal beam elements depends on the local geometry of the ligament and
the nodal mass, a generalization towards concave, convex, and asymmetric ligament shapes reported
by [29] is required for applying such a nodal correction to realistic structures. Furthermore, it is shown
in [29] that FEM beam modeling of realistic structures, based on skeletonization of 3D tomography
data, can result in a systematic and significant overestimation of stiffness and strength. This is due
to the nature of the thickness algorithm of [30] implemented in the open-source software FIJI, which
overestimates the diameters of non-cylindrical ligaments. Lacking a sufficiently accurate approach
for the thickness determination and a general method for the nodal correction, a straightforward
translation of 3D tomography data into a 3D FE model is highly desirable. As shown in [28], it
is possible to build a 3D solid model from 3D tomography data that allows for an elastic-plastic
simulation with affordable computational effort. However, more work needs to be invested towards
the discretization and the boundary conditions that deal with the limited size and the non-periodic
nature of representative volume elements (RVEs) as well as the spatial resolution of nanosized features
of such highly complex structures. Furthermore, conventional 3D meshing has substantial limitations
in adding a thin coating to such a geometry. Therefore, we apply the finite cell method (FCM) to
investigate the effect of a polymer coating on the macroscopic elastic-plastic response. In contrast to
other discretization methods, simulations can be performed directly on a high-resolution 3D voxel
model stemming from the 3D focused ion beam-scanning electron microscope (FIB-SEM) tomography
data of an NPG sample, provided by [28]. To deal with the limited RVE size and the non-periodic
nature which does not permit to use symmetry boundary conditions, we apply the window method
which applies the boundary conditions in a self-consistent way. By inverse computations of NPG
composites where the epoxy resin and polypyrrole (PPy) were exploited as polymeric phases, we aim
to obtain important insights in the mechanical properties of thin PPy coatings deposited on NPG.

2. Experimental Investigations

Nanoporous Au-polypyrrole (NPG-PPy) composites were prepared and tested mechanically.
This section briefly describes the sample preparation procedure and the subsequently performed
mechanical tests.

2.1. Preparation of Nanoporous Au-Polypyrrole (NPG-PPy) Composites

The NPG samples were prepared by electrochemical dealloying of a Au25Ag75 precursor alloy.
The used established procedures are described in detail in [31]. The master alloy ingot was prepared by
arc melting (arc melter MAM-1, Edmund Bühler) and homogenized at 800 ◦C for 120 h (furnace
RHF1600, Carbolite) by sealing it in an evacuated (≈10−2 bar) quartz tube. This was followed
by wire drawing and cutting of the ingot to fabricate cylindrical specimens with dimensions of
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1.2 mm× 1.5 mm, which were subsequently annealed in argon atmosphere for recovery (2 h at 800 ◦C,
infrared furnace behr IRF 10, behr Labor Technik, Düsseldorf, Germany). The dealloying was carried
out in a three-electrode electrochemical cell at a constant potential 0.75 V vs. a Ag/AgCl pseudo
reference electrode in 1 M HClO4 electrolyte (60% HClO4, ACS grade, Merck, Darmstadt, Germany)
at room temperature. A coiled Ag wire (99.9985%, Alfa Aesar, Kandel, Germany) was used as
the counter electrode. Afterwards, the as-dealloyed samples were electrochemically reduced by
cyclic voltammetry cycles (15 cycles within a potential range of −0.5 V...1.0 V vs. the Ag/AgCl
pseudo in 1 M HClO4 prepared from Suprapur grade HClO4, Merck), rinsed with ultrapure water,
and dried in air. PPy was deposited into bulk NPG specimens by the electropolymerization of
pyrrole monomer (pyrrole, 99%, extra pure, ACROS Organics) in a lithium perchlorate acetonitrile
solution solution (LiClO4, 99.99%, Sigma-Aldrich, Darmstadt, Germany, acetonitrile, LiChrosolv,
Merck), following a synthesis protocol described in [14]. The resulting PPy was thus doped with
ClO –

4 . Before the electropolymerization, NPG was annealed in air (500 ◦C for 30 min) to coarsen
the pores. This was necessary to facilitate diffusion of pyrrole monomers in the porous network in
order to achieve a uniform PPy coating throughout the bulk NPG samples. To obtain a PPy layer
with a predefined thickness and to keep the nanoporosity, the total electrodeposition time (800 s)
was optimized accordingly. All electrochemical measurements were performed using a potentiostat
PGSTAT 302N (Metrohm). Finally, the NPG-PPy composites were cleaned with ultrapure water
and dried at ambient conditions. Figure 1 shows a typical microstructure of the resulting NPG-PPy
composites after the electropolymerization (characterized by a high resolution scanning electron
microscope Zeiss Supra 55VP FEG SEM, Jena, Germany). Investigation of the fracture surfaces of
the PPy-coated NPG (obtained through cleavage with a scalpel) revealed an average ligament size
of ≈220± 30 nm and ≈50± 8 nm PPy layer. ImageJ (version 1.49v, National Institutes of Health,
Bethesda, MD, USA) was used to analyze the sizes of gold ligaments and PPy coatings in SEM images
by averaging 20 measurements.

Figure 1. Scanning electron microscope micrograph of nanoporous gold (NPG) with ligament diameter
about 220 nm coated by a polypyrrole (PPy) layer of 50 nm. Note that the nanoporosity is preserved
after the electrodeposition of the PPy coating on the gold ligaments.
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2.2. Compression Tests

Before uniaxial compression with several unloading-reloading sequences were undertaken, the
NPG and PPy-coated NPG bulk specimens were cleaned and dried. Afterwards, they were subjected
to a similar testing protocol as employed in [15]. Linear segments of the first unload–reload cycles
were used to compute the effective Young’s moduli. The mechanical experiments were carried out on
a calibrated universal testing machine Zwick Z010 TN, (Ulm, Germany) at a constant engineering strain
rate of 10−4s−1 and ambient conditions. A sample displacement tracking in a longitudinal direction
during compression was achieved by a laser extensometer (Zwick laserXtens). The displacement data
served to determine the true strains. We presented the experimental stress–strain diagrams in true
stress-true strain coordinates. Because of the insignificant cross-section area variation of NPG upon
compressive loading [32,33], engineering and true stresses practically coincide.

3. Modeling and Simulation of Nanoporous Gold Based on the Finite Cell Method

This section is intended to give a short introduction into the FCM which was applied for the
simulation of NPG. A subsection is related to the window method that describes the approach to find
homogenized elastic properties for the NPG samples.

The finite cell method [34,35] relies on the fictitious domain approach in combination with the
high-order finite element method. The well known weak form of the equilibrium conditions in the
current configuration reads:

g(ϕ, η) =
∫
Ω

σ · grad η dv−
∫
Ω

ρb · η dv−
∫

ΓN

t · η da = 0, (1)

where ϕ describes the mapping between the reference and the current configuration, σ is the Cauchy
stress tensor, b denotes the volumetric loads and t the prescribed traction acting on the Neumann
boundary ΓN of the body Ω. The current density is denoted by ρ and η are the test functions or virtual
displacements.

After introducing the indicator function α and reformulating Equation (1) for an extended domain
Ωe, we obtain the following form which is the basis for the FCM:

g(ϕ, η) =
∫

Ωe

α σ · grad η dv−
∫

Ωe

α ρb · η dv−
∫

ΓN

t · η da = 0. (2)

The modified weak form allows to extend any arbitrarily complex shaped geometry by a fictitious
domain Ω f (Ωe −Ω) such that it obtains a simple shape. In general, this is just the bounding box of
the underlying geometry. Now, a simple discretization of the extended domain Ωe can be derived by a
Cartesian grid that does not conform with the boundary of the original problem—see Figure 2.

Ω

ΓN

ΓD

X

Y

Ωe − Ω Ωe

α=0

α=0

α=0

α = 1

Figure 2. The concept of the Finite Cell Method is to embed the physical domain Ω into a bigger
domain that can be easily meshed.
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The equivalence with the original problem is enforced by the discontinuous indicator function:

α(X) =

{
1, ∀X ∈ Ω,
α0 = 10−q, ∀X ∈ Ωe −Ω

(3)

that penalizes the fictitious domain. Both formulations are equivalent for q = ∞ but in fact we choose
q ∈ [5, .., 12] to avoid ill-conditioning of the problem. By this little modification, the effort of mesh
generation is considerably reduced due to the rectangular shape of the extended domain and shifted
towards the integration of the weak form that involves a discontinuity caused by the indicator function.
The quadrature of the weak form can be carried out by an adaptive Gaussian quadrature scheme in a
straightforward and efficient way that only involves point-membership-tests based on the underlying
geometric models. To this end, every integration point has to be tested whether it lies in the physical
domain. This feature makes the FCM flexible so that it can directly operate on implicitly defined
geometries, i.e., voxel-based data generated by computer tomography or B-rep models [36].

3.1. Adaptive Gaussian Quadrature

The discretization of the weak form in Equation (2) leads to a set of finite cells that can be classified
into three groups. Cells that are completely placed within the fictitious domain do not contribute to
the weak form (α = 0) and can be disregarded. For cells fully lying in the physical part of the domain
(full cells) α = 1 holds, so they are equivalent to standard finite elements and can be integrated in
the standard fashion. Special care has to be taken for cells placed over the boundary of the original
domain (cut cells) that exhibit a discontinuous integrand due to the indicator function α. The adaptive
Gaussian quadrature scheme subdivides the integration domain Ω� of these cells recursively along
the discontinuity into smaller sub-cells Ωsc (Figure 3) until a predefined refinement level is reached.
The integrand can then be computed as a composed Gaussian quadrature on the level of the sub-cells:

∫
Ω�

( · ) α (X(ξ))det J(ξ)dΩ� =
nc

∑
sc=1

nG

∑
i=1

( · ) α (X(ξ (ri)))det J (ξ (ri))det Jsc(ri) ωri , (4)

where ri are the well-known Gauss–Legendre points and ωi the corresponding weights.

Reference configuration

ΓD

ΓN
t

Ω
Ω f

α = 1

α = 0

X

Y
X, J

Standard cell

ξ

ηΩ�

r
s

Figure 3. Adaptive Gaussian integration and quadtree refinement scheme.

To organize the refinement process space trees are used, e.g., quadtrees in 2D (Figure 3) and octrees
in 3D problems. Since α (X(ξ (ri)))det Jsc(ri) ωri and ξ (ri) are constant during the computation, they
can be stored as the resulting weights and coordinates of the integration points belonging to the
adaptive integration scheme. When considering nonlinear problems, the solution of the nonlinear
set of algebraic equations by means of the Newton–Raphson method requires the linearization with
respect to the unknown displacements ∆u—see, for example, [37]. To simplify the notation, we do not
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take follower loads and volume loads into account. The resulting linear equation system that is solved
within each iteration k for every loadstep i reads :

Kk−1∆uk
i = fk−1

int

(
uk−1

i

)
− λifext, (5)

where Kk−1 is the global tangent stiffness matrix that stems from the discretization of the linearization
of the weak form and λi is the accumulated load factor which serves to apply the load increment-wise.
The global matrices are computed by assembling the tangent stiffness matrix and the load vector of
every cell c:

K =
nc

A
c=1

Kc fint =
nc

A
c=1

fint,c fext =
nc

A
c=1

fext,c , (6)

where the tangent stiffness matrix, the internal and the external force vector of cell c read:

Kc =
∫

Ω�

BTαCB det J dΩ� fint,c =
∫

Ω�

BTασ det J dΩ� fext,c =
∫

ΓN,c

NTt
∥∥∥q,α × q,β

∥∥∥ dαdβ . (7)

Here, B presents the strain–displacement matrix containing the derivatives of the high-order shape
functions, and C is the spatial elasto-plastic tangent modulus that is consistent with the radial return
mapping scheme applied to integrate the elastoplastic material model. The computation of the external
load vector fext,c requires integrating the product of the shape functions and the traction vector over
the surface of the corresponding cell. In Equation (7), q,α and q,β denote the tangent vectors of the
surface of the cell in question, where α and β are two of the three local coordinates of the related cell.

3.2. Von Mises Plasticity

The mathematical formulation of plasticity [38] in the small strain case relies on an additive split
of the small strain tensor ε into an elastic εe and a plastic contribution εp:

ε = εe + εp. (8)

The constitutive relation for the stress is given by the derivative of the strain energy function ψ with
respect to the elastic strains εe :

σ = ρ
∂ψ

∂εe = λtr (εe)1 + 2µεe , (9)

where λ, µ are the Lamé constants and 1 is the second order identity tensor. In order to define the onset
of yielding, we use the von Mises yield function:

Φ =
√

3J2(s)− σy(ε
p) ≤ 0 , (10)

where s is the deviatoric part of the stress tensor and J2 denotes its second invariant. The evolution of
the plastic strains is described by the equation:

ε̇p = γ̇
∂Φ
∂σ

, (11)

where γ̇ is the incremental plastic multiplier. The hardening variable εp is related to the incremental
plastic strain by

εp =

t∫
0

√
2
3
‖ε̇p‖ dt . (12)
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3.3. The Window Method

The computation of the effective material properties for heterogeneous materials calls for a high
computational effort due to the requirement of large representative volume elements (RVE). Therefore,
the analysis of such structures is only possible for smaller testing volume elements (TVE) and thus the
influence of boundary conditions on the results is large. The window method [39] lowers this influence by
embedding the TVE into a domain (window) with homogeneous material and applying displacement
boundary conditions to the surface of the window as depicted in Figure 4.

X

Y

Microstructure

Window

∆X

Averaging the field quantities Γm

Linear displacement boundary condition Γw

Figure 4. The window with embedded microstructure.

This approach is known from analytical homogenization schemes and called the self-consistency
method—see [40]. The window models the surrounding material that a real RVE would be embedded
in and reduces the influence of the boundary conditions on the results such that tighter bounds for the
effective properties are obtained—see [41].

In order to achieve self-consistency, the window material has to have the same effective material
properties as the embedded microstructure. It is unknown at the beginning of the computations and
therefore an iterative procedure is required to determine the effective material properties and adjust
the material of the window in every step.

In the following, we assume that the material behavior is linear elastic and inclusions or coatings
are perfectly bonded to the surrounding material. An anisotropic material requires solving six linear
independent loadcases j = 1, . . . , 6 where every loadcase determines one column of the elasticity
matrix. To this end, we define the macroscopic small strain projection tensor εP and disturb a single
component of it in each loadcase by a small increment. The projection rule:

∆ūj = εP ∆X (13)

imposes the related displacements ∆ū on the surface of the window Γw. Here, ∆X is the branch vector
that points from the center of the TVE to the location of the applied displacements. After solving the
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mechanical problem, the averaged stresses 〈σ〉m and strains 〈ε〉m are computed in a post-processing
step. The discrete form of the averaged stress reads:

〈σ〉m =
1

Vm

nnodes

∑
i=1

r(i)m ⊗ ∆X(i), (14)

where ⊗ is the dyadic product and r(i)m are the nodal forces related to the nodes nnodes on the surface Γm

of the spatial discretization of the microstructure. The computation of the average stress in Equation (14)
might yield an unsymmetric stress tensor which is therefore symmetrized in a subsequent step. The
computation of the averaged strains in its discrete form reads:

〈ε〉m =
1

2 Vm

nnodes

∑
i=1

(
u(i)

m ⊗ n(i)
m + n(i)

m ⊗ u(i)
m

)
A(i)

m , (15)

where u(i)
m are the nodal displacements and n(i)

m the surface normal vector. In Equations (14) and (15),
Vm represents the volume of the microstructure and Am is the inner surface area of the window.
After solving a loadcase one column of the effective elasticity matrix, Ceff is obtained by numerical
differentiation of the averaged stress quantities with respect to the related applied macroscopic strains.
Applying the Voigt notation for the strains and stresses, the effective elasticity matrix reads:

C eff
ij =



〈σ i
1〉 − 〈σ i

j+1〉∥∥〈ε1〉 − 〈εj+1〉
∥∥

L2

if j ≤ 3,

〈σ i
1〉 − 〈σ i

j+1〉
2
∥∥〈ε1〉 − 〈εj+1〉

∥∥
L2

if j > 3,

(16)

where i corresponds to the stress component and j = 1, . . . , 6 denotes the corresponding load case. The
basic load case is denoted by index 1 and can be related to a case with no loads.
In order to obtain a symmetric elasticity matrix, we again symmetrize Ceff. To adjust the window
material in a self-consistent way, the elasticity matrix of the window Cw is updated for the next
iteration by the actual computed effective properties [42]—see Figure 5. The iterative procedure can
be accelerated by the Aitken’s ∆2-method [43] and is considered to be converged when the difference
between the effective properties of two consecutive steps falls below a prescribed tolerance eC,Frob ≤
TOL in terms of the Frobenius norm,

eC,Frob =

∥∥∥Ceff
n − Ceff

n−1

∥∥∥
Frob∥∥∥Ceff

n

∥∥∥
Frob

. (17)
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Compute initial material properties:

Apply analytical rule of mixture

Pre-processing:

Set boundary conditions

u1, ..., u6

Set window material properties

Cw
i

Solve Problem by FCM:

Solve six loadcases j = 1, .., 6
uj = K−1fj,ext

Average strain and stress field:

Do post-processing for six loadcases j = 1, .., 6

〈σ j〉m =
1

Vm

n

∑
i=1

r(i)m ⊗ ∆X(i)

〈εj〉m =
1

2 Vm

n

∑
i=1

(
u(i)

m ⊗ n(i)
m + n(i)

m ⊗ u(i)
m

)
A(i)

m

Compute effective properties by numerical
differentiation:

C eff
ij =



〈σ i
1〉 − 〈σ i

j+1〉∥∥〈ε1〉 − 〈εj+1〉
∥∥

L2

if j ≤ 3

〈σ i
1〉 − 〈σ i

j+1〉
2
∥∥〈ε1〉 − 〈εj+1〉

∥∥
L2

if j > 3

Check convergence criteria:

eC,Frob =

∥∥∥Ceff
n − Ceff

n−1

∥∥∥
Frob∥∥∥Ceff

n

∥∥∥
Frob

≤ TOL?

Apply Aitken’s ∆2-method:

xi+1 = xi + ωi∆xi

STOP

FALSE

TRUE

Figure 5. The homogenization procedure.

4. Numerical and Experimental Investigation of the Influence of Coating on Nanoporous Gold

This section is separated into two parts. In the first part of this section, we investigate the
geometrical stiffening effect caused by a polymeric coating. To this end, we consider macroscopic
samples of nanoporous gold with and without a coating and analyze it under the assumption that
we can apply bulk material values for the gold ligaments and the polymer coating. To find out the
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orthotropic material parameters of such samples and to quantify the stiffening effect caused by the
coating, we perform a homogenization by means of the window method.

The second part of this section is related to the comparison of numerical computations on
NPG-PPy-composites with a ligament diameter of dlig = 421 nm and a coating thickness of tc =

107.16 nm− 138 nm to experimental investigations on NPG-PPy samples with a ligament diameter of
dlig = 220 nm and a PPy coating thickness of tc = 50 nm. Under the assumption of self-similarity of
these structures, which was shown in [28,44], we aim to solve the inverse problem, meaning to find
the material parameters of the polymer coating such that numerically and experimentally obtained
stress–strain curves coincide. The self-similarity properties of NPG were also studied in [45].

4.1. Linear Elastic Properties

The starting point for our investigation of the elastic properties of nanoporous gold with a mean
ligament diameter of dlig = 421 nm is a voxel model of a representative sample—see Figure 6a. The
data was obtained by 3D focused ion beam-scanning electron microscope (FIB-SEM) tomography
undertaken by [28,46]. The solid fraction of the sample is 32%. For details on the tomography and
data analysis in terms of structural and mechanical properties, see [28,29,44]. The model preparation
requires only little pre-processing effort. Disconnected regions—made visible by gray color—bear no
loads and are removed from the model. In order to detect these isolated regions, we make use of a
seed-fill algorithm [47]. In a second step, we extracted a sub-sample from the full model that is small
enough to be analyzed on a computer in a reasonable time and large enough to carry all characteristic
information of the microstructure (see Figure 6b).

1 2
3

(a)

12
3

(b)

Figure 6. (a) Representative Volume Element (RVE) of nanoporous gold dlig = 421 nm of size 5.98 µm×
5.98 µm× 5.98 µm with 335× 335× 260 voxels recorded with a resolution of 17.86 nm× 17.86 nm×
23 nm and (b) a sub-sample with a size of 3.57 µm× 3.57 µm× 4.6 µm with 200× 200× 200 voxels
extracted from the full model.

We discretize the sub-sample by finite cells where each cell contains four voxels per direction—see
Figure 7a. The refinement of the spatial discretization is carried out by increasing the polynomial
degree of the shape functions (p-refinement) and not by reducing the element size (h-refinement). The
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application of the window method requires to embed the sample of nanoporous gold into a so-called
window as depicted in Figure 7b. Determining all elastic properties of the microstructure requires
solving different load-cases. The window serves to apply the corresponding displacement boundary
conditions not directly to the microstructure but to the window and by this lowers the influence
of the boundary conditions. The window layer itself is composed of one layer of finite cells and is
adjustable in thickness to model different types of boundary conditions. For a large window thickness,
the boundary conditions resemble a Neumann boundary, while, for a small window thickness, they
correspond to Dirichlet boundary conditions.

12
3

(a)

12
3

(b)

Figure 7. (a) shows the discretization (grey) with 72,465 finite cells and the microstructure (orange) of
the sample and (b) the sample embedded in the window.

By changing the window thickness (tw ∈ {0.357 µm, 0.714 µm, 1.072 µm, 1.423 µm}) and its
material properties, the surroundings of the sub-sample are modeled in a self consistent way and
different results are obtained for different sizes of the window. The procedure regarding how to adjust
the material properties is explained in more detail in Section 3.3. The material properties of the bulk
gold material applied in the simulations chosen according to [15] are given in Table 1.

Table 1. Material properties of gold applied for the homogenization.

Parameter Value Unit

Young’s modulus E 81 GPa
Poisson’s ratio: ν 0.42

The window method allows for finding the full anisotropic material properties of the sample as
explained in Section 3.3. Assuming an orthotropic material behavior, the directional Young’s moduli,
E1, E2, E3, the shear moduli, G12, G23, G13, and the Poisson ratios ν12, ν23, ν31, can be determined from
a least squares fit of the obtained elasticity matrix. The results of a first investigation of the elastic
properties are given in Figures 8–10, where the convergence of the elastic parameters against the
degrees of freedom for a uniform increase of the polynomial degree of the shape functions of all cells
is plotted. The error-bars include the results obtained for different sizes of the window. With an
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increasing spatial resolution, the differences in the results obtained for different window sizes are more
or less reduced and will be neglected in the further considerations. In summary, the obtained results
are in the same range of the data already presented in [46] for a sample of the same size.
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p [−]
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Figure 8. The spatial resolution of the discretization is improved by increasing the polynomial
degree p = 1, . . . , 4 of the shape functions of the cells. The error bars show the influence of the
window thickness.
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Figure 9. The spatial resolution of the discretization is improved by increasing the polynomial
degree p = 1, . . . , 4 of the shape functions of the cells. The error bars show the influence of the
window thickness.
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Figure 10. The spatial resolution of the discretization is improved by increasing the polynomial
degree p = 1, . . . , 4 of the shape functions of the cells. The error bars show the influence of the
window thickness.

For our second investigation, we apply a homogeneous polymer coating of tc = 4 [voxel]
(Figure 11b), resp. tc = 6 [voxel] (Figure 11c) to the voxel model depicted in Figure 11a. The voxel
spacing is not equal in each direction, so the coating thickness varies from tc = 71.44 nm to 92 nm,
resp. from tc = 107.16 nm to 138 nm. A Cartesian mesh with 85,388, respectively 117,683 cells, is
generated for the composites in the same fashion as for the nanoporous gold microstructure. The
interface between the different materials is not resolved by cell interfaces, but considered during
the integration of the stiffness matrix. To this end, we apply the adaptive Gaussian quadrature as
explained in Section 3.1 to capture the material interface by means of an octree refinement.

12
3

(a)

12
3

(b)

12
3

(c)

Figure 11. (a) sub-sample of a size of 3.57 µm× 3.57 µm× 4.6 µm; (b,c) depict the sub-sample after
applying a coating of tc = 4 [voxel], resp. tc = 6 [voxel] to the voxel model which corresponds
due to the not equal voxel spacing to a coating thickness between tc = 71.44 nm − 92 nm, resp.
tc = 107.16 nm− 138 nm.
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For this study, we assume the properties of epoxy, which will also serve as starting values for the
calibration of the polymer properties of PPy in Section 4.2. The material properties for the polymer
used in the second investigation are taken from [46] and listed in Table 2.

Table 2. Elastic material properties of polymer coating applied for the homogenization.

Parameter Value Unit

Young’s modulus E 4.7 GPa
Poisson’s ratio ν 0.3

Figure 12a,b show the convergence of the macroscopic elastic properties of the composite obtained
from homogenization for a p-refinement, where p = 2, 3, 4.
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Figure 12. Different Young’s moduli of the gold–polymer composite with (a) tc = 71.44 nm− 92 nm
and (b) tc = 107.16 nm− 138 nm. The error-bars indicate the range of the results obtained for different
sizes of the window.

By comparing the Young’s modulus for the finest discretization (p = 4) in Figure 13, it is observed
that the application of a polymer layer significantly increases the stiffness of the composite by up to
a factor of 10, although the thickness of the polymer coating is below the ligament diameter and the
Young’s modulus is only 6% of gold.

If the coating was not a polymer but had the bulk properties of gold, one could simply estimate
that, under bending dominated deformation of cylindrical ligaments [15], the geometrical increase in

stiffness would scale with the area moment of inertia by a factor of (r+tc)4

r4 ≈ 6.71. In tensile loading

conditions, the increase in geometrical stiffness would scale by the area of the ligament (r+tc)2

r2 ≈ 2.59.
When considering that the real coating is a polymer which is more compliant than gold, the real
stiffening effect would be even less than given by these two estimates. However, both scaling relations
still underestimate the real increase in stiffness. This indicates that the dominant stiffening effect
of the additional coating has other origins among which the forming of new connections between
neighboring ligaments is one mechanism—see Figure 14.
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Figure 13. Comparison of the effect of the coating thickness on the Young’s moduli in the
1, 2, 3-direction.

12
3

Figure 14. New connections formed by the coating layer.

4.2. Investigation of Elastoplastic Properties

In a next step, we extend our investigations to the nonlinear regime by also considering the
plastic behavior of the NPG-PPy nanocomposite. In order to relate the computations to experiments,
we consider experimentally obtained true stress–strain curves on nanoporous gold samples with a
ligament diameter of dlig = 220 nm and NPG samples coated by a PPy layer with a thickness of
tc = 50 nm—see Figure 15. An important assumption that allows us to apply the tomography data
of a NPG sample with dlig = 421 nm to a smaller ligament diameter is the self-similarity of the NPG
which holds for structures with a ligament diameter dlig ≥ 100 nm. The self-similarity of NPG has
been intensively investigated for a large range of ligament sizes in [28,44].
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Figure 15. Experimentally obtained true stress–strain curves of non-coated nanoporous gold tc = 0 nm
and NPG-PPy nanocomposite (PPy coating thickness of tc = 50 nm). The ligament diameter for both
samples is dlig = 220 nm.

The deformation behavior of the non-coated NPG under compression is comparable to previous
studies of NPG specimens with similar ligament size [8,9,33]. Here, we also find an absence of the
initial elastic regime and an early yielding along with weak work hardening at higher strains. In
contrast, an NPG-PPy nanocomposite exhibits the enhanced flow stress and work hardening, although
the elastic-plastic transition is still ill defined. The effective elastic moduli as inferred from the first
unloading cycles for both samples differ by less than 100 MPa—see Table 3. The presence of the
tc = 50 nm thick PPy layer marginally stiffens NPG, by about 20%. The influence of the polymer
coating on the plastic flow, however, is more significant. For instance, at 0.15 strain, there is a nearly
4-fold increase in the flow stress of the nanocomposite.

In order to fit the numerical stress–strain curve to the one of the NPG-composite, we follow a
two-step approach. In a first step, we adjust the properties of the nanoporous gold such that we meet
the experimental curve of nanoporous gold. In a second step, we take the fitted properties of the
nanoporous gold and apply bulk polymer material properties of epoxy as starting values and adjust
the polymer parameters until we meet the experimental NPG-composite stress–strain curve.

The values for the macroscopic yield stress as well as the macroscopic elastic modulus determined
from the first unloading are given in Table 3. To have a unique definition for the yield stress, we took
the offset yield point where 0.2% plastic deformation occurs.

Table 3. Parameter of the macroscopic stress–strain curve for experiments on pure and coated
nanoporous gold showing a stiffening effect of the polymer by a factor of 1.19.

Rp0,2 E

Nanoporous gold (NPG) 1.51 MPa 395.95 MPa
Composite 2.66 MPa 473.12 MPa

In order to simulate the coating, we added a homogeneous layer of polymer with tc = 107.16 nm−
138 nm—see Figure 11c. These values correspond to the same ratio tc vs. dlig as for the experimentally
tested samples. As a starting point, we take bulk values for the material properties from [46] which are
listed in Table 4 and apply them to the sample of nanoporous gold that is shown in Figure 11a.
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Table 4. Bulk material properties of gold.

Parameter Bulk Value Unit

Gold
Young’s modulus E 81 GPa

Poisson’s ratio ν 0.42
Initial yield stress σ0 700 MPa

Hardening modulus h 1000 MPa

In order to analyze the anisotropic behavior of the nanoporous gold, we apply three different
compressive loadings in 1-, 2- and 3-direction by clamping the lower side of the sample and prescribing
a displacement on the upper side. The discretization consists of nc = 130,114 cells with a size of
71.44 nm× 71.44 nm× 92 nm.

Figure 16 shows the comparison of the numerical results of this first investigation to the
experimental results.

0 1 2 3 4 5 6

· 10−2

0

5

10

15

ε

σ
[

M
Pa

]

loading in 1-direction
E1 = 533.63

loading in 2-direction
E2 = 930.07

loading in 3-direction
E3 = 287.49

Exp. tc = 0

Figure 16. Comparison of the numerically obtained stress–strain curve with experiments using bulk
material parameters.

Since the slopes of the elastic unloading fit best for the 1-direction and also fit to the results for the
homogenization, we consider this loading direction for our further investigations.

In a next step, we change the initial yield stress σ0 and the hardening modulus of the gold, such
that the numerical stress–strain curve fits the experimental one. Figure 17 shows the stress–strain curve
after fitting the material parameters of the gold. The Young’s modulus of the sample is E = 451.56 MPa
and the initial yield stress σ0 = 1.48 MPa, yielding a sufficiently close fit to the experimental values
listed in Table 3.

The fitted material parameters for gold are given in Table 5. The initial yield stress compares
very well with the values determined by [10] for ligaments of 200 nm which ranged from 60 MPa to
100 MPa, but the hardening modulus is much higher by about an order of magnitude compared to the
values found by [15,28] who used a work hardening rate of 1000 MPa.
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Figure 17. Comparison of experimental and numerical stress–strain curve after fitting the
material parameters.

Table 5. Fitted material properties of gold.

Parameter Fitted Value Bulk Value

Gold
Young’s modulus E 81 GPa 81 GPa

Poisson’s ratio ν 0.42 0.42
Initial yield stress σ0 90 MPa 700 MPa

Hardening modulus h 11, 000 MPa 1000 MPa

In a next step, we analyze a coated sample using the material parameters of the nanoporous gold
obtained from the fit together with material parameters for the polymer for which we use properties of
epoxy as starting values—see Table 6.

Table 6. Bulk material properties of the polymer coating.

Parameter Bulk Value

Polymer
Young’s modulus E 4.7 GPa

Poisson’s ratio ν 0.3
Initial yield stress σ0 80 MPa

Hardening modulus h 10 MPa

Applying these material parameters, the polymer has a much more pronounced stiffening effect
on the stress–strain curve than determined from the experiments—see Figure 18a.

Therefore, in a next step, we also adjust the material parameters of the polymer in our numerical
computations, such that the stress–strain curve fits to the experiments—see Figure 18b. For the fitted
material parameters, which are given in Table 7, the computed Young’s modulus of the macroscopic
sample is E = 1307.71 MPa and the initial yield stress is Rp0,2 = 3.06 MPa. Both are still slightly
higher than the values measured from the experimental stress–strain curve. In order to fully align
the numerical computations with the experiments, a further reduction of the Young’s modulus and
the initial yield stress of the polymer coating is required. However, the further reduction of these
material parameters yields to a very poor conditioning of the resulting stiffness matrix which causes
convergence problems of the Newton–Raphson method.
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Figure 18. (a) Comparison of the experimentally obtained stress–strain curve with the numerical
stress strain curve using the adjusted material parameter of gold and epoxy material properties for
the polymer coating as starting values for fitting procedure and (b) numerical and experimental
stress–strain curve after adjusting the material parameters of the polymer.

Table 7. Fitted material properties of gold and polymer coating and their starting values.

Parameter Starting Value Fitted Value

Gold
Young’s modulus E 81 GPa 81 GPa

Poisson’s ratio ν 0.42 0.42
Initial yield stress σ0 700 MPa 90 MPa

Hardening modulus h 1000 MPa 11, 000 MPa

Polymer
Young’s modulus E 4.7 GPa 200 MPa

Poisson’s ratio: ν 0.3 0.3
Initial yield stress σ0 80 MPa 2 MPa

Hardening modulus h 10 MPa 10 MPa

Our numerical investigations of nanoporous gold samples with a ligament diameter of dlig =

421 nm and a polymer coating of tc = 107.16 nm− 138 nm indicate an enormous increase of the
macroscopic stiffness by a factor of ten if a polymer coating such as epoxy resin with bulk material
values could be applied—see Figure 13. In line with our expectations from the experimental results,
the increase in stiffness entailed by coating the gold ligaments with the softer polymer such as PPy is
ten times smaller. Our numerical computations capture the stress–strain behavior of the NPG-PPy
nanocomposite and predict the mechanical properties of PPy. The Young’s modulus and yield stress
of PPy which need to be applied in the numerical computations in order to match the stress–strain
curve of the experiments have been found to be 200 MPa and 2 MPa, respectively. The values match
well to the experimental data available in the literature, where the elastic moduli have been reported
in the range of 100–4300 MPa [48–54] and the yield strength between 2.4–5.3 MPa [49]. Significant
variations in the mechanical parameters of the bulk PPy in the literature have been attributed to the
sensitivity of the PPy morphology and structure to synthesis conditions [55]. Among other factors,
a type of the dopant counterions used for electropolymerization can strongly affect PPy mechanical
characteristics. For the perchlorate anion employed as a dopant during synthesis of PPy in our work,
the reported values of elastic modulus are in the range 100–300 MPa [48], and agree well with the
predictions from our simulations. The good agreement underlines the high sensitivity of the approach
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for calibration of the material parameters for PPy using the numerical model. Starting the calibration
with much larger values taken from bulk epoxy, the solution rapidly converged to the much lower and
much more realistic values of PPy within a few iterations. In this way, there is now a set of material
parameters for PPy available that includes the yield stress and hardening rate for the given synthesis
conditions on NPG.

5. Conclusions

In this paper, we investigated the potential stiffening effect of an infiltrated epoxy resin and an
electrolytic applied polypyrrole polymer on the elastic and elastoplastic properties of NPG-composites.
For the infiltrated epoxy resin, we could determine the anisotropic elasticity matrix by employing the
window method and computing a full set of transversal isotropic material properties by a least-square
fit. By this procedure, we could show that the Young’s moduli increase significantly due to new
connections formed between the ligaments when a coating is applied. The obtained results are in
good agreement with already existing data. In a second investigation, we analyzed the influence of
an electrolytic applied polypyrrole coating by direct comparisons with experiments on NPG with
a ligament size of dlig = 200 nm. Due to the self similarity of these structures, we could reuse our
geometric model with a ligament diameter of dlig = 421 nm. After fitting the material properties of a
pure NPG sample to meet the experimentally obtained stress–strain curve, we created a numerical
NPG-composite by manipulating the voxel model. After applying a coating with the same tc vs. dlig
ratio as was used for the experiments, we could analyze the properties of an electrolytic applied PPy
coating. Due to the sensitivity of PPy with respect to its synthesis condition, the focus was on inverse
computations that served to determine the elastoplastic properties of PPy. The final numerically
determined parameters for PPy are in good agreement with already existing data of PPy obtained
under similar synthesis conditions. With this, it is demonstrated that the Finite Cell Method is an
efficient alternative to common Finite Element approaches to predict the elastic-plastic deformation
behavior of NPG and polymer coated NPG. This approach has the big advantage that the model can be
set-up in a straightforward way based on tomography data without the usual challenge to discretize
the complex structure of NPG by a surface conforming mesh.
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