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Abstract: In this paper, a new prospect using lead-free piezoelectric ceramics is presented in order to
determine their behavior in piezoelectric-based road traffic energy harvesting applications. This paper
will describe the low-cost and fully programmable novel test bench developed. The test bench
includes a traffic simulator and acquires the electrical signals of the piezoelectric materials and the
energy harvested when stress is produced by analogous mechanical stimuli to road traffic effects.
This new computer-controlled laboratory instrument is able to obtain the active electrical model
of the piezoelectric materials and the generalized linear equivalent electrical model of the energy
storage and harvesting circuits in an accurate and automatized empirical process. The models are
originals and predict the extracted maximum power. The methodology presented allows the use of
only two load resistor values to empirically verify the value of the output impedance of the harvester
previously determined by simulations. This parameter is unknown a priori and is very relevant for
optimizing the energy harvesting process based on maximum power point algorithms. The relative
error achieved between the theoretical analysis by applying the models and the practical tests with
real harvesting systems is under 3%. The environmental concerns are explored, highlighting the
main differences between lead-containing (lead zirconate titanate, PZT) and lead-free commercial
piezoelectric ceramics in road traffic energy harvesting applications.

Keywords: piezoelectric ceramics; lead-free piezoceramics; energy harvesting; virtual instrument

1. Introduction

Nowadays, climate change is one of the most extended concerned topics worldwide. Classical
electrical energy generation models have opened toward clean energies, reducing their carbon footprint
by gradually increasing the power produced in hydroelectric, wind, and solar power plants. However,
this trend is still far from achieving that as most of the electrical production comes from energy with low
CO2 emission to the atmosphere. For context, the 2018 annual report [1] about the Spanish electrical
system shows that 19.8% was wind production, 13.8% was hydraulic, and 4.8% was solar (thermal,
1.8%, and photovoltaic, 3%).

Other subjects related to the environmental concerns are the reduction of harmful chemical
waste, i.e., electrochemical accumulators or other electronic components that use lead (Pb) in their
composition [2].
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New techniques have been developed in micro-renewable energy generation, namely energy
harvesting applications. Energy harvesting can be defined as electrical energy generation from
natural and clean primary energy sources or from human activity to power electronic devices of low
consumption. Some examples are wearable electronics, IoT (Internet of Things) devices, or wireless
sensor networks. The source energies [3] are the well-known wind, solar, and mechanical energy from
vibration, stress, or impacts generated from ambient or in residential or industrial human activities.
Other primary energy sources are thermal energy and the RF (radio frequency) spectrum produced by
human broadcast and telecommunication networks.

Applications in piezoelectric energy harvesting have been published since the beginning of the
21st century. The mechanical source is vibrational and the prevalent shape of the electromechanical
transducer is the cantilever. Several enhancements were built-in such as magnetic elements, springs,
L-shapes, and connections between them [4] to broaden the frequencies where maximum power
generation is achieved.

The framework of the applied research presented in this article is electrical energy generation
using ceramic piezoelectric transducers that optimizing the energy conversion from mechanical road
traffic stimuli. A comparison is done between the behavior of lead-containing lead zirconate titanate
(PZT) and lead-free commercial piezoelectric ceramics.

Table 1 shows a review of road traffic piezoelectric energy harvesting publications from 2010.

Table 1. Summary of road traffic energy harvesting publications. Review from 2010.

Published
[Reference] Contribution

2010 [5] Finite elements theoretical and simulation study of the application of cymbal-type housing for
piezoelectric materials. 1.2 mW generated at 20 Hz

2012 [6] Several piezoelectric packages are studied using the finite elements technique for asphalt inlay
highlighting cymbal and bridge for its efficiency in energy conversion

2015 [7]
Three encapsulation options for bridge-type housing are studied to minimize the fracture of the
piezoelectric material by fatigue. It is concluded that the arch bridge is optimal for burying on asphalt.
An applied pressure of 0.7 MPa generated 286 V

2016 [8]
A prototype consisting of 4, 8, or 16 piezoelectric disks sandwiched between two copper plates was
assembled in-between asphalt mixtures. A uniaxial compression test was performed to measure the
output power directly on a resistor

2016 [9]
Based on the Ph. D. thesis of the first author, piezoelectric degradation measurements in an USA real
road installation are presented. Over 14% of the asphalt stress produced by the vehicles is transmitted to
the road-embedded prototypes producing 3.106 mW of harvested power

2016 [10]
Two prototypes formed by stacked prismatic or cylindrical piezoelectric elements are tested in the
laboratory. Assuming daily moderately busy USA Interstate highway traffic of 30,000 vehicles/day,
the first prototype will produce 9.66 Wh per year and the second one 240.95 Wh

2016 [11] A cymbal structure is modified in seven piezoelectric parallelized sections. In a laboratory test over a
400 kΩ resistor, 2.1 mW of power is produced

2016 [12] An association of piezoelectric cantilevers produces 184 µW over an empirically optimized resistor of
70 kΩ. A Universal Test Machine (UTM) performs the laboratory tests

2016 [13]
Wheel tracking tests are performed assuming a continuous rate of traffic. Several recommendations are
obtained to adjust the geometry and composition of the piezoelectric material in order to maximize the
extracted power in response to variable speed and distance between vehicles

2017 [14] Up to 60 PVDF layers are associated in parallel to generate 200 mW of peak power. Viability of using
flexible material is shown

2017 [15] A new structure formed by a layer of piezoelectric material embedded between two layers of
conductive asphalt generates 1.2 mW in UTM tests

2018 [16] A stacked array type of piezoelectric energy harvester is field-tested, generating a voltage between 250
and 400 V when a test vehicle is passes. The obtained piezoelectric energy lights LED signs

2018 [17] A new prototype of 11 stacked piezoelectric elements is presented and compared to the prototype results
presented in [8]. The energy output estimated per prototypes I and II was 360 and 171 Wh annually
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The main things lacking that has been appreciated in the previous review are summarized in the
following. There is a reduced number of piezoelectric harvesters in roadway installations; instead,
laboratory tests mostly apply uniaxial stress by means of Universal Test Machine (UTM) equipment.
There is a low number of models of piezoelectric elements in road traffic environments. The influence
of the instruments in the experimental measurements is generally not considered. The scalability of
the power generated by harvesters is often not demonstrated.

The 2014 report [18] for the California Energy Commission estimated a high cost,
at $600,000–$1,000,000, of a demonstration project that included laboratory, acceleration, and field tests.

This paper will describe the low-cost original and fully programmable instrument developed
by some of the authors at the Universidad Politécnica de Madrid [19]. This test bench is able to
obtain accurate models of piezoelectric-based energy harvesters and carry out the accelerated tests in a
much more economically affordable way. The test bench includes a traffic simulator and acquires the
electrical signals of the piezoelectric materials and the energy harvested when the stress is produced
by mechanical stimuli, analogous to the road traffic effect.

The parameters of those models, as well as the harvested power, will be empirically verified by
performing a reduced set of practical tests.

Finally, the main differences in energy harvesting applications between PZT and lead-free
commercial piezoelectric ceramics will be highlighted.

2. The New Piezoelectric Characterization System

Figure 1 shows a block diagram of the complete harvesting and piezoelectric test system. The test
bench is made up of a Road Traffic Simulator driven by an AC geared motor. The angular speed
ω (expressed in rpm) of the upper rotating platform shaft is fully programmable. The mechanical
topology of this platform is built in an open way. Their wheels may be disposed in several locations
to configure the angle between the simulated axes of the vehicles β (◦). The static platform, below
the rotating upper platform, includes, in the track way, the piezoelectric devices under test (PDUTs).
Equation (1) calculates the simulated speed v (km/h) of the tests for each vehicle type. The data
acquisition card (DAQ) sends the control signals to the driver control electronic card, which commands
the AC motor driver.

v =
21.6·b·ω

β
. (1)

The simulated speed in the test bench for a sedan-style car, which has a wheelbase, b (m),
of 2.64 m, is between 14 km/h (8 mph) and 180 km/h (112 mph), as a maximum value for laboratory
test purposes only.Materials 2019, 12, x FOR PEER REVIEW 4 of 17 
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A picture of the system performing the laboratory test is shown in Figure 2.
The harvesting electronic hardware (HEH) in Figure 1 performs the automatized electrical

measurement. The relay-based switched circuit’s matrix (SCM) is electronically controlled by the DAQ.
The SCM can control up to six PDUTs. The first routing stage of this matrix connects the PDUTs to
a USB-controlled oscilloscope or to the selected diode rectifier topologies. The SCM second routing
stage selects the rectifier topology and the series or parallel associations between them. The last stage
connects the automatized load, selecting the cyclic or single test. Our developed control software is
programmed in the National Instruments LABVIEW™ graphical language. The software commands
the acquisition of the measured piezoelectric signal of the PDUT at the first routing stage to obtain
the active piezoelectric simulation model, according to the periodical operation of the test bench.
The software obtains the transient and the steady state of the energy harvesting measured voltage.
The power and load regulation graphs are obtained by applying different loads. The open load
voltage and the output equivalent impedance of the energy harvesting capacitor filtered rectifier circuit
are computed. An example of the acquisition of four electrical signals from a PZT PDUT using the
oscilloscope is presented in Figure 3a. In Figure 3b, our developed software user interface acquires
channel number 1 of the piezoelectric response shown in Figure 3a.
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This piezoelectric characterization system configures a new virtual instrument (VI). A virtual
instrument performs the functions of the traditional measurement instruments but engineers and
scientists can build automated measurement systems that suit their needs exactly instead of being
conditioned and limited by standard instruments.
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piezoelectric devices under test (PDUTs). (b) Software interface acquiring one channel of electrical
PDUT response to obtain the active electrical model.

The methodology to obtain and validate the models is presented in Figure 4. The steps that cover
the process are as follows:

(1) The PDUTs are electrically characterized. Their impedance is measured with an impedance meter.
The piezoelectric elements are placed in the test bench.
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(2) The test bench is set in action. The piezoelectric voltage is acquired and its active Fourier model
is calculated. The active Fourier model is obtained by calculating each Fourier component of
the inner piezoelectric generators, taking into account the input impedance of the measurement
equipment and the impedance of the PDUTs.

(3) The active Fourier model is sent to the LabVIEW® PSpice-based software module. An iterative
process is started. The harvesting circuit formed by a capacitor-filtered rectifier stage is simulated
for n different load resistance values. The high accuracy of the active Fourier models achieves a
low simulation error.

(4) The VI computes the voltage–current and power graphs. A first estimation of the open circuit
voltage (Voc) and the equivalent output resistance (Ro) of the harvester in the maximum power
zone is obtained.

(5) The next step is to verify the accuracy of the first estimation obtained for the key parameters Voc

and Ro. Analyzing the simulation results, a pair of appropriate values for the load resistance
(Rload1 and Rload2) are chosen. These resistor values are connected in the HEH module.

(6) The test bench is set in action. The voltage, current, and power are registered for both load
resistance values.

(7) The practical values of output resistance (Ro), open circuit voltage (Voc), and maximum power
point (Pomax) are obtained and empirically verified.
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The actual measurements on the harvesting electronic hardware (Figure 1) module validate the
methodology. In Figure 5, the VI screen of the accumulated voltage measured in the energy harvesting
module of the Test Bench is presented.
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2.1. Piezoelectric Ceramic Material Characterization under Harvesting Conditions

Our methodology computes, at the first stage, an active electrical model of the piezoelectric
material mechanically excited by the road traffic. The model is the series association of the impedance
of the material with active inner Thévenin voltage generators. This is calculated with Fourier analysis
of the measured piezoelectric voltage (Figure 3a), the equivalent input impedance of the oscilloscope,
and the impedance of the piezoelectric elements. Figure 6 shows the electrical circuit needed to
solve the active electrical model of the piezoelectric ceramic. The Fourier generator Vpz and the
piezoelectric impedance Zpz are the elements of the active electrical model of the piezoelectric ceramic
materials. The impedance of the measurement equipment is a key factor to calculate the active Fourier
electrical model that predicts its behavior in whatever energy harvesting application. In this case, the
measurement oscilloscope probe (Z_meas in Figure 6) has an equivalent input impedance of 10 MΩ in
parallel with a capacitance of 4 pF when it is connected to the input impedance of the oscilloscope
(which is of 1 MΩ in parallel with a capacitance of 11 pF).

Materials 2019, 12, x FOR PEER REVIEW 7 of 17 

 

 
Figure 5. Practical test results. 

2.1. Piezoelectric Ceramic Material Characterization under Harvesting Conditions 

Our methodology computes, at the first stage, an active electrical model of the piezoelectric 
material mechanically excited by the road traffic. The model is the series association of the impedance 
of the material with active inner Thévenin voltage generators. This is calculated with Fourier analysis 
of the measured piezoelectric voltage (Figure 3a), the equivalent input impedance of the oscilloscope, 
and the impedance of the piezoelectric elements. Figure 6 shows the electrical circuit needed to solve 
the active electrical model of the piezoelectric ceramic. The Fourier generator Vpz and the piezoelectric 
impedance Zpz are the elements of the active electrical model of the piezoelectric ceramic materials. 
The impedance of the measurement equipment is a key factor to calculate the active Fourier electrical 
model that predicts its behavior in whatever energy harvesting application. In this case, the 
measurement oscilloscope probe (Z_meas in Figure 6) has an equivalent input impedance of 10 MΩ in 
parallel with a capacitance of 4 pF when it is connected to the input impedance of the oscilloscope 
(which is of 1 MΩ in parallel with a capacitance of 11 pF). 

 
Figure 6. Electrical equivalent circuit needed to obtain the active piezoelectric model in energy 
harvesting road traffic applications. 

Figure 6. Electrical equivalent circuit needed to obtain the active piezoelectric model in energy
harvesting road traffic applications.

Equation (2) calculates the component values of the Fourier active generator Vpz, when the
spectrum of frequencies of the measured voltage Vo is computed by the VI. Equation (3) calculates the
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measurement impedance Z_meas with Cp and Rp being the capacitive and resistive values of the probe
connected to the oscilloscope, respectively.

Vpz( fi) =
Vo( fi)
Z_meas

·

(
Zpz + Z_meas

)
, (2)

Z_meas =
Rp − jR2

pωiCp

1 + R2
pω

2
i C2

p
, (3)

ωi = 2π fi. (4)

Table 2 shows the values of the properties of the lead-containing and lead-free materials. The values
in Table 2 show that the lead-containing material is more piezoelectric, polarizable, and lossy, as well as
more compliant, than the lead-free material.

Table 2. Piezoelectric (g33 and d33) and elastic (s33
D; or Y33 = 1/s33) coefficients, dielectric permittivity

and losses (K33
T and tan δ), and electromechanical coupling factors (k33) of the lead-containing, hard

lead titanate zirconate (Navy I-type PZT; APC International, Ltd., Mackeyville, PA, USA) and lead-free,
tetragonal bismuth sodium barium titanate (BNBT) (PIC700; PI Ceramic GmbH, Lederhose, Germany)
commercial ceramic materials (longitudinally poled cylinders of 6 mm diameter and 15 mm length).
The catalog values are shown for PZT, and PIC700 was characterized using the resonance method
(fs = 148.3 kHz, fp = 160.1 kHz).

Material g33 (10−3 Vm/N) d33 (10−12 C/N) s33
D (10−12 m2/N) K33

T tan δ (%) k33

PZT 26 >260 12.5 1280 0.6 >0.68
BNBT 16 98 7.5 710 0.4 0.40

In Figure 7, the detailed housing of the PDUTs and their location in the test bench are depicted.
These are two cylinders connected electrically in parallel, but mechanically in series. The piezoelectric
elements are placed in a mechanically amplified (lever) holder (see Figure 7a,b in exploded view),
and disposed in very shallow cavities (lever projects only 2 mm from the nonrotating platform) in
diametric positions in the test bench inner path (see Figure 7c,d).
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Figure 7. (a) Open view of the commercial piezoelectric housing; (b) exploded view of the commercial
piezoelectric showing the lever mechanical amplifier and the piezoelectric material outside the holder;
(c) bottom view of the commercial piezoelectric placement in the test bench; (d) top view of the PDUTs
in the inner path of the road traffic simulator.
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2.1.1. Impedance of the PDUTs

The impedance of the PDUTs was determined with the impedance analyzer Solartron 1260 from
AMETEK Scientific Instruments. The impedance analyzer provides the real and imaginary parts of
the impedance (Z’(a) and Z”(b)). Equations (5)–(10) obtain the modulus and phase of the impedance,
the admittance, the capacitance, and the resistance of the material. The results for the impedance
module of PZT and PIC700 are shown in Figure 8.
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|𝑌𝑌| =
1

|𝑍𝑍|
, (7) 

Ø𝑌𝑌 = −Ø𝑍𝑍, (8) 

𝑅𝑅𝑝𝑝𝑝𝑝 =
|𝑍𝑍|

𝑐𝑐𝑐𝑐𝑐𝑐Ø𝑍𝑍
=

1
|𝑌𝑌|𝑐𝑐𝑐𝑐𝑐𝑐Ø𝑌𝑌

, (9) 

𝐶𝐶𝑝𝑝𝑝𝑝 =
−𝑐𝑐𝑠𝑠𝑡𝑡Ø𝑍𝑍

|𝑍𝑍|2𝜋𝜋𝑓𝑓
=

|𝑌𝑌|𝑐𝑐𝑠𝑠𝑡𝑡Ø𝑌𝑌

2𝜋𝜋𝑓𝑓
. (10) 

The capacitive effect is relevant in both piezoelectric materials on the impedance of the PDUTs. 
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ØZ = tan−1 Z′′ (b)
Z′(a)

, (5)

|Z| =
√
(Z′(a))2 + (Z′′ (b))2, (6)

|Y| =
1
|Z|

, (7)

ØY = −ØZ, (8)

Rpz =
|Z|

cosØZ
=

1
|Y|cosØY

, (9)

Cpz =
−senØZ

|Z|2π f
=
|Y|senØY

2π f
. (10)

The capacitive effect is relevant in both piezoelectric materials on the impedance of the PDUTs.
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2.1.2. Piezoelectrically Active Electrical Model

The Test Bench, programmed to perform the road test at 58 km/h of simulated car speed, stresses
both piezoelectric materials in the same way to the consecutive tests. The generated voltage (Vo in
Figure 6) was recorded in the VI to compute their Fourier spectrum. The modulus of the PZT Fourier
analysis is shown in the Figure 9. The voltage Vo measured with the oscilloscope and the modulus
of the active generator from the spectral Fourier analysis, |Vpz|, calculated by the VI are presented in
Figure 10 for the PZT and the lead-free piezoceramics.
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Figure 10. (a) PZT material measured voltage; (b) Fourier spectrum (modulus) of the active
piezoelectrical generator for the PZT ceramic material; (c) lead-free ceramics measured voltage;
(d) Fourier spectrum (modulus) of the active piezoelectrical generator for the PIC700 ceramic material.
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The amplitude of the spectral components of the measured Vo voltage is on the tens of volts
range; meanwhile, the amplitude of the components in the inner active piezoelectric generator
(Vpz, see Figure 6) is on the order of magnitude of a thousand volts. The effect of the load impedance
and the high impedance of the PDUTs explains this behavior in practical energy harvesting applications.

In energy harvesting road traffic environmental applications, the working conditions are in the
very low frequency band. The frequencies of interest are always below 100 Hz because the Fourier
spectral analysis of the piezoelectric response shows a bandwidth up to 100 Hz at the Test Bench
maximum speed. This practical conclusion points to the main difference of this work with respect to
other research works that show interest in working with piezoelectric elements in the resonance points
of the material (here at ~150 kHz, see Table 2).

The recorded voltages show that lead-free piezo-ceramics generates a lower peak-to-peak voltage
than the PZT material, in agreement with the values in Table 2.

Once the active electrical model is computed, it is possible to start the next stage of harvesting
simulations to conclude with energy harvesting application results.

3. Energy Harvesting Results

The VI computes the piezoelectric active model. The model is different for each value of simulated
speed. The active electrical model is exported to perform the electrical simulations in PSpice-based
software connecting the piezoelectric model to the diode rectifier circuit filtered by the capacitor.
The capacitor accumulates the extracted charge. The load resistance (R_load in Figure 11) is varied
in successive simulations from 100 Ω (practical zone of short circuit) to 1000 GΩ (practical zone of
open load) to obtain the voltage and current load graph. The practical graphic results are presented in
Figure 12 for the PZT and lead-free PIC700 ceramic.
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Figure 11. Harvesting circuit.

In Figure 12a, the regulation graph of voltage Vo (see Figure 11) versus load current (Io) in resistor
R_load is presented for tests at 58 km/h of simulated speed using PZT and PIC700 lead-free ceramics.
The parameters Ro (output resistance, calculated as the slope of the linear zone where maximum power
is achieved) and V*oc (open circuit voltage: Intersection of the ordinate axis with the extended line of
the linear maximum power zone) are the key factors to estimate the maximum power point of the
harvesting power.

The maximum extracted power point verifies Equation (11), when the R_load applied equals the
output equivalent (Ro) resistance of the piezoelectric harvesting circuit. The parameter Ro is previously
unknown and is of significant relevance to design energy harvesting systems that achieve the maximum
energetic efficiency. Our methodology calculates Ro and estimates V*oc with high precision.

Pomax =
V∗2oc
4·Ro

. (11)
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The practical results of the simulation stage are summarized in Table 3.
The data in Table 3 show that the impedance of the ceramic set (piezo + accumulator circuit) of

maximum power delivery is approximately three times higher in the lead-free piezoelectric ceramic.
It is also observed that the deliverable power for the optimum R_load is approximately three times

lower in the lead-free ceramic.
The results of the experiments verify that the tested materials are different from the point of view

of electric power generation. However, the differences are not so distant. To equalize the maximum
power capability, the lead-free material should be excited to provide a piezoelectric amplitude (V*oc)
of approximately

√
3 times greater. This conclusion opens the way to the ecological materials in

alternative energy generation.

Table 3. Parameters of the piezoelectric energy harvesting application system.

Parameter PZT PIC700

Ro (GΩ) 2.36 5.57
V*oc (V) 5640 4800

Pomax (mW) 3.4 1.03
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The validation procedure stage was performed next in the Test Bench. A couple of R_load values
were selected to be in the linear zone of maximum harvesting power. The practical values of the
accumulated voltage Vo in the energy harvesting circuit are presented in Figure 13 for the PZT material.
Table 4 calculates the practical parameter Ro and the relative error (Er) between empirically validated
data and previous results from simulations.
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Figure 13. Transient response and steady state of the accumulated voltage in the capacitor (C_load = 1 µF)
of the harvesting circuit when the PZT piezoelectric material is utilized in the Test Bench: (a) Output
voltage recorded by virtual instrument (VI) when using a set of resistors of equivalent R_load1 = 300 MΩ;
(b) output voltage when R_load2 = 50 MΩ.

Table 4. Empirical verification of the methodology. PZT material.

Measurements Simulations Er %

Ro =
|Vo1−Vo2 |

|Io1−Io2 |
= 645−115
|2.12−2.35|·10−6 = 2.30 GΩ 2.36 GΩ −2.54
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The measurements of the accumulated voltage in the harvesting circuit when PIC700 is utilized
are presented in the Figure 14.
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of the harvesting circuit when PIC700 lead-free piezoelectric material is utilized in the Test Bench:
(a) Output voltage recorded by VI when using a set of resistors of equivalent R_load1 = 300 MΩ;
(b) output voltage when R_load2 = 50 MΩ.

Table 5 presents the empirically determined Ro and the relative error achieved between previous
results from simulations and test validated data.

Table 5. Empirical verification of the methodology. PIC700 lead-free material.

Measurements Simulations Er %

Ro =
|Vo1−Vo2 |

|Io1−Io2 |
= 250.7−43.6
|0.835−0.873|·10−6 = 5.45 GΩ 5.57 GΩ −2.15
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The methodology presented allows the use of only two load resistor values to empirically verify
the value of output impedance of the harvester previously determined by simulations. This value is
relevant for optimizing the energy harvesting process in maximum power point algorithms.

The originality of the new instrument developed and adapted to perform road traffic tests in a
laboratory environment achieves practical results with low error in the modeling characterization
process of piezoelectric materials and energy harvesting systems.

The influence of the measurement equipment is considered in the development of the practical
methodology exposed.

The results obtained in a single device under test can be generalized to topological associations
between harvesters, as it was previously published [20]. The influence of the rate of traffic
(vehicles/minute) and of peak-to-peak piezoelectric voltage on the harvested power was discussed in [21].
The topologies of associated harvesters verify the modeling process described in References [19–21].

Those previous results have opened the prospects of using lead-free piezoelectric materials in
clean electrical energy generation.

4. Conclusions

The models used here to analyze and predict the energy generation of harvesters based on
piezoelectric ceramics are original. With this original methodology, we were able to compare the
performance in piezoelectric energy harvesting in road traffic of lead-containing (PZT) and lead-free
(PIC700) piezoelectric ceramics. Classical research about energy harvesting using piezoelectric materials
is based on vibrational behavior, at which the two materials present differences, particularly at resonance
(see Table 2). The vibrational component in the stress applied by road traffic is not relevant in the
presented analysis. The low relative error achieved between the theoretical analysis of applying the
models and the practical tests with real harvesting systems is under 3% both for the lead-containing
and lead-free material.

The data in Table 3 show that the impedance of the ceramic set (Piezo + accumulator circuit) of
maximum power delivery is approximately three times higher in the lead-free piezoelectric ceramic.
The results of the experiments verify that the tested materials are different from the point of view of
electric power generation. However, the differences are not so distant. To equalize the maximum
power capability, the lead-free material should be excited to provide a piezoelectric amplitude (V*oc)
of approximately

√
3 times greater. This conclusion opens the way to the ecological materials in

alternative clean energy generation.
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