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Abstract: Many industries such as shipbuilding require steel bending plates in a wide range of radii,
thus bending machines are often designed and produced on a custom basis in shipyards. From a
design perspective, however, the bending force and the radius of the bending plate as a function of
vertical displacement of the upper roller must be known. In this paper, a hybrid numerical–analytical
approach is proposed to investigate the three-roller bending process for two plates of steel used in
the naval industry. Firstly, the bending process is modeled using the finite element (FE) method and
regression models for the bending force as a function of plate thickness and vertical displacement
of the upper roller were constructed. Then, based on the findings from FE analysis, using the bent
bar theory, two analytical expressions for the bending force were derived. Using geometric and
deformation compatibilities, analytical expressions for the vertical displacement of the upper roller as
a function of the curvature of the bending plate were also developed. The FE results suggest that the
cross section of the plate is practically a plastic hinge in the tangent area of the upper roller and that
the deformation compatibilities must be considered in order to estimate the curvature radius of the
bending plate using analytical formulations. These results are of practical importance in designing
rolling machines to estimate the setting parameters.

Keywords: three-rolling bending process; finite element analysis; bending force; vertical displacement

1. Introduction

Cylindrical and conical steel shells are important components used in various engi-
neering applications such as bilge planking as a part of the naval hull, cylindrical tanks,
pressure vessels, etc. [1]. Rolling machines with three or four rollers are generally consid-
ered for manufacturing shells (bending plates) with different curvatures [1–4]. In order to
design a rolling machine, it is necessary to calculate the bending force and the curvature
radius of the bending plate for given material properties and geometrical parameters.
Therefore, efforts have been devoted to the prediction of the bending force or curvature
radius by experimental, theoretical, and numerical approaches.

In general, the bending force is estimated using an analytical approach based on the
one-dimensional beam theory combined with experimental analysis for validation. For
example, Chudasama and Raval established an analytical model for the prediction of the
bending force for the three-roller conical multi-pass bending process [4]. Furthermore,
Chudasama and Raval proposed an analytical model for force prediction in the three-roller
conical bending process, taking into account the effects of various material properties and
geometrical parameters [5], which can also be used to estimate the roller plate-interface
friction. Padgan et al. have conducted an analytical and experimental analysis of bending
forces for five materials, such as aluminum alloy, copper alloy, stainless steel, gray cast iron,
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and magnesium alloy [6]. However, the analytical models are not able to fully describe
the complex deformation behavior of the materials during the bending process due to
oversimplified assumptions [2,7]. Therefore, in the attempt to optimize the roll bending
process, in the last years, the finite element method (FEM) was applied to simulate the
bending process and extract different information, such as bending force, the radius of
curvature, stress-strain state in the contact area under various conditions, and the finite
element (FE) environment [8–13]. For example, Tran investigated the forming process of an
asymmetrical roll bending machine using a three-dimensional (3D) dynamic FE model in
the Ansys/LS-DYNA environment and the results were validated by experiments [8]. Feng
and Champliaud reported on the numerical simulation of cylindrical roll bending to predict
the position of the lateral roll [9] and on the conical roll bending [10] using Ansys/LS-
DYNA environment with explicit time integration. Ktari et al. carried out two-dimensional
(2D) modeling of the rolling process in three roll bending pyramid systems using Abaqus
explicit module [11]. Taylor et al. investigated the influence of various parameters of
the three-roll bending process on the final radius of curvature of the bent sheet using an
elastoplastic explicit dynamic FE method under the LS-DYNA environment [12]. Neto
et al. developed an FE model to analyze the stress–strain in the vicinity of the contact area
where the plastic deformation increases due to the forming tool [13]. Moreover, several
attempts have been made to combine the FE simulation with the analytical modeling of
different bending systems. Patel et al. proposed a moment curvature-based model for
elastoplastic micro-beam bending to solve a micro-cantilever subjected to a normal load
undergoing large deflection [14]. Pandit and Srinivasan presented an explicit numerical
approach for three-point bending of a thin elastoplastic beam undergoing large deflection
supported on cylindrical rollers with a radius comparable to the deflection [15]. Using both
analytical and finite element approaches, Zemin et al. studied the three-roll bending of a
large workpiece using a model based on one dimension beam theory to determine the inner
radius displacement and the Abaqus FE model for optimizing the process parameters [16].
It was shown that, in general, the FE analysis provides more accurate results for the
bending force and radius of the curvature compared with the experimental data than the
oversimplified analytical models based on bending beam theory.

In summary, even though a number of researches have been carried out to improve
the roll bending technology, estimation of the bending force and the curvature radius of
the bending plates as a function of the displacement of the upper roller is still difficult at
this stage, especially for large sheets and mainly relays on expensive physical experiments.
Thus, the three-roller bending process needs further investigation both numerically and
analytically. Moreover, the FE analysis, in combination with existing analytical theories,
may offer a cheap and easy alternative to the trial-and-error, experimental approach.

The goal of the paper is to derive simple yet effective analytical expressions for
calculating the bending force and the vertical displacement of the upper roller as a function
of the radius of curvature, taking into account the findings from the FE analysis of the
three-roller bending process. The novelty of this paper consists of coupling the plastic
hinge condition observed during the FE analysis with the bent bar theory.

2. Numerical Simulation of the Three-Roller Banding Process
2.1. Research Methodology

Considering the complexity of the deformation during the rolling process, a hybrid
numerical–analytical approach is proposed to investigate the three-roller bending process,
as shown in Figure 1. First, the three-roller bending process is modeled using the FE
method and Ansys Workbench Static Structural program (version 19.0, 2019, Ansys, Inc.,
Canonsburg, PA, USA), under plane strain conditions. In addition, regression models for
the bending force as a function of plate thickness and vertical displacement of the upper
roller are derived for two types of structural steel commonly used in the shipbuilding
industry. Second, based on the findings from FE analysis, according to which the cross
section of the plate is practically a plastic hinge in the tangent area of the upper roller, two
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analytical approaches for estimating the bending force in different hypotheses (frictional
and frictionless) were derived based on the bent bar theory and compared with the FE
results. Third, using geometric and deformation compatibilities, analytical expressions
for the vertical displacement of the upper roller as a function of the radius of curvature,
by taking into account the thickness of the sheet, were derived and verified against the
FE results.
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Figure 1. Flow chart for the hybrid numerical–analytical approach.

2.2. Finite Element Model

Figure 2 shows a schematic representation of the three-roller bending process with
identical cylindrical rollers. This system employs one upper roller and two lower rollers as
a forming tool. The radius of curvature of the bending plate is controlled by changing the
vertical position of the upper roller. To reach a desire (final) curvature radius, the upper
roller moves down in a vertical direction pressing down the plate.
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Figure 2. Schematic representation of the three-roller bending process (d—the outer diameter of the
rollers, L—the distance between the lower rollers).

Three design parameters, i.e., the vertical displacement of the upper roller, the force
applied to the upper roller, and the torsional moments at the axes of the rollers, are required
for design a three-roller bending system according to the imposed specifications, such as
the plate thickness, final radius of the bending plate, and material properties.

To determine the design parameters for the three-roller bending system, in this paper,
a static finite element analysis was carried out using the Ansys Workbench Static Structural
program [17] with specific nonlinear settings. It should be pointed out that modeling large
plastic deformations, which is the case of the three-rolling process, is based on the use of
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logarithmic deformations (Hencky), the Jaumann derivative of the Cauchy stress tensor,
and the von Mises flow condition [17].

The bending system, particularly used in the naval shipyards, consists of three iden-
tical rollers with an outer diameter of 189 mm and a distance between the centers of the
lower rollers of 320 mm. A previous study [18] indicated that, for the displacements of
the upper roller equal to the roller radius, the applied force increases asymptotically and,
therefore, the moments at the axes of rollers increase asymptotically, indicating that the
technological solution may be inappropriate for the specified conditions.

To simulate the deformation behaviors, because the analysis of the entire three-roller
bending process is very complicated, a two-dimensional (2D) model was considered.
Because the plate’s width to thickness ratio is more than 200, and with the assumption
of uniform loading along the width of the plate, the plane strain model is suitable. The
simulation process was broken down into three stages as a function of time (as a pseudo-
variable), which are (i) stage 1: The time varies in the range of 0–1 s in which the upper roller
has an imposed vertical downward displacement; (ii) stage 2: The time varies in the range
of 1–2 s in which the rollers have an imposed rotation; and (iii) stage 3: The time varies in
the range of 2–3 s in which the upper roller has an imposed vertical upward displacement.

Figure 3a shows the 2D plane strain model for the three-roller bending process corre-
sponding to simulation stages 1 and 2. In addition, a symmetrical 2D plane strain model
corresponding to stage 1 (i.e., the vertical displacement of the upper roller) was developed
to gain information that could be used in the analytical approach (on a symmetrical model)
for the bending force calculation (Figure 3b). In this particular case, the center of the bottom
roller was fixed, and the force is applied in the center of the upper roller along the axis
of symmetry.

The models were drawn in the xy plane using the Design Modeler (version 19.0, 2019,
Ansys, Inc., Canonsburg, PA, USA) included in the Static Structural module [17]. The
origin of the reference system is in the center of the upper roller, whereas the x and y axes
define the plane (in plane strain), where x is the horizontal axis and y is the vertical axis.
The plate was discretized with 2D eight-node quadrilateral higher order elements (type
PLANE 183 (Ansys, Inc., Canonsburg, PA, USA) [17], with large deflection and contact
conditions included. These elements account for the nonlinearities introduced by the
nonlinear behavior of the material, large displacements, and the use of contact elements
between the roller surfaces and the plate [17]. The finite element size was 1 mm, resulting
in 10 elements with that thickness for the 10-mm plate thickness in Figure 4. A total number
of 15,000 elements were used to model the plate.
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The contact between the plate and the rollers was considered frictional in the sense of
Coulomb with a coefficient of friction of 0.3. In the 2D model, for the surface-to-surface
contact, the “contact” and “target” elements are CONTA192 (Ansys, Inc., Canonsburg, PA,
USA) and TARGE169 (Ansys, Inc., Canonsburg, PA, USA) for contact bodies and target
bodies, respectively. The augmented Lagrangian formulation with asymmetric behavior
was considered and the small sliding was considered off. The model worked without
activating the interface treatment Adjust to Touch [17].

The simulation of the bending process was performed by increasing the vertical
displacement of the upper roller from 0 to the maximum physical displacement imposed
by the geometry of the system (see Table 1). However, to avoid numerical instability (i.e.,



Materials 2021, 14, 1204 6 of 16

the applied force increases asymptotically with increasing the radius of curvature [18]),
the vertical displacement was limited to 50 mm. The simulations were carried out for two
types of structural naval steels, for which an elastoplastic material model with isotropic
hardening was considered, as in Table 1. It should be noted that the spring-back of the
bending plate was not taken into account, and the rollers were assumed to be deformable
in the linear-elastic domain.

Table 1. Material properties and model parameters.

Parameters S235JR S275JR

Yield strength (MPa) 235 275
Young modulus (Pa) 2.1 × 1011 2.1 × 1011

Tangent modulus (Pa) 2.1 × 109 2.1 × 109

Poisson ratio (-) 0.3 0.3
Sheet thickness (mm) 8, 10, 12 8, 10, 12

Maximum vertical displacement (mm) 50 50

2.3. Numerical Simulation Results

Figure 5 shows the variation of the normal stress σX for the 10-mm plate thickness of
S235JR steel. The results illustrate that the normal stress in each point of the cross section
in the tangent area of the upper roller is equal to the yield strength.
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It should be noted that the normal stress, σX, is guided along the Ox-axis that is
oriented along the neutral deformed surface of the plate, i.e., in each section, the Ox axis
is “parallel” with the faces of the deformed plate. Furthermore, it was found that the
distribution of stresses on a cross section depends on the mesh size when the calculation is
in the elastoplastic domain.

The distribution of normal stress along the cross section in the tangent area of the
upper roll is shown in Figure 6 for the S275JR steel. As can be seen, practically, the entire
cross section of the plate is yielded, indicating that the deformation state corresponds to
the “plastic hinge.”

Figure 7 shows the variation of the equivalent plastic strain in the cross section of
the 10-mm plate in the tangent area of the upper roller. As can be seen, for almost the
entire cross section, the plastic strain is greater than the σY/E ratio, which is 0.0013 for the
S275JR steel.

Figure 8a shows the deformation of the 10-mm plate thickness at the end of stage 2.
In order to estimate the final radius of the bending plate, the displacement of three points
located on the inner surface of the plate was monitored during the FE analysis, as shown in
Figure 8b. These points are approximately located on a circle with center (x, y) and radius r.
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By using the least-square method, the center and the radius were determined by
minimizing the sum

S(x, y, r) = ∑ 3
i=1(r − ri)

2, (1)

in which ri, i = 1, 2, 3 , is the radius corresponding to each point in Figure 8b, i.e., the
distance from the coordinates of each point (xi, yi) to the center (x, y),

ri =

√
(x − xi)

2 + (y − yi)
2. (2)
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Figure 9 shows the variation of the inner radius of the plate as a function of time for
three vertical displacements. It can be seen that the inner radius decreases with increasing
vertical displacement and tends to stabilize with increasing vertical displacement.
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An approximate value for the inner radius related to a certain vertical displacement
can be obtained by averaging the data over time. Therefore, the inner radius of the bending
plate was found to be 218.6 ± 4.8 mm, 158.4 ± 2.9 mm, and 117.6 ± 1.5 mm for 30 mm,
40 mm, and 50 mm vertical displacement, respectively.

3. Analytical Modeling of the Three-Roller Bending Process
3.1. Radius of the Bending Plate

The radius of curvature of the bending plate (i.e., the radius of the neutral layer) can
be determined based on the geometric compatibility of the three-roller bending system,
shown in Figure 10, as follows:

R = Ri +
t
2

, (3)

where Ri is the inner radius of the bending plate, and t is the plate thickness.
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By invoking the geometric compatibilities of the bending system, taking into account
that sinφ2 + cosφ2 = 1 , the following relation can be derived:(

L
2

Ri + t + d
2

)2

+

(
Ri + t + y
Ri + t + d

2

)2

= 1, (4)

where y is the distance between the horizontal axis of the lower rollers to the deformed
outer layer of the plate and d is the diameter of the rollers.

After some mathematical manipulation and rearranging, the distance y reduces to

y =

√√√√1 −
(

L
2

Ri + t + d
2

)2(
Ri + t +

d
2

)
− Ri − t. (5)

Based on Figure 10, the vertical displacement, w, of the upper roller can be written as

w =
d
2
− y. (6)

Substituting Equation (5) in Equation (6), the final expression for the vertical displace-
ment as a function of the inner radius of the bending plate can be written as

w =
d
2
−

√√√√1 −
(

L
2

Ri + t + d
2

)2(
Ri + t +

d
2

)
+ Ri + t. (7)

The analytical model as in Equation (7), obtained only from geometrical compatibility
and without taking into account the deformation mode of the plate or the spring-back,
overestimates the inner radius of the bending plate as compared with the values predicted
by the FE analysis. For the vertical displacement of 30 mm, 40 mm, and 50 mm, the relative
error between the inner radius calculated by Equation (7) and FE values is 34%, 33%, and
33%, respectively. It should be pointed out that the greater the radius of the deformation,
the greater the effect of the spring back. Thus, taking into account the deformation behavior
from the FE analysis, which is similar to the deformation behavior of the plate during the
bending process presented in [19], a new approach was proposed for calculating the inner
radius as a function of the vertical displacement, as illustrated in Figure 11. It should be
noted that the parameters marked by “*” stand for the correction according to the finding
from the FE analysis.
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Based on the new framework described in Figure 11, taking into account that
(
sinφ∗

1
)2

+(
cosφ∗

1
)2

= 1 , the following relation can be derived:

 L
2 −

(
R∗

i −
d
2

)
sinφ∗

R∗
i + t + d

2

2

+

y ∗ − d
2 +

(
R∗

i −
d
2

)
cosφ∗

R∗
i + t + d

2

2

= 1, (8)

where

cosφ∗ =
d
2

d
2 + t

, sinφ∗ =

√√√√1 −
(

d
2

d
2 + t

)2

. (9)

After some mathematical manipulation and rearranging, the expression for y* takes
the form

y∗ =

√√√√√1 −

 L
2 −

(
R∗

i −
d
2

)
sinφ∗

R∗
i + t + d

2

2(
Ri + t +

d
2

)
− d

2
−
(

R∗
i −

d
2

)
cosφ∗. (10)

As before, the vertical displacement is

w∗ =
d
2
− y ∗ . (11)

Substituting Equation (10) into Equation (11), in term of the inner radius, following
some manipulation of the resulting expression, the vertical displacement can be written as

w∗ = d −

√√√√√1 −

 L
2 −

(
R∗

i −
d
2

)
sinφ∗

R∗
i + t + d

2

2(
R∗

i + t +
d
2

)
+

(
R∗

i −
d
2

)
cosφ∗. (12)

Equation (12) allows for a more accurate prediction of the inner radius of the bending
plate as a function of vertical displacement.

Figure 12 compares the vertical displacement as a function of the inner radius of
the bending plate corresponding to the geometric compatibility (as in Equation (7)), the
deformation compatibility (as in Equation (12)), and the FE results, for the 10-mm plate
thickness. As can be seen, the geometric compatibility model overestimates the vertical
displacement, as compared with the deformation compatibility model, especially at the
higher inner radius in which the effect of the spring-back is very important. The relative
errors between the geometric model and deformation model are 45%, 35%, and 25% for
30 mm, 40 mm, and 50 mm vertical displacement, respectively. It can be seen that the higher
the inner radius is, the higher the relative error. On the other hand, the vertical displacement
of the upper roller can be predicted by Equation (12) relatively well. Compared with the
FE results, the relative errors of the deformation compatibility model are 19%, 2%, and 12%
for 30 mm, 40 mm, and 50 mm vertical displacement, respectively.

3.2. Bending Force

For estimating the bending force, in this study, the findings from the FE analysis were
considered, namely, (i) the normal stress for each point of the cross section reaches the yield
strength in the tangent area of the upper roller and (ii) the bending deformations of the
plate beyond the tangent area are small. Therefore, in order to estimate the bending force,
two scenarios were considered as given below.
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3.2.1. Case 1 Scenario (C1)

The assumptions are as follows: (i) the plate has a finite thickness and width; (ii) the
friction plays an important role in the three-roller bending process, i.e., the coefficient of
friction between the rollers and plate is taken as 0.3; and (iii) the bending moment Mp in the
cross section of the plate situated in the tangent area of the upper roller corresponds to the
so-called plastic hinge condition, i.e., the normal stress for each point of the cross-section
becomes equal to the yield strength. Therefore, the bending moment can be expressed by

Mp = σY
l × t2

4
, (13)

where σY is the yielding strength, l is the width of the plate, and t is the thickness of
the plate.

The initial configuration of the three-roller bending system is given in Figure 13a,
while the configuration at a given time is presented in Figure 13b. From the notations given
in Figure 13b, it follows that

t1 = z × cosφ1 −
d
2
− t, (14)

and
L
2

sinφ1 + zcosφ1 − d − t = 0, (15)

taking into account that

tanα1 =
z
L
2

. (16)

Based on Equations (15) and (16), following some manipulation, it can be shown that

φ1 + α1 = arcsin

[
d + t

L
2

× cosα1

]
. (17)

Furthermore, with the geometry of Figure 13b, the function b is given by

b =
L
2

cosφ1 − zsinφ1, (18)
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By taking into account the forces represented in Figure 13b, the bending moment Mp,
which corresponds to reaching the “plastic hinge” condition in the cross section, can be
written as

Mp = σY
l × t2

4
= N × b, (19)

considering the balance of forces in the vertical direction (in the y-axis direction), which
implies that

F1 = Ncosφ1 + µNsinφ1, (20)

and the bending force is simply
F = 2 × F1. (21)

3.2.2. Case 2 Scenario (C2)

The assumptions are as follows: (i) for estimating the deformed position of the plate,
the thickness of the plate is negligible; (ii) the effect of friction is also negligible; (iii) the
bending moment (Figure 14) corresponds to the high condition of plastic bending (i.e.,
the normal stress for each point of the cross-section is equal to the yield strength) and is
given by Equation (13); and (iv) the moment in Section 3 is zero. It should be noted that, in
Figure 14, the dotted lines represent the undeformed plate, while the solid line denotes the
final position of the upper roller.
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Considering the equilibrium of the forces that act on the three-roller bending system
in Figure 14,

N × b = σY
l × t2

4
, (22)
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the reaction force N is given by

N = σY
l × t2

4
1
b

, (23)

where b is the arm of the reaction force, and σY is the yield strength.
In the present context, the bending force can be calculated by

F = 2 × Ncosα. (24)

Assuming that the vertical displacement of the upper roller can be approximated by

L
2
− 2

d
2

α = w, (25)

then, the angle α (in radians) is

α =
L
2 − w

d
. (26)

Considering the three-roller bending system in Figure 14, the geometrical considera-
tion leads to

2
d
2

sinα + bcosα =
L
2

, (27)

and the arm b of the reaction force is given by

b =
1

cosα

[
L
2
− dsinα

]
. (28)

Substituting Equation (28) into Equation (23), the reaction force N becomes

N = σY
l × t2

4
cosα[

L
2 − dsinα

] . (29)

The expression for N is then substituted into Equation (24) to obtain the bending force
in the following form:

F = 2σY
l × t2

4
cos2α[

L
2 − dsinα

] . (30)

4. Predictive Models for Bending Force

In order to determine a predictive model for the bending force, FE simulations were
carried out for different geometrical and material properties, as shown in Table 1. The FE
simulations were performed with the model described in Section 2 for vertical displacement
of the upper roller varying from 5 mm to 78 mm. The FE results for the bending force as a
function of vertical displacement of the upper roller and the sheet thickness are shown in
Figure 15 for S235JR and S275JR steels.

The results obtained from the FE simulations were used to determine a predictive
model for the bending force as a function of two variables, i.e., vertical displacement of
the upper roller and plate thickness. The FE results were fitted using Matlab curve fitting
toolbox (version R2018a, The MathWorks, Inc., Natick, MA, USA) [20,21].

The regression models for the bending force (in Newton) for the two plates of steel are
expressed by the following equations:

F(w, t) = 25.96 − 0.06384w + 0.0542 exp(0.001454 + 0.5549t) + 0.5711 w exp(−1.852 + 0.2448t) (31)

for the S235JR steel, and
F(w, t) = 33.56 − 22.08w + 0.008891 exp(−0.002553 + 0.7136t) + 1.123w exp(2.909 + 0.0128t) (32)

for the S275JR steel.



Materials 2021, 14, 1204 14 of 16Materials 2021, 14, x FOR PEER REVIEW 14 of 16 
 

 

 
(a) (b) 

Figure 15. The bending force from FE analysis for (a) S235JR steel and (b) S275JR steel. 

The results obtained from the FE simulations were used to determine a predictive 
model for the bending force as a function of two variables, i.e., vertical displacement of 
the upper roller and plate thickness. The FE results were fitted using Matlab curve fitting 
toolbox (version R2018a, The MathWorks, Inc., Natick, MA, USA) [20,21]. 

The regression models for the bending force (in Newton) for the two plates of steel 
are expressed by the following equations: ( , ) = 25.96 − 0.06384 + 0.0542 ( 0.001454 + 0.5549 ) + 0.5711  ( − 1.852 + 0.2448 ) (31) 

for the S235JR steel, and ( , ) = 33.56 − 22.08 + 0.008891 ( − 0.002553 + 0.7136 ) + 1.123 ( 2.909 + 0.0128 ) (32) 

for the S275JR steel. 
The accuracy of the regression models was analyzed through the coefficient of deter-

mination (R2). The R2 coefficient for the S235JR and S275JR is 1.0% and 0.999%, respec-
tively, indicating a very good correlation between the FE results and regression models. 
In addition, the adequacy of the derived models was also analyzed using the root-mean-
square error (RMSE). The RMSE values for the S235JR and S275JR are 4.06 × 10−5 % and 
4.786 × 10−1 %, respectively. These results show that the regression models are reliable and 
can be used to calculate the bending force. 

Figure 16 compares the bending force as a function of vertical displacement of the 
upper roller for the two analytical models and the FE regression model (as in Equation 31) 
for a plate thickness of 10 mm and S235JR steel. It can be seen that the C1 analytical model 
(frictional, as in Equation (21)) over predicts the bending force as compared with the C2 
analytical model (frictionless, as in Equation (30)) and FE model. The relative errors for 
bending forces between the C1 and C2 models vary between 19% and 36%, and the higher 
the vertical displacement, the greater the relative error. 

Compared with the FE regression model, the average relative error, the maximum 
relative error, and the RMSE for the C1 analytical model are 27%, 54%, and 18.2%, respec-
tively, while the average relative error, the maximum relative error, and RMSE for the C2 
model are 13.5%, 25%, and 12%, respectively. It should be noted that the maximum rela-
tive error of 54% for the C1 model and 25% for the C2 model occurs at 5 mm vertical dis-
placement. For the C1 model, it appears that the presence of friction in the analytical for-
mulation has a noticeable effect on the deformation behavior; thus, it predicts higher val-
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Figure 15. The bending force from FE analysis for (a) S235JR steel and (b) S275JR steel.

The accuracy of the regression models was analyzed through the coefficient of deter-
mination (R2). The R2 coefficient for the S235JR and S275JR is 1.0% and 0.999%, respectively,
indicating a very good correlation between the FE results and regression models. In
addition, the adequacy of the derived models was also analyzed using the root-mean-
square error (RMSE). The RMSE values for the S235JR and S275JR are 4.06 × 10−5% and
4.786 × 10−1%, respectively. These results show that the regression models are reliable and
can be used to calculate the bending force.

Figure 16 compares the bending force as a function of vertical displacement of the
upper roller for the two analytical models and the FE regression model (as in Equation (31))
for a plate thickness of 10 mm and S235JR steel. It can be seen that the C1 analytical model
(frictional, as in Equation (21)) over predicts the bending force as compared with the C2
analytical model (frictionless, as in Equation (30)) and FE model. The relative errors for
bending forces between the C1 and C2 models vary between 19% and 36%, and the higher
the vertical displacement, the greater the relative error.
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Figure 16. Bending force versus vertical displacement predicted based on the analytical models and
the FE analysis for a 10-mm plate thickness and S235JR steel.

Compared with the FE regression model, the average relative error, the maximum
relative error, and the RMSE for the C1 analytical model are 27%, 54%, and 18.2%, respec-
tively, while the average relative error, the maximum relative error, and RMSE for the
C2 model are 13.5%, 25%, and 12%, respectively. It should be noted that the maximum
relative error of 54% for the C1 model and 25% for the C2 model occurs at 5 mm vertical
displacement. For the C1 model, it appears that the presence of friction in the analytical
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formulation has a noticeable effect on the deformation behavior; thus, it predicts higher
values as compared with the C2 model. However, the bending force values calculated
based on the C2 model are in better agreement with the FE values than those calculated
by the C1 model. Therefore, it can be concluded that the plastic hinge condition without
friction is adequate to estimate the bending force with reasonable accuracy.

5. Conclusions

In this study, a hybrid approach based on the finite element (FE) analysis and analytical
modeling of the three-roller bending process was proposed in order to predict the bending
force and the curvature radius of the bending plate. The simulation of the three-roller
bending process was carried out using the Ansys Workbench Static Structural program,
under plane strain conditions. Starting from the observations following the FE analysis,
analytical approaches for estimating the bending force and vertical displacement of the
upper roller were derived. Based on the FE analysis and the analytical modeling, the
following main findings and conclusions can be drawn:

(i) A 2D FE model was established to analyze the three-roller bending process for the
S235JR and S275JR steels used in the naval industry. For the system under consideration,
the FE results suggest that the cross section of the plate is practically a plastic hinge in the
tangent area of the upper roller;

(ii) Taking into consideration the assumption of reaching the “plastic hinge” condition
in the cross section of the plate, two analytical models for the bending force were derived
based on the bent bar theory. These models can be used to first-hand estimate the bending
force independently of FE analysis;

(iii) Using geometric and deformation compatibilities, simple analytical models for
the vertical displacement of the upper roller as a function of the curvature radius of the
plate were developed and verified against the FE results. However, in order to estimate the
curvature radius of the bending plate using the analytical formulation, the deformation
compatibilities must be considered;

(iv) FE-based regression models for estimation of the bending force for the S235JR
and S275JR steels were formulated. The models take into consideration the plate thickness
(8–12 mm) and vertical displacement of the upper roller (up to 78 mm). For other values
of the yielding stress, the bending force can be obtained by interpolation (because the
three-roller bending system has a diameter of 189 mm and the distance between the axis of
the lower rollers of the system is 320 mm).

These results are of practical importance for the industry to estimate the setting
parameters required in designing a three-roller bending machine. However, future research
will address the experimental validation of the derived models.
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