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Abstract: To avoid disadvantages caused by rotational degrees of freedom in the original Discontin-
uous Deformation Analysis (DDA), a new block displacement mode is defined within a time step,
where displacements of all the block vertices are taken as the degrees of freedom. An individual
virtual element space V1(Ω) is defined for a block to illustrate displacement of the block using the
Virtual Element Method (VEM). Based on VEM theory, the total potential energy of the block system
in DDA is formulated and minimized to obtain the global equilibrium equations. At the end of a time
step, the vertex coordinates are updated by adding their incremental displacement to their previous
coordinates. In the new method, no explicit expression for the displacement u is required, and all
numerical integrations can be easily computed. Four numerical examples originally designed by Shi
are analyzed, verifying the effectiveness and precision of the proposed method.

Keywords: DDA; VEM; degrees of freedom; projection

1. Introduction

Discontinuous Deformation Analysis (DDA) [1], a novel numerical method for analyz-
ing the dynamic mechanical behavior of a block system in cases of large displacement, was
verified as an effective tool in solving a variety of discontinuities in rock problems [2,3].
In rock-mass engineering, DDA has been employed to handle a great deal of problems,
e.g., landslide process simulations [4,5], slope stability assessments [6,7], blasting effect
evaluation [8], crack propagation simulation [9,10], seismic wave propagation analysis [11],
and rock burst prediction [12]. Applications of 2D DDA in the modeling of rock-mass
dynamics until 2017 were summarized by Ning [13].

Numerous enhancements have been put forward to improve the performance of
traditional DDA. To alleviate the sensibility of penalty parameters, contacts between the
blocks were remodeled using the Lagrange multiplier method [14], Augmented Lagrangian
method [15], Complementary theory [16], and Variational Inequality theory [17]. Apart
from modifying kinetic velocity using the dynamic factor [18], the damping effect was
used to reflect the energy dissipation by imposing viscous boundary conditions [19] and
by adding viscous forces into the equilibrium equation [20]. A couple of strategies, such as
adopting a higher-order displacement function [21] and partitioning blocks using finite
element mesh [22], were introduced to acquire a more detailed stress field in each block.
Moreover, many efforts were made to develop a 3D version of DDA [23–26], considering
that 3D DDA is preferred for problems in practical engineering. The biggest bottleneck
to establishing a robust 3D version is the lack of an excellent contact theory [27]. Shi [28]
proposed the entrance block theory to facilitate contact treatment in 3D DDA. In addition,
some efforts, such as GPU-based parallel computation [29] and explicit computation [30],
were made to improve the computational efficiency when simulating large-scale problems.
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Within a time step, the degrees of freedom d in the traditional DDA were defined for
a block by six independent variables, which consists of two incremental rigid translations,
one incremental rigid rotation angle, and three incremental constant strain components.
For a point x in the block, the incremental displacement u is calculated as the product of
d and the transformation matrix T; then, the global equilibrium equation is derived from
this displacement function. The displacement function uses the first-order approximation
of sin r0 = r0 and cos r0 = 1 for a small rotation angle r0, which induces accumulated
errors over the time steps and sometimes causes issues. The most noticeable issue is the
unreasonable volume expansion when a large rotation occurs. To restrain this issue, some
scholars proposed various emendations [31–33], in which the post-adjustment strategy was
most popular in the existing DDA codes [34,35]. This method, albeit simple and effective,
resulted in a displacement different from the displacement evaluated in the equilibrium
equation. Even with a tiny difference, the contact state might be entirely changed for
a contact pair. Then, to simulate the continuous–discontinuous deformation, numerical
methods for the continuum and non-continuum models were increasingly coupled. DDA
was coupled with finite element method (FEM) by some scholars [9,22] for simulation of a
rock failure process. In classical FEM, displacements at the element nodes are chosen as
the degrees of freedom. This inconsistency in the degrees of freedom between DDA and
FEM causes a barrier in developing a compact and efficient code for the coupling method.

In a recent study [36], the displacement of blocks in DDA was reformulated by using
Wachspress interpolation to achieve a higher-order stress distribution within blocks. This
approach selected displacements at the vertices as the degrees of freedom for a block. In this
study, a DDA with such new degrees of freedom is called a vertex displacement-based DDA.
This method was improved using the Polygonal Finite Element method (PFEM). Besides
Wachspress interpolation [37], a series of interpolations [38–40] were proposed to construct
the displacement functions for a polygonal element with more than four nodes in PFEM.
By taking displacements at the vertices as the degrees of freedom, these displacement
models can avoid demerits caused by the degrees of freedom in an original DDA. However,
because the rational function is involved in the shape function, the theoretical derivations
and calculations of the stiffness and mass matrix are quite complicated and it is hard to
ensure precision of the numerical integration [41,42].

In 2013, the Virtual Element Method (VEM) was proposed to handle the very general
polygons, dispensing sophisticated integrations on the element [43–46]. VEM was consid-
ered the evolution of the mimetic finite difference method and a generalization of FEM.
For flexibility with regard to mesh generation and element shapes, VEM has become a
hot topic in numerical methods since it was proposed [47–52]. In this study, a new vertex
displacement-based DDA is developed using the strength of VEM. Defining the degrees of
freedom by using the incremental displacements u at the vertices of a block, an individual
virtual element space V1(Ω) is adopted to describe the displacements of points in the block,
and the projector ΠPu from V1(Ω) on the linear displacement space P1(Ω) is deduced.
Next, the total potential energy is investigated for the block system. In the potential energy,
the bilinear forms of u are expressed as the summation of the exact solution of ΠPu and an
approximation of u-ΠPu. The potential energy induced by the contact restraints are derived
using the new degrees of freedom. Then, for the block system, the global equilibrium equa-
tion is derived based on the principle of minimum potential energy. Finally, the open–close
iteration strategy is employed to resolve the global equilibrium equation as the original
DDA. The proposed method avoids the issues attributable to first-order approximation for
a small rotation angle r0 in the original DDA and has a higher computational efficiency
than vertex displacement-based DDA using displacement functions in PFEM. The validity
and effectiveness of the proposed method are verified by several numerical examples.

2. Basic Principles of DDA

As Figure 1 shows, a DDA block system always consists of nb discrete blocks with
their individual domains and boundaries. The domain ΩI of block I is bounded by ∂ΩI,
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which is usually composed of the Dirichlet boundary ΓI
u and the traction boundary ΓI

t. The
displacement on ΓI

u is prescribed as ûI, and the surface traction on ΓI
t is denoted by tI. Here,

the superscript I is the block index. The deformations and large displacements of a block in
DDA are accumulated by the incremental displacements and deformations over time steps.
The displacements of blocks are independent from each other, and contact constraints are
imposed on the interactions between blocks.
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Figure 1. A typical block system and an individual block in Discontinuous Deformation Analysis
(DDA).

Within a time step, DDA requires the incremental displacements u = (u1, u2, . . . , unb)
to be the unique minimizer of the total potential energy of the block system:

u = argmin
v∈V

J(v), J(v) =
1
2

α(v, v)− f (v) + J′(v) (1)

in which V is the incremental displacement space of the block system:

V = V1 × V2 × . . .× Vnb , with VI =

{
vI ∈

[
H1
(

ΩI
)]2

: vI
∣∣∣∣ΓI

u
=

^
u

I}
(2)

where J’(v) represents the energy due to the contact constraints. A key feature of DDA is
that rigorous contact constraints are used to manage the interactions between blocks. For
the contact pair marked in Figure 1, J’(v) induced by the contact constraints is determined
by uI∈VI and uL∈VL.

The bilinear form α(u, v) and the linear form f (v) are computed for u∈V and v∈V by

α(u, v) =
nb

∑
I=1

α
(

uI , vI
)

, f (v) =
nb

∑
I=1

f
(

vI
)

(3)

because all blocks are physically isolated in DDA. For ease of description, the superscript
indicating blocks is omitted unless otherwise noted. The bilinear form α (u, v) for u∈V and
v∈V represents the energy due to elastic deformation and the inertial force:

α(u, v) =
∫

Ω
σ(u) : ε(v) dx +

∫
Ω

ρ
..
u · v dx (4)

where ε is the incremental constant strain decided by u:

ε(u) =
1
2

(
∇u +∇Tu

)
(5)

in which ∇ is the gradient operator. σ is the incremental Cauchy stress related to ε by the
constitutive equation:

σ(u) = D[ε(u)] (6)

where D is a constant elasticity tensor. ρ is the mass per unit area. For dynamic analysis,
the inertial force is essential in DDA. New-mark time integration scheme is adopted in the
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original DDA, and the acceleration is assumed to be constant within a time step. Denoting
by V0 the velocity of block I at the origin of a time step and by ∆, the time interval of the
time step, the acceleration is computed as

..
u =

2
∆2 u− 2

∆
V0 (7)

The linear form f (v) is defined by

f (v) =
∫

Ω
b · vdx−

∫
Ω

σ0 : ε(v)dx +
∫

Ω
t · vds (8)

where b denotes the constant body force and σ0 is the constant stress accumulated over the
previous time steps.

When the displacement function is determined for a block with the associated degrees
of freedom, Equation (1) induces the global equilibrium equations with the following
matrix formulation for the block system.

K11 K12 K13 . . . K1(nb)

K21 K22 K23 . . . K2(nb)

K31 K32 K33 . . . K3(nb)
...

...
...

. . .
...

K(nb)1 K(nb)2 K(nb)3 . . . K(nb)(nb)




d1

d2

d3

...
dnb

 =


F1

F2

F3

...
Fnb

 (9)

in which dI is the degrees of freedom concerning block I. FI is the generalized load vector
with the same dimension of dI. Denoting the dimension of dI with dim(dI), KII is a dim(dI)
× dim(dI) matrix and KIL(I 6=L) is a dim(dI) × dim(dL) matrix denoting the contact restraints
on blocks I and L. If no contact pair is provided by blocks I and L in the current time step,
KIL is zero.

3. Demerits Caused by the Original Degrees of Freedom and Previous Attempts to
Construct a Vertex Displacement-Based DDA
3.1. Demerits Caused by the Original Degrees of Freedom in DDA

For block Ω, the traditional DDA defines the degrees of freedom d within one
time step:

d =
(

u0 v0 r0 εx εy γxy
)T (10)

where u0 and v0 represent the increments of the rigid horizontal and vertical translations,
respectively; r0 denotes the increment of the rigid rotation angle around the central point
(x0, y0) of block Ω; and (εx, εy, γxy) denotes the increments of the constant strains. Under
small deformation assumption, the increments of the displacement u = (u, v)T at a point
x = (x, y) in block Ω are computed as

u = Td (11)

and T is the translation matrix as follows:

T =

[
1 0 −(y− yo) (x− xo) 0 0.5(y− yo)
0 1 (x− xo) 0 (y− yo) 0.5(x− xo)

]
(12)

Equation (11) is a variation of a standard first-order displacement function [1].
The displacement caused by rigid movement and the deformation of the block con-

stitute the displacement of a block under small deformation assumption. Therefore, the
displacement function for finite rotation should be

u = u0 + (x− x0)(cos r0 − 1)− (y− y0) sin r0 + (x− x0)εx + 0.5(y− y0)γxy
v = v0 + (x− x0) sin r0 + (y− y0)(cos r0 − 1) + (y− y0)εy + 0.5(x− x0)γxy

(13)



Materials 2021, 14, 1252 5 of 24

Comparing Equation (13) with Equation (11), the approximations of cos r0 = 1 and
sin r0 = r0 are adopted for the small rotation angle r0 in Equation (11). The approximation
errors accumulated over time steps can lead to false volume expansion when a large
rotation occurs. Various modifications were suggested to remedy this defect, in which
the post-adjustment strategy is most popular in the existing DDA codes. After vector d is
obtained, the post-adjustment strategy employs Equation (13) to calculate the incremental
displacement u. Although simple and effective in most cases, the resulting displacement
must be different from the displacement estimated in the equilibrium equation. Sometimes,
for a contact pair, the state adopted in the equilibrium equation may be not coincident
with the geometry relationship of the resulted configurations. An example is provided in
Section 5.1 to demonstrate this issue.

Besides that, it is noticed that DDA was coupled with a range of numerical methods
for continuum models to simulate the continuous–discontinuous deformation, e.g., crack
propagation [9,22]. Most popular numerical methods in terms of continuum mechanics
select the displacements at the nodes of an element as the degrees of freedom. DDA defines
the degrees of freedom using the constant strain, the rigid translation, and the rigid rotation
referring to the centroid of a block. The difference in the degrees of freedom causes a barrier
in developing a compact code when coupling DDA to other numerical tools.

3.2. Previous Attempts to Construct Vertex Displacement-Based DDA

By taking the increments of the displacements at the vertices as the degrees of freedom,
vertex displacement-based DDA can remedy the demerits induced by the original degrees of
freedom. Supposing that a block Ω has n vertices, the incremental displacements ui= (ui, vi)T at
the vertex xi constitute the new degrees of freedom:

¯
d =

(
u1 v1 u2 v2 . . . un vn

)T (14)

In this way, the penetration value of a contact pair in the equilibrium equations is
directly calculated within a time step and the coordinates of the vertices are updated
by directly adding the incremental displacements to their previous coordinates, induc-
ing penetrations in the equilibrium equation and allowing the updated configurations
to coincide.

By using the new degrees of freedom, the increment u of the displacement at a point x
in a block Ω can be computed in a similar method to FEM, that is

u =

(
u
v

)
=

(
N1 0 N2 0 . . . . . . Nn 0
0 N1 0 N2 . . . . . . 0 Nn

)¯
d = N

¯
d (15)

where Ni is the shape function in terms of the vertex xi. Because the block in DDA might
have more than four vertices, the shape functions developed in PFEM were introduced to
construct Ni [36]. In the recent study [36], Wachspress interpolation was selected as the
shape function for developing vertex displacement-based DDA.

Sukumar and MalsCh concluded the properties required for Ni to develop an effective
PFEM [38]. As shown in Figure 2, a block Ω has n vertices located at xi and its boundary is
composed of n straight edges. The red edges with vertex xi are denoted by Γi. Ni should
be satisfied.

(1) Partition of unity, boundedness, and nonnegativity:

∑ n
i=1Ni(x) = 1, 0 ≤ Ni(x) ≤ 1 (16)

(2) Kronecker-delta property:

Ni
(
xj
)
= δij (17)
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(3) Linear completeness:
∑ n

i=1Ni(x) xi = x (18)

(4) With C∞ being within block Ω while C0 is on the boundary, Ni must be piece-wise
linear along Γi but vanishes at the other edges. This property ensures that the boundary of
a straight line is still a straight line after deformation, which benefits contact detection and
contact condition imposition.
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In the last two decades, generalized barycentric coordinates were successfully adopted
as the shape function in PFEM. A series of generalized barycentric coordinates, such as
Wachspress interpolation [37], maximum entropy interpolation [38], mean value coordi-
nates [39] and Harmonic coordinates [40], were developed, marking remarkable progress
in the theory and application of PFEM.

Take Wachspress interpolation for example; the shape function Ni is defined for a
point x within a polygon as follows.

Ni(x) =
A(xi−1, xi, xi+1)

(
Π

k 6=i,i−1
A(x, xk, xk+1)

)
n
∑

j=1
A
(
xj−1, xj, xj+1

)(
Π

k 6=j,j−1
A(x, xk, xk+1)

) (19)

where x1, x2, . . . , xn are the vertices of the polygon arranged counterclockwise and A(xi,
xj, xk) represents the area of a triangle connecting three points, such as in Figure 3. By
observation, the basic principles required for Ni are completely satisfied by Definition (19).
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However, the definitions of Ni in PFEM are the rational functions, which make the
derivation and integration process more cumbersome when computing the block matrices.
Though some enhancements [38] were made to simplify the formulas of Ni, the rational
function is indispensable to definite Ni, which creates difficulties in the integration over
a polygon. Up until now, the most popular way to solve this issue was partitioning the
polygon into subdomains with certain shapes. Then, the Hammer or Gauss integration
scheme was employed to compute the integration on each sub-triangle or sub-rectangle.
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The summation of the integrations on subdomains was considered the integration over
the original polygon. While the integration error was considerable, some remedies were
proposed to address the integration error for PFEM [42]. In conclusion, the additional
work in the derivation and programming is very expensive when using the interpolation
function Ni in PFEM. When Equation (15) is adopted to govern the block displacement,
some advantages of the original DDA can compromised.

4. Vertex Displacement-Based DDA Using VEM
4.1. Virtual Element Spaces

VEM [43–46] provides a new way to construct a vertex displacement-based DDA.
Because DDA blocks are physically isolated, an individual virtual element space Vk(Ω) can
be defined for a block as follows:

Vk(Ω) =

{
v ∈

[
H1(Ω) ∩ C0(∂Ω)

]2
: ∆v ∈ [Pk−2(Ω)]2, v|Γ ∈ [Pk(Γ)]

2∀Γ ∈ ∂Ω
}

, (20)

in which Γ denotes a edge of Ω, k ≥ 1 is a fixed integer index indicating the order of
accuracy of the approach, and Pk(Ω) is the space of polynomials of degree less than or
equal to k in Ω. Obviously, [Pk(Ω)]2⊆Vk(Ω). For simplicity, [Pk(Ω)]2 is denoted as Pk(Ω).

We take k = 1 in this study. There are three main reasons for this choice: (i) The degrees
of freedom for V1(Ω) only involve the values of v at the vertices of Ω, in accordance with
the new degrees of freedom defined in Equation (14). (ii) The incremental displacements
are expected to be piece-wise linear at the block boundary, which is satisfied by V1(Ω).
(iii) In the view that the original DDA adopted a complete first-order displacement function,
the degree of accuracy is not threatened by using V1(Ω). Therefore, an individual virtual
element space V1(Ω) is defined for a block, and the associated degrees of freedom are the
new degrees of freedom defined in Equation (14). The dimension of the space V1(Ω) is 2n,
where n denotes the number of vertices for the block.

Provided that there are nb blocks in the block system, the total virtual element space
can be given as

V1 = V1
1

(
Ω1
)
× V2

1

(
Ω2
)
× . . .× Vnb

1 (Ωnb), (21)

and the total degrees of freedom comprise the increments of displacements at the vertices
of all blocks. As a result, the solution space V in Equation (1) is replaced by V1.

4.2. The Projection Operator ΠPu: V1(Ω)→P1(Ω)

To minimize the total potential energy of the block system, the computation of α (u, v)
from V1(Ω) × V1(Ω) to R defined in Equation (4) is inevitable, which can be accomplished
in the framework of VEM theory. Referring to [47], two projectors Π∇u: V1(Ω)→P1(Ω)
and Π0u: V1(Ω)→P1(Ω) are respectively defined using the orthogonality conditions:∫

Ω
∇
(

Π∇u
)
·∇p dx =

∫
Ω
∇u·∇p dx ∀p ∈ P1(Ω), (22)

and ∫
Ω

(
Π0u

)
· p dx =

∫
Ω

u·p dx ∀p ∈ P1(Ω). (23)

where Π0u cannot be obtained from (23) because the zero- and first-order moments of u
in Ω are unknown. To solve this issue, an additional property stating that the moments
of order 0 and 1 of u and Π∇u coincide was added by B. Ahmad [44] to the space V1(Ω),
resulting in the projection operator of Π0u being the same as the projection operator of
Π∇u. For simplicity, ΠPu is adopted to express Π∇u and Π0u uniformly. In this study,
ΠPu is deduced using an approach different from the standard procedure [46].
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Beforehand, two notations are defined. For a function w, the average of the values it
assumes at the vertices of Ω is denoted by w∗:

w∗ =
1
n

n

∑
i=1

w(xi), (24)

and the volume average of w over Ω is denoted by 〈w〉:

〈w〉 = 1
S

∫
Ω

w dx. (25)

where S is the area of Ω.
P1(Ω) is the space of linear displacements over Ω, which can be split into two dis-

placement spaces due to rigid motions and constant strain. We denote the space regarding
rigid motions by R(Ω) and the space concerning constant strain by C(Ω):

R(Ω) =
{

a + BR(x− x∗) : a ∈ R2, BR ∈ R2×2, BT
R = −BR

}
, (26)

C(Ω) =
{

BC(x− x∗) : BC ∈ R2×2, BT
C = BC

}
. (27)

Obviously, P1(Ω) is the summation of R(Ω) and C(Ω). Both R(Ω) and C(Ω) are
subspaces of V1(Ω). Two projection maps, ΠR: V1(Ω)→R(Ω) and ΠC: V1(Ω)→C(Ω), are
defined to extract the rigid motions and constant strain of u∈V1(Ω). Considering that
elements of C(Ω) should contain no rigid motion and that elements of R(Ω) should contain
no constant strain, the following orthogonality conditions are imposed on the two maps:

ΠRc = 0, ∀c ∈ C(Ω), (28)

ΠCr = 0, ∀r ∈ R(Ω). (29)

Gain et al. [48] proved that projection maps ΠR and ΠC satisfying the above properties
can be given by

ΠRu = u∗ + 〈ω(u)〉(x− x∗) with ω(u) =
1
2

(
∇u−∇Tu

)
(30)

and
ΠCu = 〈ε(u)〉(x− x∗) (31)

Due to the orthogonality conditions in Equations (28) and (29), we have

ΠPu = ΠRu + ΠCu = u∗ + 〈∇u〉(x− x∗). (32)

It is noticed that ∫
Ω
∇(ΠPu) dx =

∫
Ω
〈∇u〉 dx=

∫
Ω
∇u dx, (33)

and that ∇p in Equation (22) contains only constant elements. Obviously, the projection
map ΠPu given by Equation (32) satisfies Equation (22).

Using the integration by parts, the areal integrals in Equation (32) can easily be
converted to the boundary integrals, and then, it can be computed precisely because
u = (u, v) is linear on each edge of Ω. Denoting the length of edge i connecting vertex i−1
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and vertex i as li, as Figure 4 shows, and the outward unit normal vector on edge i as
ni = (nix, niy)T, 〈∇u〉 can be computed as

〈∇u〉 = 1
S
∫

Ω∇u dx = 1
S

[ ∫
∂Ω unx ds

∫
∂Ω uny ds∫

∂Ω vnx ds
∫

∂Ω vny ds

]

= 1
S


n
∑

i=1

linix+li+1n(i+1)x
2 ui

n
∑

i=1

liniy+li+1n(i+1)y
2 ui

n
∑

i=1

linix+li+1n(i+1)x
2 vi

n
∑

i=1

liniy+li+1n(i+1)y
2 vi

 (34)
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By substituting Equation (34) into Equation (32), we have

ΠPu =
1
n


n
∑

i=1
ui

n
∑

i=1
vi

+
1
S


n
∑

i=1

linix+li+1n(i+1)x
2 ui

n
∑

i=1

liniy+li+1n(i+1)y
2 ui

n
∑

i=1

linix+li+1n(i+1)x
2 vi

n
∑

i=1

liniy+li+1n(i+1)y
2 vi

( x− x∗

y− y∗

)
(35)

For ease of subsequent performance, another matrix expression of ΠPu is given as

ΠPu = T∗H
¯
d, (36)

in which

T∗ =
[

1 0 −(y− y∗) (x− x∗) 0 0.5(y− y∗)
0 1 (x− x∗) 0 (y− y∗) 0.5(x− x∗)

]
(37)

and

H =



1
n 0 1

n 0 . . . 1
n 0

0 1
n 0 1

n . . . 0 1
n

l1n1y+l2n2y
−4S

l1n1x+l2n2x
4S

l2n2y+l3n3y
−4S

l2n2x+l3n3x
4S . . .

lnnny+l1n1y
−4S

lnnnx+l1n1x
4S

l1n1x+l2n2x
2S 0 l2n2x+l3n3x

2S 0 . . . lnnnx+l1n1x
2S 0

0
l1n1y+l2n2y

2S 0 l2n2y+l3n3y
2S . . . 0

lnnny+l1n1y
2S

l1n1y+l2n2y
2S

l1n1x+l2n2x
2S

l2n2y+l3n3y
2S

l2n2x+l3n3x
2S . . .

lnnny+l1n1y
2S

lnnnx+l1n1x
2S


. (38)
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Due to the orthogonality conditions in Equations (28) and (29), the constant strain
tensor ε(ΠPu) can be computed as follows:

ε(ΠPu) = ε(ΠCu) = 〈ε(u)〉

= 1
S


n
∑

i=1

linix+li+1n(i+1)x
2 ui

n
∑

i=1

( liniy+li+1n(i+1)y
4 ui ++

linix+li+1n(i+1)x
4 vi

)
n
∑

i=1

( liniy+li+1n(i+1)y
4 ui ++

linix+li+1n(i+1)x
4 vi

) n
∑

i=1

liniy+li+1n(i+1)y
2 vi

 (39)

and a matrix expression of the constant strain vector ε = (εx, εy, γxy) can be given as

ε(ΠPu) =
1
S



n
∑

i=1

linix+li+1n(i+1)x
2 ui

n
∑

i=1

liniy+li+1n(i+1)y
2 vi

n
∑

i=1

( liniy+li+1n(i+1)y
2 ui ++

linix+li+1n(i+1)x
2 vi

)

 = PC
¯
d (40)

in which

Pc =


l1n1x+l2n2x

2S 0 l2n2x+l3n3x
2S 0 . . . lnnnx+l1n1x

2S 0
0

l1n1y+l2n2y
2S 0 l2n2y+l3n3y

2S . . . 0
lnnny+l1n1y

2S
l1n1y+l2n2y

2S
l1n1x+l2n2x

2S
l2n2y+l3n3y

2S
l2n2x+l3n3x

2S . . .
lnnny+l1n1y

2S
lnnnx+l1n1x

2S

. (41)

Obviously, Pc is actually composed by the latter three rows in H.
An element u∈V1(Ω) can be decomposed into ΠPu and the residual item u−ΠPu.

Then, a bilinear form from V1(Ω) × V1(Ω) to R can be analyzed without the explicit
expression of u, which will be demonstrated in the next section.

4.3. Computation of α(u, v) and f(v)

For simplicity of expression, α (u, v) in Equation (4) and f (v) in Equation (8) are
rewritten as

α(u, v) = αE + αM − αV , f (v) = f b + f t − f σ (42)

in which

αE =
∫

Ω
εT(v)σ(u) dx, αM =

2ρ

∆2

∫
Ω

vTu dx, αV =
2ρ

∆

∫
Ω

vTV0 dx (43)

and
f b =

∫
Ω

vTb dx, f t =
∫

∂Ω
vTtds, f σ =

∫
Ω

εT(v)σ0dx (44)

It is noticed that, in this study, V0 is considered an element in V1(Ω) to estimate V0
within the block because V0 at the block vertices are directly related to u. Consequently, αV

is a bilinear form. V0 can also be evaluated using the rigid body motion and the constant
strain associated with ΠPu. That will induce V0 to become an element in P1(Ω) and αV to
become a linear form.

The bilinear forms are formulated first. Due to the orthogonality conditions (22) and
(23), any bilinear form α(u, v) regarding two elements u, v∈V1(Ω) can be rewritten as

α(u, v) = a(ΠPu, ΠPv) + a(u−ΠPu, v−ΠPv). (45)

On the right side of Equation (45), the first term named the consistency term can
be precisely calculated while the second term called the stabilization term represents the
contribution of the residual item u−ΠPu to the bilinear form. The stabilization term cannot
produce an exact solution, so the second term in VEM is usually denoted as s(u−ΠPu,
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v−ΠPv) to indicate that it is an approximation. The standard scheme of s(u−ΠPu, v−ΠPv)
was provided in classical VEM literature [46], but it is quite free in the construction of
s(u−ΠPu, v−ΠPv) in practice [48,49]. The stabilization term proposed by Veiga [46] is
adopted in this study:

s(u−ΠPu, v−ΠPv) =
n

∑
i=1

η[u(xi)−ΠPu(xi)][v(xi)−ΠPv(xi)] (46)

where η is a positive parameter ensuring the right scaling of the bilinear form assigned to
the residual item.

Using Equation (45), the bilinear form αE is rewritten as follows:

αE(u, u) = αE(ΠPu, ΠPu) + sE(u−ΠPu, u−ΠPu) (47)

Substituting the matrix expression (40) regarding ε(ΠPu) into Equation (47), the con-
sistency term is

αE(ΠPu, ΠPu) =
∫

Ω
εT(ΠPu)σ(Πu) dx =

¯
d

T[
SPT

c DPc

]¯
d (48)

in which D is the elastic matrix
The stabilization term in Equation (47) is

sE(u−ΠPu, u−ΠPu) =
n

∑
i=1

ηE[u(xi)−ΠPu(xi)]
2 =

¯
d

T[
ηE(I− Pu)

T(I− Pu)
]¯

d (49)

where I is a 2n × 2n unit matrix and Pu is a 2n × 2n constant matrix:

Pu =


T∗(x1)
T∗(x2)

...
T∗(xn)

H (50)

In the view that sE is the approximation of αE, the positive parameters ηE can be de-
cided upon by requiring that sE and αE are comparable. The consistency term αE(ΠPu, ΠPu)
can be estimated using sE as follows:

sE(ΠPu, ΠPu) =
¯
d

T[
ηEPT

u Pu

]¯
d (51)

The exact solution of αE(ΠPu, ΠPu) is given in Equation (48). Equating the traces of
the two matrices, ηE is determined:

ηE =
trace(SPT

c DPc)

trace(PT
u Pu)

(52)

Combining Equations (48) and (49), we have

αE(u, u) =
¯
d

T[
SPT

c DPc

]¯
d +

¯
d

T[
ηE(I− Pu)

T(I− Pu)
]¯

d (53)

Mimicking what we did for the bilinear form αE, the bilinear forms αM and αV are
formulated as

αM(u, u) =
¯
d

T[ 2ρ

∆2 HTPmH
]¯

d +
¯
d

T[
ηM(I− Pu)

T(I− Pu)
]¯

d (54)
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and

αV(u, V0) =
¯
d

T[2ρ

∆
HTPmH

]
V0 +

¯
d

T[
ηV(I− Pu)

T(I− Pu)
]
V0, (55)

respectively. Here, Pm is a 2n × 2n constant matrix as

Pm =
x

Ω

(T∗)TT∗dxdy, (56)

ηM =
2ρ

∆2
trace(HTPmH)

trace(PT
u Pu)

(57)

and

ηV =
2ρ

∆
trace(HTPmH)

trace(PT
u Pu)

. (58)

The integrations in Equation (56) can be exactly calculated by using the simplex
integration. Now, we have successfully formulated all bilinear forms in Equation (43).

Then, the linear forms fσ, fb, and ft in Equation (44) are investigated. Obviously, ft

can be computed directly. Because u is linear on each edge of Ω, a definite shape function
matrix N(x) can be easily determined for a point x on ∂Ω to compute u(x) using Equation (6).
Thus, we have

f t =
¯
d

T∫
∂Ω

NT(x)t dΓt (59)

Only the constant stress associated with ΠPu can be valued in the first-order VEM, so
σ0 is a constant stress in this study. Using the integration by parts, the linear form fσ can be
processed as

f σ =
∫

Ω
εT(u)σ0 dx =

¯
d

T(
SPT

c σ0

)
(60)

Treating the constant body force b(x, y) as an element in P1(Ω), we have

f b =
∫

Ω
uTb dx =

∫
Ω
(ΠPu)Tb dx =

¯
d

T[
HT
∫

Ω
(T∗)T dx

]
b =

¯
d

T(
Lb
)T

b (61)

in which Lb is a 2 × 2 n matrix as follows:

Lb =

[
Lb

1 0 Lb
2 0 . . . Lb

n 0
0 Lb

1 0 Lb
2 . . . 0 Lb

n

]
(62)

and

Lb
i =

S
n
+ 0.5

(
linix + li+1n(i+1)x liniy + li+1n(i+1)y

)( x0 − x∗

y0 − y∗

)
(63)

So far, all bilinear and linear forms in Equations (4) and (8) were formulated. The
energy induced by the contact constraints are investigated in next section.

4.4. Computation of J’(v) Due to the Contact Constraints

In the block system, no tension and interpenetration is allowable when the collision of
blocks occurs. Three contact states, “open”, “lock”, and “slide”, are defined in DDA. By
adopting stiff springs, different contact constraints are imposed according to the state.

A typical contact pair that is composed by a vertex i of ΩB and an entrance line jk of
ΩA is plotted in Figure 5a. Point o is the closest point from line jk to point i. At the start
of a time step, the coordinates of points i, j, k, and o are (xi, yi), (xj, yj), (xk, yk), and (xo, yo),
respectively. Within this time step, their displacements are (ui, vi), (uj, vj), (uk, vk), and
(uo, vo), respectively. Then, the normal penetration dn and tangential relative displacement
dτ in Figure 5b can be measured using their new coordinates when the time step terminates.
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If dn has a negative value, the contact pair must be “open” and no contact constraint
applies, which results in no spring being added into the block system. Otherwise, a normal
stiffness spring is added to oppose the penetration, which results in a deformation energy
Jn. Suppose that the two blocks contact each other along a coincident edge. The Coulomb
friction law is adopted to determine whether the tangential relative motion is permitted.
If the tangential relative motion is inadmissible, the contact pair is “lock” and a stiffness
spring along the tangential direction is introduced to resist the tangential relative motion,
leading to a deformation energy Jτ . Otherwise, the contact pair is “slide” and a pair of
friction forces is adopted along the tangential direction, inducing a potential energy Jf. The
allowable upper bound of the Coulomb friction law is considered the value of the friction
forces. For the block system, J’(v) in Equation (1) can be obtained by collecting Jn, Jτ , and Jf

of all contact pairs.
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In practice, the states of all contact pairs have to be supposed in advance, and then, the
“open-close” iteration is executed to guarantee the validity of the states. First, assemble the
global equations based on the assumed contact states and obtain an interim displacement
solution. Next, check the states of the contact pairs by using the interim displacement solu-
tion and alter the previously supposed states. Modify the contact constraints concerning
every contact pair. Then, renew and resolve the global equations to obtain an updated in-
terim displacement solution. Finally, stop the iteration when the actual states of all contact
pairs agree with the supposed states and acquire the ultimate displacement solution.

Firstly, considering that the displacement should be small in a time step, the normal
penetration dn has an approximation (61) by neglecting the second-order infinitesimal value:

dn = −
[

S0

l
+

1
l
(

yj − yk xk − xj
)( ui

vi

)
+

1
l
(

yk − yi xi − xk
)( uj

vj

)
+

1
l
(

yi − yj xj − xi
)( uk

vk

)]
(64)

in which

S0 =

∣∣∣∣∣∣
1 xi yi
1 xj yj
1 xk yk

∣∣∣∣∣∣, l =
√(

xj − xk
)2

+
(
yj − yk

)2 (65)

Given that the stiffness of the normal spring is ρn, the normal spring resisting the
normal penetration induces the deformation energy as follows:

Jn = 0.5ρnd2
n (66)

Minimization of Jn causes three second-order vectors to be added to the global load
vector and nine second-order square matrices to be added into the global stiffness matrix.

Then, similar to dn, the tangential relative displacement dτ can be formulated as

dτ =
S0

l
+

1
l
(

xk − xj yk − yj
)( ui

vi

)
+

µ

l
(

xj − xk yj − yk
)( uj

vj

)
+

1− µ

l
(

xj − xk yj − yk
)( uk

vk

)
(67)
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where

S0 =
(

xk − xj yk − yj
)( xi − x0

yi − y0

)
, µ =

1
l

(√
(x0 − xk)

2 + (y0 − yk)
2
)

(68)

Provided that the stiffness of the tangential spring is ρτ , the tangential spring results
in the deformation energy:

Jτ = 0.5ρτd2
τ (69)

Minimization of Jτ also leads to three second-order vectors being added to the global load
vector and nine second-order square matrices being added into the global stiffness matrix.

Finally, if the contact pair is “slide”, a pair pf friction forces is imposed along the
tangential direction instead of the tangential spring. The unit direction vector from point j
to point k is

τ =
1
l
( (

xk − xj
) (

yk − yj
) )T (70)

The allowable upper bound of the Coulomb friction law is denoted by fup. For dτ in
Figure 5b, the friction force fupτ acts on ΩB at point i and the friction force—fupτ acts on
ΩA at point o. The potential energy caused by the pair of friction force can be formulated as

Jf = −µ
(

uj vj
)

fupτ − (1− µ)
(

uk vk
)

fupτ +
(

ui vi
)

fupτ (71)

Minimization of Jf causes three second-order vectors to be added to the global load
vector. It is noticed that the Coulomb model of friction assumes that the sliding frictional
force is proportional to the normal contact force. Provided that the joints between blocks
have the mechanical properties of the friction angle ϕ and the inner cohesion c, fup is
equivalent to |ρndn|tanϕ + c. If Equation (64) is adopted to estimate fup, the frictional
energy term will contribute not only to the global force vector but also to the stiffness
matrix, leading to non-symmetry of the stiffness matrix. To avoid this issue, fup is estimated
by using dn obtained in the previous “open–close” iteration. In the view that the variation
in dn is small when the “open–close” iteration is about to converge, such a simplification
is acceptable.

In the original DDA, the incremental vertex displacements are estimated using
Equation (11), while in the proposed method, the incremental vertex displacements are
selected as the degrees of freedom. Therefore, the contributions of the contact restraints to
the global stiffness matrix and load vector have simpler but more precise expressions in
the proposed method than in the original DDA [36].

Minimize the potential energy-induced contact pairs in the block system one by
one, and the contribution of J’(v) to the global equations are obtained and Equation (9)
is fulfilled.

When Equation (9) is fulfilled completely, the global equations are resolved as the
traditional DDA. For one time step, the vertex coordinates are updated by adding their
incremental displacements to the previous coordinates once the open–close iteration con-
verges. In addition, the constant stress associated with accumulation of the constant strain
in ΠPu over the foregoing time steps is considered the initial stress for the following
time step.

5. Numerical Examples

Some numerical examples are analyzed to test the proposed method in this section.
To evaluate the correctness, precision, and efficiency of the new approach, DDA with
the post-adjustment strategy and vertex displacements-based DDA based on Wachspress
interpolation [36] are adopted to solve these examples. For an objective comparison on
the computational efficiency, all computations are conducted on the same laptop with
8 GB of RAM and Intel Core i7-6500U CPU. When conducting contact computation, ρn
was prescribed as 100E and ρτ was prescribed as 40E for all methods. Here, E is Young’s
modulus of the block.
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5.1. Rotating Triangular Block Problem

As drawn in Figure 6a, a rotating triangular block problem was designed by the
authors to investigate the contact states in the equilibrium equation and in the resulting
configurations. There was a triangular block on a rectangular ramp. The block and the
ramp had the same material properties: ρ = 2.8 g/cm3, E = 20 GPa, and Poisson’s ratio
ν = 0.25. The gravity force of this model was ignored, and a concentrated load P = 10 kN
acted at point 5 along the horizontal direction. All vertices of the foundation were fixed as
the boundary conditions.

Materials 2021, 14, x FOR PEER REVIEW 16 of 25 
 

 

Table 1. The penetrations of the contact pair point 7–edge 14 by DDA with the post-adjustment strategy and the new 
method. 

Time 
Step 

The Original DDA with the Post-Adjustment 
Strategy The New Method 

The 
Rotational 

Angle r0 
Penetrations in the 

Equilibrium Equations 
(m) 

Penetrations in the 
Updated 

Configurations (m) 

Penetrations in the 
Equilibrium 

Equations (m) 

Penetrations in the 
Updated 

Configurations (m) 
1 8.3289 × 10−9 8.3288 × 10−9 8.32890 × 10−9 8.32890 × 10−9 −0.000001  
2 2.5026 × 10−8 2.5026 × 10−8 2.50260 × 10−8 2.50260 × 10−8 −0.000000  
3 7.4918 × 10−8 7.4918 × 10−8 7.49180 × 10−8 7.49180 × 10−8 −0.000000  
4 3.3772 × 10−7 1.4587 × 10−7 3.37720 × 10−7 3.37720 × 10−7 −0.001073  
5 1.0094 × 10−6 −7.2045 × 10−7 1.00970 × 10−6 1.00970 × 10−6 −0.003218  
6 3.0067 × 10−6 −1.8379 × 10−6 3.01240 × 10−6 3.01240 × 10−6 −0.005375  
7 8.9005 × 10−6 −7.2391 × 10−7 8.92310 × 10−6 8.92310 × 10−6 −0.007554  
8 2.6114 × 10−5 9.8896 × 10−6 2.62290 × 10−5 2.62290 × 10−5 −0.009768  
9 7.5032 × 10−5 5.0108 × 10−5 7.54400 × 10−5 7.54400 × 10−5 −0.012047  

10 2.0631 × 10−4 1.7005 × 10−4 2.07880 × 10−4 2.07880 × 10−4 −0.014444  
11 4.9419 × 10−4 4.4322 × 10−4 4.97090 × 10−4 4.97090 × 10−4 −0.017006  
12 7.6165 × 10−4 6.9448 × 10−4 7.63320 × 10−4 7.63320 × 10−4 −0.019372  
13 6.5260 × 10−4 5.7022 × 10−4 6.50170 × 10−4 6.50170 × 10−4 −0.021275  
14 3.2463 × 10−4 2.2251 × 10−4 3.22710 × 10−4 3.22710 × 10−4 −0.023478  
15 2.6022 × 10−4 1.2772 × 10−4 2.68970 × 10−4 2.68970 × 10−4 −0.026494  
16 5.7111 × 10−4 3.9996 × 10−4 5.96770 × 10−4 5.96770 × 10−4 −0.029810  
17 9.6448 × 10−4 7.5227 × 10−4 9.91470 × 10−4 9.91470 × 10−4 −0.032847  
18 9.2970 × 10−4 6.7950 × 10−4 9.13440 × 10−4 9.13440 × 10−4 −0.035286  
19 3.3880 × 10−4 4.7618 × 10−5 2.94330 × 10−4 2.94330 × 10−4 −0.037664  

Although the rotational angle r0 is very tiny in each time step, the difference is 
sometimes considerable in the two normal penetration values. Moreover, the normal 
penetration value is negative in the resulting configurations at steps 5, 6, and 7, which 
violates the actual contact conditions completely. 

(a)  (b)  

Figure 6. (a) A triangular block on the foundation and (b) its movement under a horizontal point load. 

Then, the example was reanalyzed using the proposed method. For the contact pair 
point 7–Edge 14, the normal penetration values are also given in Table 1. The results 
indicated that the two normal penetration values are identical when the incremental 
displacements at the vertices are directly selected as the degrees of freedom. 

  

Figure 6. (a) A triangular block on the foundation and (b) its movement under a horizontal point load.

Firstly, DDA with the post-adjustment strategy was adopted to simulate the dynamic
behavior of the model by using the max step displacement ratio δ = 0.1 and ∆ = 0.01 s.
Figure 6b illustrates the configurations at the end of the 6, 9, 13, and 19 time steps. The
triangular block rotated around point 7 for the eccentric moment from P. In the model,
edge 14 had no rotation for its two end points that were both fixed. For the contact pair
point 7–edge 14, we noted the normal penetration value in the equilibrium equations and
measured the normal penetration value in the updated configurations. The results are
listed in Table 1.

Although the rotational angle r0 is very tiny in each time step, the difference is
sometimes considerable in the two normal penetration values. Moreover, the normal
penetration value is negative in the resulting configurations at steps 5, 6, and 7, which
violates the actual contact conditions completely.

Then, the example was reanalyzed using the proposed method. For the contact pair
point 7–Edge 14, the normal penetration values are also given in Table 1. The results
indicated that the two normal penetration values are identical when the incremental
displacements at the vertices are directly selected as the degrees of freedom.

Finally, vertex displacement-based DDA based on Wachspress interpolation [36] was
used to solve this example and produced the same results as the proposed method. In
this example, the time consumed by DDA with the post-adjustment strategy was 0.034 s,
vertex displacement-based DDA in [36] spent 0.038 s, and the proposed method consumed
0.037 s.

5.2. Sliding Problem

There was a rectangular block on a triangular ramp, as Figure 7a shows. The top
surface of the ramp had a slope angle of 45◦. The block and ramp were prescribed to
have the same mechanical parameters: ρ = 2.5 × 103 kg/m3, E = 35 MPa, and ν = 0.3. The
external load only came from the gravitational force with gravity acceleration g = 9.8 m/s2.
No inner cohesion was involved in this model. All vertices of the ramp were fixed as the
boundary conditions.
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Table 1. The penetrations of the contact pair point 7–edge 14 by DDA with the post-adjustment strategy and the new method.

Time Step
The Original DDA with the Post-Adjustment Strategy The New Method

The Rotational Angle r0Penetrations in the
Equilibrium Equations (m)

Penetrations in the Updated
Configurations (m)

Penetrations in the
Equilibrium Equations (m)

Penetrations in the Updated
Configurations (m)

1 8.3289 × 10−9 8.3288 × 10−9 8.32890 × 10−9 8.32890 × 10−9 −0.000001
2 2.5026 × 10−8 2.5026 × 10−8 2.50260 × 10−8 2.50260 × 10−8 −0.000000
3 7.4918 × 10−8 7.4918 × 10−8 7.49180 × 10−8 7.49180 × 10−8 −0.000000
4 3.3772 × 10−7 1.4587 × 10−7 3.37720 × 10−7 3.37720 × 10−7 −0.001073
5 1.0094 × 10−6 −7.2045 × 10−7 1.00970 × 10−6 1.00970 × 10−6 −0.003218
6 3.0067 × 10−6 −1.8379 × 10−6 3.01240 × 10−6 3.01240 × 10−6 −0.005375
7 8.9005 × 10−6 −7.2391 × 10−7 8.92310 × 10−6 8.92310 × 10−6 −0.007554
8 2.6114 × 10−5 9.8896 × 10−6 2.62290 × 10−5 2.62290 × 10−5 −0.009768
9 7.5032 × 10−5 5.0108 × 10−5 7.54400 × 10−5 7.54400 × 10−5 −0.012047
10 2.0631 × 10−4 1.7005 × 10−4 2.07880 × 10−4 2.07880 × 10−4 −0.014444
11 4.9419 × 10−4 4.4322 × 10−4 4.97090 × 10−4 4.97090 × 10−4 −0.017006
12 7.6165 × 10−4 6.9448 × 10−4 7.63320 × 10−4 7.63320 × 10−4 −0.019372
13 6.5260 × 10−4 5.7022 × 10−4 6.50170 × 10−4 6.50170 × 10−4 −0.021275
14 3.2463 × 10−4 2.2251 × 10−4 3.22710 × 10−4 3.22710 × 10−4 −0.023478
15 2.6022 × 10−4 1.2772 × 10−4 2.68970 × 10−4 2.68970 × 10−4 −0.026494
16 5.7111 × 10−4 3.9996 × 10−4 5.96770 × 10−4 5.96770 × 10−4 −0.029810
17 9.6448 × 10−4 7.5227 × 10−4 9.91470 × 10−4 9.91470 × 10−4 −0.032847
18 9.2970 × 10−4 6.7950 × 10−4 9.13440 × 10−4 9.13440 × 10−4 −0.035286
19 3.3880 × 10−4 4.7618 × 10−5 2.94330 × 10−4 2.94330 × 10−4 −0.037664
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proposed method and DDA with the post-adjustment strategy.

The block slides along the ramp if the friction angle of the interface ϕ is less than 45◦,
and its displacement is

s = 0.5g(sin 45o − tan ϕ cos 45o)t2 (72)

in which s denotes the sliding distance (m) of the rectangle and t is the elapsed time (s).
To appraise the accuracy of the new method, three values, 15◦, 30◦, and 40◦, were

assigned to the friction angle. Taking ∆ = 0.02s and δ = 0.10, 35 time steps were computed.
Referring to the analytical solutions of Equation (72), the relative errors of the proposed
approach and the original DDA results were measured and are drawn in Figure 7b.

Above all, the relative errors of the two methods both appear to be correlated with
the friction angle. Large friction angles always induce larger errors than small angles. The
reason behind that is the approximation strategy of the contact force adopted in DDA. For
a new contact pair, the proposed method initializes the contact force to 0 as the classical
DDA and approximates the exact value according to the resulting interpenetration or
inconsistent tangential motion between blocks.

Then, the relative errors of the two methods both rapidly drop off as the time steps
increase. In the cases ϕ = 15◦ and ϕ = 30◦, the displacement differences in the two methods
are quite small. Both methods induced a relative error decreasing from 0.65% to 0.06%
when ϕ = 15◦ and from 2.4% to 0.2% when ϕ = 30◦, making it difficult to distinguish their
relative error curves in Figure 7b. When ϕ = 40◦, the original DDA results in a relative error
of 55% at the first time step and a relative error of 2.9% at the end while the new method
leads to a relative error of 37% at the first time step and a relative error of 2.0% at the end.
Therefore, the proposed method provides higher accuracy results for this problem than the
original DDA.

As in the original DDA, the constant stress is estimated using the proposed method
because only the constant strain associated with ΠPu can be determined within the block.
To investigate the difference in stress results of DDA with the post-adjustment strategy and
the proposed method, the sliding problem was reanalyzed. Because the stress is unstable
in a dynamic analysis, five friction angles, 50◦, 55◦, 60◦, 65◦, and 70◦ were adopted and
static analysis with 50 time steps was executed to obtain a stable stress result. Firstly, little
difference occurs in the resulting stress values of the two methods. When ϕ = 50◦, the
maximal principal stress σ1 = 0.50 kPa and the minor principal stress σ2 = −6.91 kPa in
the original DDA and σ1 = 0.63 kPa and σ2 = −6.66 kPa in the proposed method. When
ϕ = 70◦, σ1 = 2.22 kPa and σ2 = −5.97 kPa in the original DDA and σ1 = 2.22 kPa and
σ2 = −5.91 kPa in the proposed method. Then, the minimum principal stress direction
appears to increase gently with the friction angle increasing, as shown in Figure 8a, and it
stabilizes when the friction angle increases to 65◦. The variations in the minimum principal
stress direction with the friction angles are plotted for the two methods in Figure 8b. The
proposed method has a gentler direction for the minimum principal stress. The stable



Materials 2021, 14, 1252 18 of 24

direction for the minimum principal stress is −76.93◦ in the original DDA and −76.60◦ in
the proposed method.
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For this problem, the calculation times consumed by the three methods appear to have
a clear gap. Taking the case ϕ = 30◦ as an example, DDA with the post-adjustment strategy
took 0.041 s. The time consumed by vertex displacement-based DDA in [36] is 0.108 s. This
is because numerical integrations is necessary in computation for a rectangular block when
using vertex displacement-based DDA based on Wachspress interpolation. However, only
0.042 s is consumed by vertex displacement-based DDA using VEM.

5.3. Surrounding Rock Problem

The stability assessment of a surrounding rock is an important problem for the design
and construction of underground engineering. Figure 9 describes a surrounding rock
model composed of 36 rock blocks. Both convex and concave blocks were included in this
model. All blocks were assumed to have the same mechanical characteristics: ρ = 2.8 g/cm3,
ν = 0.20, and E = 200 MPa. Only the gravitational force with g = 10 m/s2 acts on the model.
The hoop joints in the surrounding rock divided the model into three layers. The outermost
boundaries of this model were fixed as the displacement boundary conditions.
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Figure 9. A surrounding rock model.

Using δ = 0.005 and a self-adjusting ∆ from the code, the proposed method was
employed to conduct a static analysis of the problem. Taking the friction angle ϕ = 30◦

for the joints between blocks, Figure 10a illustrates the ultimate configurations and main
stresses after 100 time steps. The proposed method arrived at the conclusion that the model
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is stable. The stress level decreases from the outer layer to the inner layer. At the top
and the bottom, the inner layer suffers the largest horizontal compress effect. The top
two rocks in the inner layer suffer σ1 = −0.4 kPa and σ2 = −109.7 kPa, which induces a
minimum principal stress direction of 6.7◦. The bottom two rocks in the inner layer suffer
σ1 = −15.6 kPa and σ2 = −138.6 kPa, and the direction of the minimum principal stress
is 11.4◦.
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Figure 10. Configurations and main stresses after 100 time steps under two different friction angles: (a) ϕ = 30◦ and
(b) ϕ = 0◦.

Considering the mechanical property of the joints may be damaged by the blasting
excavation effect, friction was neglected and this model was reanalyzed. Figure 10b plots
the results after 100 time steps, which adopts the same tags for stress vectors as Figure 10a.
Because of the arch effect, the surrounding rock is also stable and the stress level still
decreases from the outer to the inner layers. In contrast, the stress values appear to increase
in the case of no friction. The top two rocks in the inner layer suffer σ1 = −6.2 kPa and
σ2 = −117.6 kPa, and the minimum principal stress direction is 9.2◦. The bottom two rocks
in the inner layer suffer σ1 = −24.8 kPa and σ2 = −227.5 kPa, which has a minimum
principal stress direction of 8.4◦. The reason for this is that the stability of the arch only
relies on the compression between blocks when the joints friction effect is absent.

The stability of the surrounding rock in this problem was also verified by using DDA
with the post-adjustment strategy. Vertex displacement-based DDA based on Wachspress
interpolation [36] fails to solve this problem because Wachspress interpolation does not
apply for concave blocks. For this problem, more calculation time is consumed by the
proposed method than DDA with the post-adjustment strategy, which can be attributed to
the fact that the proposed method almost doubles DDA with the post-adjustment strategy
in the dimension of the total degrees of freedom. Taking the case with no friction as an
example, DDA with the post-adjustment strategy took 0.891 s and the proposed method
took 1.117 s.

5.4. Block Wall Failure Problem

As Figure 11 shows, a wall containing 70 blocks was analyzed to test the capacity
of the proposed method. The wall had a width of 270 m and a height of 180 m. The
mechanical parameters of the blocks were given as ρ = 2.0 × 103 kg/m3, E = 500 MPa, and
ν = 0.25. The external load only included the gravitational force with g = 10 m/s2. No
friction occurred between the blocks. The outer vertices of two base blocks were fixed as
the boundary conditions.

Taking ∆ = 0.012 s and δ = 0.01, the dynamic behavior of the model was simulated.
Figure 12 demonstrates the resulted configurations and main stresses after 7 s.
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Figure 12. The configurations and main stresses after 7 s using the proposed method.

First, at the bottom, the central blocks descend because of the absence of supports.
Next, the middle blocks subside one layer after another. Simultaneously, the movement of
the middle blocks leads to rotation and inclination of the left and right blocks. Submitting
to the gravitational force of the upper blocks, the bottom two blocks become deformed.
After 7 s elapsed, the top boundary of the model appears to be a gentle curve. The stress
value of the blocks in the middle is rather small compared to the blocks in other regions,
and the two bottom blocks suffer the largest stress. In the bottom right block, the main
stresses are σ1 = 560 kPa and σ2 = −880 kPa and the direction of the minimum principal
stress is −48◦.

With ∆ and δ unchanged, the dynamic behavior of the example was reanalyzed using
DDA with the post-adjustment strategy. The configurations and main stress vectors after
7 s elapsed are shown in Figure 13.
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The difference in the results of the proposed method and DDA with the post-adjustment
strategy is distinct. The two bottom blocks suffer larger stresses in DDA with the post-
adjustment strategy than in the proposed method. In the bottom right block, σ1 = 2115 kPa
and σ2 = −2205 kPa, and the minimum principal stress has a direction of −44◦. Rotation
and inclination of the blocks in the left and right regions are smaller compared to the results
of the proposed method. The difference in the displacement mode of the two methods
has great effects on the difference between the results. The linear displacement function
was adopted directly in DDA with the post-adjustment strategy. However, in the case
when the vertex number was n > 3, the contribution of the higher-order displacement was
added to the proposed method. Therefore, the proposed approach provides a block of
n > 3 vertices with larger deformability than DDA with the post-adjustment strategy. Once
the deformation of this block is not restrained by the adjacent blocks, a larger deformation
occurs in the proposed method.

For this problem, DDA with the post-adjustment strategy took 1.606 s, the new method
took 1.943 s, and vertex displacement-based DDA based on Wachspress interpolation [36]
took 4.762 s.

The results of Examples 1 and 2 verified that the proposed method has a higher
accuracy in the contact computation than DDA with the post-adjustment strategy. Pre-
vious studies to construct vertex displacement-based DDA focused on governing the
displacement of a block using the displacement functions in PFEM, e.g., Wachspress inter-
polation [36]. The issue that Wachspress interpolation does not apply for concave blocks
can be remedied by introducing those generalized barycentric coordinates well-defined in
the concave domain. If the displacement functions in PFEM are adopted in the construction
of vertex displacement-based DDA, the numerical integrations have to be executed for a
block with more than three vertices, inducing lower computational efficiency for large-scale
problems. Relatively speaking, the proposed method may be a better choice when taking
the displacements at the vertices as the degrees of freedom. In the view that the degrees
of freedom have a larger dimension in the proposed method than in the original, the new
method has a lower computational efficiency than the original DDA. However, a 2% to 20%
increase in time consumption is achieved, which is acceptable.

6. Conclusions

In this study, the increments of displacements at block vertices in one time step were
selected as the new degrees of freedom for a block. The virtual element spaces were defined
for a block and the block system. In the framework of VEM theory, the total potential energy
of the DDA block system was estimated and minimized to obtain the global equilibrium
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equation and load vector. The proposed method can be considered an improvement of
DDA by reformulating the block displacement using VEM and can be regarded as an
attempt to model the dynamic behavior of the block system using VEM coupled with the
contact theory in DDA.

The proposed method has some advantages. On the one hand, the approximation
of cos r0 and sin r0 in the displacement function of the original DDA is avoided in the
proposed method. The degrees of freedom are directly added to the former coordinates
in the renewal of the vertex coordinates, which induces a simpler expression regarding
the contact restraint impositions. On the other hand, the contact detection and the contact
theory can still be adopted as in the original DDA. Meanwhile, most of the numerical
integrations are executed along the block boundary when calculating the global stiffness
matrix and load vector. Only numerical integrations within the block can be conducted
using the simplex integration as in the classical DDA.

Additionally, V1(Ω) is taken as the virtual element space for a block in this study. If the
stress variability within the block is expected, a higher-order virtual element space instead
of V1(Ω), e.g., V2(Ω) and V3(Ω), can be adopted for a block. When using a higher-order
virtual element space, the degrees of freedom should be augmented; refer to [46]. Although
this study is limited to 2D analysis, the method to improve DDA by reformulating the
block displacement using VEM can be mimicked in a 3D case.
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