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Abstract: There are a multitude of existing material models for the finite element analysis of cracked
reinforced concrete that provide reduced shear stiffness but do not limit shear strength. In addition,
typical models are not based on the actual physical behavior of shear transfer across cracks by shear
friction recognized in the ACI 318 Building Code. A shear-friction model was recently proposed that
was able to capture the recognized cracked concrete behavior by limiting shear strength as a yielding
function in the reinforcement across the crack. However, the proposed model was formulated
only for the specific case of one-directional cracking parallel to the applied shear force. This study
proposed and generalized an orthogonal-cracking shear-friction model for finite element use. This
was necessary for handling the analysis of complex structures and nonproportional loading cases
present in real design and testing situations. This generalized model was formulated as a total
strain-based model using the approximation that crack strains are equal to total strains, using the
proportional load vector, constant vertical load, and modified Newton–Raphson method to improve
the model’s overall accuracy.

Keywords: shear friction; membrane; crack-opening path; finite element; modified Newton–Raphson
method

1. Introduction

Over the past 30 years, an element-based approach was developed to study reinforced-
concrete structures based on the premise that the behavior of any whole structure can be
predicted by integrating what is learned from experiments about its parts or elements [1]. In
many typical reinforced-concrete structures, such as shear walls, applied loads are resisted
primarily by in-plane stresses, often referred to as membrane stresses. Therefore, each
membrane element can resist two in-plane normal stresses and one in-plane shearing stress.

It is important to choose accurate and robust modeling techniques for finite-element
analysis that can capture the desired behavior. The ultimate goal of finite-element modeling
is to provide computationally efficient and stable formulations that are easy to implement
and provide accurate and reasonable results. Just as in selecting constitutive relationships,
there are differing methods and viewpoints for a finite model that accomplishes these
goals. Two of these issues include stiffness formulations (secant or tangent) and crack
models (rotating or fixed). Some of the most robust models were developed by Vecchio
and Hsu [1,2].

There are several suggested methods for modeling shear stress–strain relationships
in cracked concrete [3,4]. The constant shear modulus method is more commonly known
as the shear retention factor. It is obtained by multiplying the full, elastic shear modulus
of uncracked concrete by a shear retention factor ranging from 0 to 1. Use of the shear
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retention factor is inconsistent with all primary mechanical relationships of accurate shear
models for cracked concrete [5]. More importantly, there is no rational basis for selecting
the value of β, and it does not limit the shear strength. Zhu and Hsu [6] presented a
rational shear modulus that is provided on a smeared level as a function of principle
stresses and strains. This method assumes that the principle stress and strain directions
coincide to simplify the shear modulus. Vecchio and Collins [2] proposed that the modified
compression-field theory (MCFT) provides a smeared secant shear modulus as a function
of principle stresses and strains, as well. Following the MCFT, Vecchio [7,8] presented
that the disturbed stress field model (DSFM) was developed to handle some issues not
considered in the MCFT. The DSFM theory included rigid-body concrete shear slip by
allowing deviations of the principal stress and strain directions. Walraven [9] presented
a paper on reinforced concrete crack surface when subjected to seismic shear forces. It
is based on the locking of aggregate particles on a crack surface as a function of crack
width and slip, as well as aggregate size and geometry. Then the shear-friction force
developed into the normal compressive force on the crack surface provided by tension in
the reinforcement crossing the crack.

So et al. [5] proposed a shear-friction model for the finite-element analysis of reinforced-
concrete membranes, which sought to improve finite-modeling techniques for shear transfer
across cracked reinforced concrete. This proposed theory is a rational model based on the
physical behaviors present in the ACI 318 Code provisions for shear friction, including
limiting the shear strength due to steel yielding.

This paper begins with the development of the orthogonal shear friction theory, (OSFT)
which is inserted into the new finite-element framework. The model will be developed in
five phases.

2. Research Significance

The current proposed shear-friction theory is a rational model based on the physical
behaviors present in the ACI building code. The shear-friction model is capable of handling
only a precracked element, with only one crack direction. In addition, the crack direction is
oriented in the direction of the applied shear. This paper will develop and formulate the
two-directional orthogonal-cracking shear-friction model for the finite-element framework,
including five phases of the model’s development.

3. Brief Description of the Shear-Friction Model

The mechanical relationships of shear-friction behavior present in ACI 318 [10] were
the basis for formulating the initial concept. Previous testing and data was reviewed to
develop a basic mechanical model of the behavior of slip across a crack [11]. The friction
developed on the surface of the crack can then be defined by the normal and shear forces
acting on the crack surface, as shown in Figure 1, in which the friction coefficient (µ) is
equal to τ/σ. However, further evaluation of previous testing showed that the coefficient
of friction relative to the crack surface varied considerably with the amount of slip, an
approximate value of between 0.6 and 0.7, which showed that it was more suitable to
define the coefficient of friction in terms of the crack-opening path [11–14].

In strain space, the smeared crack strains (εcr and γcr) are the crack separations and
slips divided by the average crack spacing. This definition of smeared crack strains only
works if the crack-opening path is simplified to a linear relationship, otherwise the crack
shear and normal stresses would not be uniquely determined by the crack strains. Crack
slip can be compared with pushing a block up a slope with a rough surface, in which
the coefficient of friction relative to the crack-opening path can be defined. The friction
coefficient relative to the surface of the slope is defined by Equation (1) [15]:

µ′ =
N
V

(1)
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This definition of the friction coefficient results in values that vary little in relation
to slip. It also allows for a method in computing a friction coefficient for both directions
of slip because pushing a block up a slope is more difficult than pushing it down a slope.
The friction coefficients µup and µdown are defined by Equations (2) and (3) for either the
upslope or downslope direction as functions of the single-crack-path friction coefficient µ’
and the angle of the crack opening path θ (both should remain constant) [5]. The detailed
process of the one-crack formulation is referred to in [16].

µup =
[sin θ + µ′ cos θ]

[cos θ − µ′ sin θ]
(2)

µdown =
[µ′ cos θ − sin θ]

[cos θ + µ′ sin θ]
(3)
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Figure 1. (a) Concept of crack slip mechanism and (b) Crack opening path [15].

4. Proposed Orthogonal-Cracking Model Based on Shear Friction

A linear crack-opening path defined by the total shear strain and the total normal strain
relative to the crack direction will be assumed to enforce the slip–separation relationship,
such that γ = acopε. The crack-path model is a constitutive model for concrete subjected to
uniaxial compression that predicts axial and transverse strains as functions of the applied
axial stress. It assumes the presence of closely spaced slip surfaces that occur at all possible
planar orientations that form an angle approximately equal to 0.45 radians with respect to
the axis of loading. Strain is the sum of linear elastic strain in the material between slip
surfaces and nonlinear strain due to slip and separation of the surfaces. For convenience,
the slip surfaces can be thought of as closely spaced cracks. Shear and normal strain equal
the slip and separation divided by the average crack spacing, respectively. Slip causes
the crack to separate due to crack-surface roughness. The relationship between slip and
separation is referred to as the “crack-opening path” for convenience. The slope of the
crack-opening path can flatten due to stress normal to the crack surface.

The parameters of the crack-path model are the crack-opening-path model, the re-
lationship between tension stress normal to the crack surface and crack separation (see
Figure 1), and the crack-friction coefficient. The parameters are different than the traditional
friction coefficient in that they are defined relative to the slope of the crack-opening path,
rather than to the crack surface. In this way, a constant friction coefficient is obtained,
rather than one that varies with the slope of the crack-opening path. In this approach,
the effects of friction and dilatancy are separated and the friction coefficient (µ′) becomes
approximately constant. The parameter acop is a crack-opening-path slope that can be esti-
mated from shear-friction test and a parametric study. See [15,16] for more details. From
the crack-opening path, the effective strain eε can be defined. For the initial formulation of
the model, it is assumed that the total strains are almost all crack strains. Total shear slip
will be tracked as it will be equal to the crack slip. Material properties and cracks are also
smeared across the element. Once two cracks have formed, it will be difficult to determine
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how incremental shear strain is distributed between the two crack directions. Another
important assumption will be that only one crack can slip or be “active” at a time.

4.1. Stress/Strain Formulations

Bilinear, rectangular, simple four-noded elements were chosen that had 8 degrees of
freedom (DOFs) and could translate horizontally and vertically.

Figure 2a shows the element, its dimensions, the DOFs, and the boundary conditions.
The element is square with dimensions “2a” and “2b”, and a thickness “t” where in this
case, a = b. Notations a and b make up half of the length of an element. The bottom-left
node is pinned (restrained both vertically and laterally), and the bottom right node serves
as a roller, free to translate laterally only. All of the odd-numbered DOFs represent lateral
translation of the nodes, while the even numbered DOF’s represent vertical translation.
Figure 2b shows the element’s coordinate definitions. The global coordinate system is “x–y”
and the local crack-direction coordinate system is “1–2”, which is defined by angle θ. The
1-direction is defined to be orthogonal to the first crack.

The first crack will be labeled “Crack 1” and set as the local crack coordinates “1–2” as
shown in Figure 3. Figure 3 also shows the element in a deformed state with Crack 1 open.
Both cracks are in compression, but only Crack 1 has slipped, inducing separation across
the surface, while Crack 2 remains in compression and has zero slip. Although Crack 2 has
neither slipped nor separated, in theory it could still be the active crack in a state of “no
slip”. For the initial formulation of the OSFT stress–strain relationships, only Crack 1 will
be considered active.
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4.1.1. Effective Strain

For orthogonal cracking, the epsilon effective is defined for each crack. Equations (4)
and (5) define effective strain by subtracting the separation strain due to crack slip (crack
opening path in the 1–2 direction) from the total strain normal to the crack:

eε1 = ε1 −
|γ12|
acop

(4)

eε2 = ε2 −
|γ12|
acop

(5)

4.1.2. Normal Concrete Stress

Effective strain is used to define the concrete stresses normal to the crack surfaces σ1
and σ2. Positive values of effective strain represent tension across the crack surface, while
negative values represent compression. A tension-stiffening curve is used to model the
reduced stiffness in the tensile strain region, and the full elastic modulus of concrete is
used for simplicity in the compressive strain regions. Equations (6) and (7) [5] for normal
stress in the concrete are listed below, formulated for Crack 1. Equations for Crack 2 can be
obtained by replacing “1” with “2” for the stress and strain notations.

(a) eε1≤ εcr (the cracking strain of concrete):

σ1 = Ec
eε1 = Ec

(
ε1 −

|γ12|
acop

)
(6)

(b) eε1 > εcr:

σ1 =
fcr√

1 + 200eε1
(7)

4.1.3. Maximum and Minimum Shear Stresses

The shear-stress equations are combined into two major categories: when normal
stress to the crack is tensile, and when normal stress to the crack is compressive. Within the
compressive normal stress category, shear stress is broken down again into two categories:
positive and negative shearing strain relative to the crack. At this point, limits on the
stresses are introduced to distinguish the physical behavior of the crack. At any given
point, the crack surface could be slipping up the slope, down the slope, or not slipping at
all. All of the equations presented here assume that Crack 1 is the active crack.

• Tension across the Crack

If the normal stress σ1 is tensile, shear stress is calculated as follows, assuming that
this is the shearing stress resisted by dowel action of the reinforcement crossing the crack:

τ12 =
β′Gγ12

(1 + β′)
(8)

The premise is that there is some minimal stiffness when the cracks are not in contact.

• Compression across the Crack

If normal stress σ1 is compressive and the crack surfaces are in contact, shear stress is
determined by the equations shown in Table 1.

For positive shearing strain (γ12 > 0) and negative shearing strain (γ12 < 0), the three
cases considered are shown in Table 1: if the crack surface is slipping down a slope, “if the
crack surface is not slipping and if the crack surface is slipping up a slope.
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Table 1. Equations for compression across the crack.

Shearing Strain Crack Surface Slipping
Down a Slope Crack Surface Is Not Slipping Crack Slipping Up

a Slope

positive total shearing strain
(γ12 > 0) τa

12 =
β′Gγ12+µdownσ1

(1+β′)
τb

12 = τ12,prev + G
(
γ12 − γ12,prev

)
τc

12 =
β′Gγ12−µupσ1

(1+β′)

negative total shearing strain
(γ12 < 0) τc

12 =
β′Gγ12−µdownσ1

(1+β′)
τb

12 = τ12,prev + G
(
γ12 − γ12,prev

)
τa

12 =
β′Gγ12+µupσ1

(1+β′)

For any given shear strain γ12, shear stress τ12 is determined from the “not slipping”
equation, but is limited by the minimum and maximum shear stresses, τa

12 and τc
12, as

shown below:
τ12 = τb

12

where, τa
12 ≤ τ12 ≤ τc

12.
These shear-stress equations can be formulated for Crack 2 by replacing the normal

stress σ1 with the normal stress relative to Crack 2, σ2.

4.1.4. Secant Stiffness Matrix Formulation

The base secant stiffness matrix used to define the concrete stress–strain relationship
is a 3 × 3 diagonal matrix, as shown below. This matrix will be altered, however, to include
the complete OSFT, including effective strain, tension stiffening, the crack opening path
and maximum and minimum shear stresses.


σ1
σ2
τ12

 =


σold

1
εold

1
0 0

0 σold
2

εold
2

0

0 0 τold
12

γold
12




ε1
ε2

γ12

 (9)

Case 1: Crack Direction 1 Active
Once Crack 1 has formed, cases for stiffness must be considered:

(a) If the normal stress is tensile, the stress–strain relationship is as follows for positive
and negative shearing strain, γ12:

σ1
σ2
τ12

 =

 E1 0 ±E1
a

0 E2 0
0 0 β′G

1+β′




ε1
ε2

γ12

 (10)

where E1 is the secant stiffness of concrete defined as the normal stress (Equation (7))
divided by the current effective strain value, eε1. E2 can be obtained in the same
manner as E1 by replacing “1” with “2” in the stress and strain notations.

(b) If normal stress is compressive, the secant stiffness matrix is defined based on normal
compressive stress (Equation (6)) and the various cases of shear stress. For positive
total shear strain (γ12 > 0) and negative total shearing strain (γ12 < 0), the equations
and secant stiffness matrices can be found in Tables 2 and 3.

Case 2: Crack Direction 2 Active
Once Crack 2 has formed, the following cases for stiffness must be considered if Crack

2 is the active crack:

(a) If normal stress is tensile, the stress–strain relationship is as follows for positive and
negative shearing strain, γ12:
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σ1
σ2
τ12

 =

 E1 0 0
0 E2

±E2
a

0 0 β′G
1+β′




ε1
ε2

γ12

 (11)

(b) If normal stress is compressive, the secant stiffness matrix is defined based on the
normal compressive stress and the various cases of shear stress. For positive total
shear strain (γ12 > 0) and negative total shearing strain (γ12 < 0), secant stiffness
matrices can be found in Table 4.

Active Crack Criteria
The OSFT includes 16 different stiffness formulations to model the concrete behavior

at any given state of stress and strain for two crack directions. These 16 formulations
become pertinent once orthogonal cracking has occurred. In order to implement the OSFT
into a finite-element program, rational criteria for an active crack and the current state of
the crack surface needs to be established.

At any given state of stress and strain, the crack surface may be in tension or com-
pression. This is defined by the crack-opening path, specifically effective strain. Positive
values of effective strain represent tension across the crack surface, meaning that the rough
surfaces of the crack are not in contact. Negative values of effective strain represent com-
pression across the crack, meaning that the rough surfaces of the crack are in contact and
shear friction can be developed.

If both cracks are in tension, then crack slip (or γ12) is split between the cracks.
However, this case is unlikely for most realistic loading situations. If Crack 1 is in tension
and Crack 2 is in compression, then the active crack is defined as Crack 1. This is because
slip would tend to be focused on the open crack, as it can only be resisted by tension in the
reinforcement crossing the crack. If Crack 2 is in tension and Crack 1 is in compression,
however, the active crack will be Crack 2. The last possible case is both cracks being
in compression. To determine the active crack for this situation requires the maximum
and minimum shear-stress limits. The upper and lower limits on shear stress (τa and
τc) represent the stress necessary to overcome the force of friction across the crack and
initiate slip.

Shear-stress limits for both cracks are necessary to determine the active crack (τa
1,

τa
2, τc

1, and τc
2). The active crack will be defined as the crack that has reached the limits

first, because slip would be initiated in this crack first, thus controlling the behavior. The
shear-stress limits on a one-dimensional plot are shown in Figure 4. A summary of the
active crack criteria is presented in Table 5.
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Table 2. Equations for secant stiffness matrices.

Shearing Strain Crack Surface Slipping Down a Slope Crack Surface Is Not Slipping Crack Slipping Up a Slope

positive total shearing strain (γ12 > 0) τa
12 =

β′Gγ12+µdown(Ecεe f f )
(1+β′)

=
β′Gγ12+µdown Ec(ε1−

γ12
a )

(1+β′)
τb

12 = τ12,prev + G
(
γ12 − γ12,prev

)
τc

12 =
β′Gγ12−µup(Ecεe f f )

(1+β′)
=

β′Gγ12−µup Ec(ε1−
γ12

a )
(1+β′)

negative total shearing strain
(γ12 < 0) τc

12 =
β′Gγ12−µdown(Ecεe f f )

(1+β′)
=

β′Gγ12−µdown Ec(ε1+
γ12

a )
(1+β′)

τb
12 = τ12,prev + G

(
γ12 − γ12,prev

)
τa

12 =
β′Gγ12+µup(Ecεe f f )

(1+β′)
=

β′Gγ12+µup Ec(ε1+
γ12

a )
(1+β′)

Table 3. Secant stiffness matrices at crack direction 1 (active).

Shearing Strain Crack Surface Slipping Down a Slope Crack Surface Is Not Slipping Crack Slipping Up a Slope

positive total shearing
strain (γ12 > 0)


σ1
σ2
τ12

 =

 Ec 0 − Ec
a

0 Ec 0
µdown Ec

1+β′ 0 β′G−µdown Ec/a
1+β′




ε1
ε2

γ12




σ1
σ2
τ12

 =

 Ec 0 − Ec
a

0 Ec 0

0 0 τb
12

γold
12




ε1
ε2

γ12




σ1
σ2
τ12

 =

 Ec 0 − Ec
a

0 Ec 0
−µup Ec

1+β′ 0 β′G+µup Ec/a
1+β′




ε1
ε2

γ12


negative total shearing

strain
(γ12 < 0)


σ1
σ2
τ12

 =

 Ec 0 Ec
a

0 Ec 0
−µdown Ec

1+β′ 0 β′G−µdown Ec/a
1+β′




ε1
ε2

γ12




σ1
σ2
τ12

 =

 Ec 0 Ec
a

0 Ec 0

0 0 τb
12

γold
12




ε1
ε2

γ12




σ1
σ2
τ12

 =

 Ec 0 Ec
a

0 Ec 0
µup Ec
1+β′ 0 β′G+µup Ec/a

1+β′




ε1
ε2

γ12



Table 4. Secant stiffness matrices at crack direction 2 (active).

Shearing Strain Crack Surface Slipping Down a Slope Crack Surface Is Not Slipping Crack Slipping Up a Slope

positive total shearing
strain
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σ1
σ2
τ12

 =

 Ec 0 0
0 Ec − Ec

a

0 µdown Ec
1+β′

β′G−µdown Ec/a
1+β′




ε1
ε2

γ12




σ1
σ2
τ12

 =

 Ec 0 0
0 Ec − Ec

a

0 0 τb
12
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12
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ε2

γ12
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σ2
τ12
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 Ec 0 0
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a
0 −µup Ec
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1+β′
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ε2

γ12
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σ1
σ2
τ12
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0 Ec
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a

0 −µdown Ec
1+β′

β′G−µdown Ec/a
1+β′




ε1
ε2

γ12




σ1
σ2
τ12

 =

 Ec 0 0
0 Ec

Ec
a

0 0 τb
12

γold
12




ε1
ε2

γ12




σ1
σ2
τ12

 =

 Ec 0 0
0 Ec

Ec
a

0 µup Ec
1+β′

β′G+µup Ec/a
1+β′




ε1
ε2

γ12
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Table 5. Summary of active crack criteria.

eε1
eε2 Crack 1 Surface State Crack 2 Surface State Active Crack

+ + Tension Tension Split—both cracks

+ − Tension Compression Crack 1

− + Compression Tension Crack 2

− − Compression Compression Requires analysis of shear-stress limits

4.2. Uniform State of Stress and Strain

A uniform state of strain is defined as strain that remains consistent across the di-
mensions of the element. For a rectangular element, like the membrane being analyzed in
this study, straight lines before strain remain straight after strain, and parallel lines before
strain remain parallel after strain. Thus, a rectangular element subjected to uniform strain
could deform into a parallelogram. A uniform state of stress follows suit, as stresses will
be consistent across the dimensions of the element.

Without a uniform state of stress and strain, analyzing and interpreting the results
would become cumbersome, and critical material behavior may be lost. Obtaining a
uniform state of stress and strain consequently becomes a major constraint on the design of
the finite-element program.

Shear Stress across the Crack Surface

To generalize the shear-friction model to include orthogonal cracking at any angle,
the concrete cannot be precracked, but should be allowed to crack in the direction of the
principal stresses. Considering an element subjected to pure shear as shown in Figure 5,
the orientation of the principal stresses 1 and 2 will be at an angle θ of 45◦ with respect to
the x–y coordinate system. In this case, the 1-direction is the principal tensile stress, thereby
creating a crack parallel to the 2-direction. The shear stress transformed at an angle of 45◦

to the x–y coordinate system will be equal to zero. With no shear across the surface of the
crack, transfer by shear friction becomes irrelevant. The only way to obtain shear across
the crack is to apply normal stress to the element.
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Figure 5. Element subjected to pure shear.

5. Developmental Study of the Finite-Element Model

There were five phases in the development process of the finite-element model for
the OSFT.

5.1. Phase 1: Nonlinear Cyclical Model Framework

The first step toward a working orthogonal-cracking shear-friction model was to
produce a nonlinear finite-element framework, which was an analysis of a single bilinear
rectangular element simply supported on the bottom two nodes. This initial framework
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included nonlinear steel and concrete material properties previously established in stress–
strain formulations, including the tension-stiffening curve [16]. The nonlinear steel model
presented in Figure 6 was kept consistent in all phases of the model development.
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Figure 6. Nonlinear steel stress–strain relationship.

The smeared steel stress is simply the strain multiplied by the steel modulus of
elasticity multiplied by the reinforcement ratio until the steel yields. Once the steel yields,
the smeared stress is equal to the yield strength of the steel multiplied by the reinforcement
ratio. For unloading the steel from the maximum excursion strain, the slope of the steel
modulus of elasticity is used.

5.2. Phase 2: Initial Shear-Friction Implementation

The OSFT was inserted into the initial finite-element framework. Displacements
were incremented monotonically until the strain was sufficient to crack the concrete. As
previously stated, the displacements were enforced to create a uniform state of stress
and strain. Once the crack angle was established, the OSFT was activated to define the
concrete stress–strain relationships and stiffness. These relationships were formulated in
the crack coordinate system (1–2 direction), then rotated to the global coordinate system
(x–y direction) for analysis.

5.3. Phase 3: Proportional Load Vector (PLV)

To obtain shear across the crack surface and apply a compressive vertical load on the
element, a proportional load vector was used to obtain the desired displacements. The
proportional load vector ensured a uniform state of stress and strain, while still allowing a
displacement controlled analysis. Formulations of the PLV, a new convergence method,
results and difficulties are presented in the subsections of this section.

For a displacement-controlled analysis, the global stiffness matrix was previously
partitioned into the free, restrained and prescribed degrees of freedom as shown below.

AF
AP
AR

 =

 SFF SFP SFR
SPF SPP SPR
SRF SPR SRR


DF
DP
DR

 (12)

The PLV formulation similarly requires partitioning the global stiffness matrix into
free, prescribed and restrained DOFs. As shown in Figure 7a, however, the partitioned
DOFs were slightly different. The PLV states that there is a shape vector (Ã) that defines
the shape of the loads on the DOF such that:

A = Ãa (13)
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To ensure a state of uniform stress and strain, the shape vector is defined as follows:

Ã =



−1
−1
−1

1
1
1
1
−1


where the DOFs are :

1
2
3
4
5
6
7
8
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Figure 7. (a) Partitioned DOFs for the PLV. (b) Shape vector applied to the element. (c) Shape vector
and vertical load, v, applied to element.

Figure 7b shows the shape vector applied to the element’s DOFs. By applying
Equation (13) to the global stiffness matrix, and performing the matrix multiplication,
the following equations can be written:

aÃF = SFFDF + SFPDP + SFRDR (14)

aÃP = SPFDF + SPPDP + SPRDR (15)

aÃR = SRFDF + SRPDP + SRRDR (16)

Applying the boundary conditions (DR = 0), plugging Equation (14) into Equation (15)
and solving for a yields:

a =
SPPDP − SPFSFF

−1SFPDP

ÃP − SPFSFF−1ÃF

The solution for a is driven by the prescribed displacement, i.e., the PLV still allows for
a displacement-controlled analysis. To accomplish this, a vertical load (v) can be applied to
the shape vector as shown in Figure 7c.

Now the shape vector can be defined as follows:

Ã =



−1
−1 + v
−1
1 + v

1
1− v

1
−1− v


where the DOFs are :

1
2
3
4
5
6
7
8
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The solution for a remains the same, and the vertical load (v) can be defined to ensure
compression across the crack surface. The vertical compression applied to the element is
not constant in this formulation, but will change depending on the solution for a.

With the new formulation of the PLV, it is convenient to converge on the constant
(a) while still updating the material secant values within an iteration. Figure 8 shows a
flowchart of the PLV algorithm to illustrate the convergence method.
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5.4. Phase 4: Constant Vertical Load (CVL)

The PLV formulation applied a net vertical compressive load to the element. However,
the vertical compressive load is proportional with a, increasing and decreasing with a. In
order to resolve this, the vertical compressive load needs to be independent of a. This
is also more reasonable, as realistic structures generally have a constant vertical load for
design, not a variable one. To accomplish this, Equation (13) was modified as follows:

A = Ãa + B̃ (17)

where, Ã =



−1
−1
−1

1
1
1
1
−1


and B̃ =



0
0
0
0
0
−v

0
−v


and the DOFs are :

1
2
3
4
5
6
7
8

In addition, Equation (14) through Equation (16) need to be modified to account for the
changes to Equation (13). The DOFs and the two load vectors (Ã and B̃) will be partitioned
again into free, prescribed and restrained portions as follows:

aÃF + B̃F = SFFDF + SFPDP + SFRDR (18)

aÃP + B̃P = SPFDF + SPPDP + SPRDR (19)

aÃR + B̃R = SRFDF + SRPDP + SRRDR (20)

By applying the boundary conditions, Equation (20) can be solved for DF and plugged
into Equation (19). Now a can be solved, such that:

a =
SPFSFF

−1
(

B̃F − SFPDP

)
+ SPPDP

ÃP − SPFSFF−1ÃF

It should be noted again that the solution for a is driven by the prescribed displacement,
i.e., the addition of the constant load vector still allows for a displacement-controlled
analysis. The convergence scheme and program algorithm were the same as the PLV.
Figure 9 diagrams the loading imposed on the element from the CVL formulation.
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5.5. Phase 5: Modified Newton–Raphson Method (MNRM)

In an attempt to obtain convergence over cyclical loading of the current model, a
new convergence algorithm was developed. The MNRM works by releasing and re-
enforcing the prescribed DOF within an individual convergence iteration until the forces
are consistent with the state of stress. The new convergence algorithm was applied to the
CVL model, preserving the loading, shear-friction parameters, general analysis procedures
and other inputs.

The procedure for the MNRM can be seen in Figure 10. The algorithm is based on
ensuring consistency between the forces and the state of stress. The procedure starts at the
last set of converged displacements and forces Dold and Fold, respectively. This point “0”
lies on a representative curve of the force–displacement relationship, which includes all of
the model’s properties contained within the global stiffness matrix (S).
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From point “0”, a new incremental displacement is enforced, and the strains and
stresses from this last converged point will define the state of the crack. The state of the
crack defines which crack is active, forcing the program to only allow that crack to be active
for the current iteration. As the state of active crack could, in theory, change within an
iteration, the increment of enforced displacement will be made small enough to obtain
reasonable results. Figure 11 shows an iterative approach for MNRM used.
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6. Results and Discussions

A single four-node rectangular element was analyzed under the loading imposed by
the proportional load vector. The concrete membrane was 254 mm tall by 254 mm wide
and 51 mm thick. The reinforcement ratio was 2% in the horizontal direction and 0.5%
in the vertical direction. The concrete was precracked at an angle (θ) of 45◦ setting the
orthogonal cracking direction (1–2 direction). The vertical load (v) was initially set equal
to 8.9 KN. The values of the base model material properties and parameters are shown in
Table 6.
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Table 6. Material properties and parameters for the base model.

Material Properties and Parameters Values

Concrete Compressive Strength 41.4 MPa

Concrete Modulus of Elasticity (Ec) 27.6 Gpa

Concrete Shear Modulus (G) 13.8 Gpa

Shear Retention Factor (β′) 0.05

Steel Yield Strength 414 Mpa

Steel Modulus of Elasticity (Es) 206.8 Gpa

Friction Coefficients (µup) 1.2

Friction Coefficients (µdown) 0.2

Crack Opening Path (acop) 2.0

Results of the analysis are presented in Figure 12a,b. The analysis was successful
in loading and unloading in one direction, and the element was incrementally forced to
displace to 1.52 mm in the x-direction at the prescribed DOF. Throughout the analysis only
Crack 1 was the active crack.

Figure 12a shows that as displacements were enforced and shear slip occurred across
the crack surface, the crack began to “slip up the slope” in the negative direction. This
represents the stiffness attributed to the β′G portion of the “slip up” equation, and the
shear friction force associated with “slip up”. Shear-friction resistance was due to the fact
that as the crack surface slipped, it separated, causing tensile stresses in the steel. The
tension in the reinforcement placed compression on the crack surface, causing shear-friction
stress to develop. This shear-friction stress was directly proportional to the increasing
compressive stress caused by the reinforcement. Once the steel was strained to its yield
point, compressive stresses could no longer be increased across the crack surface, while the
only increase in shear stress was due to the β′G term. This can be seen as the slope of the
curve begins to flatten out.

Figure 12b shows the relationship between converged values of a in Equation (12), the
multiplier of the shape vector, and the displacement (du). Only positive values for a yielded
the correct forces in the proportional load vector, as the element was subjected to vertical
tension once a exceeded the value of the applied load (v). This yielded an undesirable state
of stress as the crack surfaces were always in tension, and shear friction could no longer be
developed. This “flipped” state of a began to occur as the displacement approached zero.

A single four-node rectangular element was analyzed under the loading imposed by
the CVL. All of the material properties were kept the same as in the PLV analysis. The
reinforcement ratio was 2% in the horizontal direction and 0.2% in the vertical direction.
The constant vertical load (v) was set equal to 80 KN. Results of the analysis are presented
in Figure 12c–e.

Figure 12c shows the relationship between shear stress and shear strain in the crack
orientation for loading in one direction. As the analysis began, shear stress in the concrete
began to lessen as the crack surface “slipped up the slope”, which was due to the steel and
concrete interaction for resisting shear in the direction of the crack. Figure 12d illustrates
that the sum of the concrete and shear stresses remained constant. Initially, the concrete
took almost all of the shear, as the “no slip” case provided the same shear stiffness of
uncracked concrete. Once the crack surface began to slip, the concrete shear stiffness was
reduced, and the steel began to resist more of the shear. Once the steel yielded, the curves
flattened out, thereby limiting the shear strength.
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(PLV); (c) concrete normal stress (Crack 1) vs. effective strain (CVL); (d) concrete shear stress (Crack 1) vs. shear strain
(MNRM); (e) interaction between concrete and steel shearing stresses (MNRM).
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Figure 12e shows how the normal stress was plotted against effective strain, and a
realistic curve was obtained showing that the concrete model was enforced during the
analysis. Based on the results and the new formulation, the reason for divergence might be
due to the current convergence method, in that converging on a may not have been robust
enough to handle the various nonlinear material properties.

The MNRM was successful in converging for loading in one direction. The analysis
was run with the same inputs as the CVL formulation, and the results of the analysis were
consistent with the results obtained from the CVL.

7. Conclusions

A new finite-element framework was required for the implementation of two-directional
cracking. Because of this, a new framework was successfully developed, and results of the
analysis showed that the shear-friction model was able to enforce the crack-opening path
and limit the strength in shear by yielding in the reinforcement.

1. A deflection controlled analysis was successfully obtained in all phases of model
development, which was necessary to produce useful and comparable results for
arbitrary loading, such as cyclical loading.

2. A uniform state of stress and strain was successfully obtained in all phases of model
development. It was first obtained by applying equal incremental displacements
to the top two nodes. The top two nodes’ vertical displacements were then linked
together. In later phases of the model development, a uniform state of stress and strain
was obtained by a proportional load vector, ensuring this state while still allowing a
displacement-controlled analysis.

3. Shear stress was successfully obtained across the surface of the crack. This was a major
consideration, as the crack directions were defined by the orientation of the principal
tensile stress. By definition, there is no shear in the direction of the principal stresses.
Without shear being transferred across the surface of the crack, the consideration of
shear friction for shear transfer becomes irrelevant. In order to obtain shear across the
crack surface, a vertical compressive load was required. This was accomplished by
means of a proportional load vector and later a constant vertical load combined with
a proportional load vector.

The OSFT was developed and implemented in the finite-element framework. Due
to convergence issues, however, only one crack was able to be analyzed, as the second
crack was never stressed such that shear friction would be a consideration of stiffness.
In an attempt to obtain convergence, the OSFT needs to be expanded to the crack strain
separated theory, which would increase the model’s accuracy.
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Abbreviations
The following notations are used in this manuscript:
a shape vector multiplier
acop a parameter that defines the slope of the crack opening path
f cr concrete crack stress
Ec modulus of elasticity of concrete
G concrete shear modulus
N concrete normal strength
V concrete shear strength
β′ dowel action shear retention factor
εcr concrete crack strain
eε effective concrete crack strain
eε1 effective concrete crack strain in the 1 direction
eε2 effective concrete crack strain in the 2 direction
eεA

cr effective concrete crack strain at Point A
ε1 concrete crack strain in the 1 direction
ε2 concrete crack strain in the 2 direction
γ12 shear strain
γ12, prev previously converged shear strain
µ′ friction coefficient defined relative to the crack opening path
µup friction coefficient defined relative to crack surface in the upslope direction
µdown friction coefficient defined relative to crack surface in the downslope direction
σ1 concrete stress in the 1 direction
σ2 concrete stress in the 2 direction
σxy, prev previously converged concrete stress in the x direction
τ12 shear stress
τa

12 minimum shear stress
τb

12 outside upper limit shear stress
τc

12 maximum shear stress
τ12, prev previously converged shear stress
A global actions or forces
S global stiffness matrix
D nodal displacements
A, B̃ shape vectors
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