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Abstract: Electronic skin that is deformable, self-healable, and self-powered has high competitiveness
for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-
healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile
sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can
self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed
from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge (Qsc),
open-circuit voltage (Voc), and short-circuit current (Isc) reaches ~6 nC, ~22 V, and ~400 nA, and the
corresponding output power density is ~2.9 µW× cm−2 when the matching resistance was ~140 MΩ.
As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes
(LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and
can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable
candidate for the material selection of the hydrogel-based self-powered electronic skin.

Keywords: stretchable; self-healable; hydrogels; triboelelectric nanogenerator; e-skin

1. Introduction

Flexible and wearable electronic devices have attracted much attention because of
their potential applications in human health monitoring, intelligent sensing, and human–
computer interaction systems [1,2]. At the same time, higher and higher requirements are
placed on materials. Among them, stretchable and self-healable conductive materials have
become a rapidly developing hot spot [3]. In recent years, stretchable, self-healable con-
ductive hydrogels have attracted widespread attention in wearable electronics and energy
harvesting applications, including smart healthcare devices, electronic skins, stretchable
electrodes, flexible sensors, and other wearable electronics [4–10]. Gelatin is a product of
collagen hydrolysis and contains a large number of functional groups. As one of the raw
materials for preparing natural hydrogels, it is prone to cross-linking reactions [11]. Gelatin
is easily soluble in water at 37 ◦C. Under low temperature conditions, gelatin molecular
chains begin to form a triple helix structure to further form a three-dimensional network
hydrogel, which has a reversible sol-gel transition characteristic. Meanwhile, gelatin has
good biocompatibility and degradability [12,13], and does not cause immune response in
the human body. These excellent characteristics make it have a good application prospect
in the field of biomedicine. However, the mechanical properties of pure gelatin hydrogels
are poor, and its wide range of applications can be achieved by improving the mechanical
properties of gelatin-based hydrogels.
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To adapt to the various arbitrary shapes where these flexible devices may appear, a
shape-adaptable power supply is proposed to drive these flexible electronic devices [14–16].
Some existing flexible power sources such as lithium-ion batteries, electromagnetic gen-
erators, thermoelectric generators, solar cells, and nanogenerators have been widely
used [17–21]. Among them, triboelectric nanogenerators (TENGs), as a green and sus-
tainable energy source, are showing great advantages in the collection of low-frequency
mechanical forces and are due to their wide range of material sources, diverse designability,
low cost, and ease of manufacturing. TENGs have received widespread attention [16,22–25].
So far, after good structural innovation and material preparation, TENGs with good bio-
compatibility and shape adaptability have been rapidly developed [26–29]. When two
materials with different electronegativity are frictionally contacted, charge transfer occurs
between two materials, a potential difference is formed, in the external circuit, electrons
are driven by the potential difference to flow between the two electrodes attached to the
back of the triboelectric material layer or between the electrode and the ground to balance
this potential difference. TENGs can effectively transform mechanical energy to generate
electrical output, based on the triboelectric effect and electrostatic induction [23,26,30–32].

At present, many polymer materials have been applied in TENGs, and they have
played a vital role in the friction layer and support materials of TENGs [33,34]. As a
flexible, stretchable, and biocompatible functional material, the hydrogel constructed from
hydrophilic polymer provides a suitable candidate for the design of flexible functional
sensing electronic skin. However, when the electrode layer is damaged or cracked, it will
cause fatal damage to the performance of the TENG [35]. Hence, it is essential to develop
the self-healable and stretchable TENG. As a novel material, self-healable conductive
hydrogels (SCHs) provide the preferred strategy to solve the above problems [36–38].
SCH is a semi-solid ionic conductor essentially. Its excellent self-healable performance,
great mechanical, and conductive stability after deformation are of great significance
to developing flexible electronics [39,40]. Harnessing hydrogel elastomers to wearable
electronics has important significance and application prospects [41].

Herein, we prepared a flexible and self-healable single electrode TENG, achieved by
introducing gelatin to polyacrylicacid (PAA), and add a specific molar concentration of
NaCl as a conductive component. The prepared self-Healable triboelectric nanogenerator(
SH-TENG) could achieve rapid self-healing in 2.5 min at room temperature. The SH-TENG
could achieve super stretchability (~800% strain). Simultaneously, through the design of
8-pixel array, the sensor array is prepared to simulate electronic skin. It can be in conformal
contact with the skin surface. The sensor array based on this design can generate an output
voltage of ~10 V under a light touch. The electronic skin prepared with this SH-TENG can
accurately realize simple human–computer interaction. The TENG constructed from the
ionic hydrogel can also be used as an energy harvesting device, the generated electricity
can directly light-emitting diode (LEDs). This work provides a new solution for the design
of stretchable self-healable wearable electronic devices.

2. Materials and Methods
2.1. Materials

Acrylic (AA, 99%) was purchased from Shanghai Yi ’en Chemical Technology Co.,
Ltd., (Shanghai, China). N,N′-methylene diacrylamide (MBA, ≥99.0%) was obtained from
Shanghai Aladdin Biochemical Technology Co., Ltd., (Shanghai, China). Ammonium per-
sulfate (APS), gelatin, and NaCl purchased from Sigma-Aldrich Co., Ltd. (Shanghai, China).
Commercial very high bond (VHB) double-sided tape (3M VHB 9469) for encapsulation,
purchased from 3M Co., Ltd. (Shenzhen, China). Ultra-pure water was used throughout
the experiment.

2.2. Preparation of SCHs

The preparation process of SCH is shown below. SCH is synthesized by a simple
“one-pot method.” Specifically, (1) 4.675 g NaCl was dissolved in 20 mL deionized water
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(the concentration of NaCl is 4 mol·L−1) under continuous magnetic stirring for 30 min at
a rotation speed of 500 r·min−1 until the NaCl was utterly dissolved. (2) Simultaneously,
add 6.0 g AA, 0.003 g MBA to the above clear solution, continue to stir for 30 min, and then
add different amounts of gelatin (respectively 1.0 wt %, 2.0 wt %, 4.0 wt %, 8.0 wt %) to the
reaction mixture until a gel-like mixture was obtained. (3) Add 0.0712 g APS (1.0 wt % AA)
to the above solution to initiate the reaction, after 30 min, then filtering the mixed solution
with a 0.5 µm filtration, finally transferring the solution to a glass mold with an area of
10 cm × 10 cm, the thickness of 2 mm, place it in an oven at 55 ◦C for 2 h to form SCH (the
preparation process in Supplementary Materials Figure S1). The hydrogels with different
mass fractions of gelatin all use 4 mol/L NaCl unless otherwise mentioned. The final SCH
is sealed with a silica gel bag together with a glass mold at −20 ◦C.

Different mass fractions of gelatin were recorded as: PAA-Gel-NaCl-1.0, PAA-Gel-
NaCl-2.0, PAA-Gel-NaCl-4.0, PAA-Gel-NaCl-8.0, respectively. Here, PAA-Gel-NaCl-1.0
represents an ionized hydrogel with a gelatin concentration of 1%. As a control group, we
used the same method to design a pure PAA-NaCl hydrogel.

2.3. Characterization

The stress-strain test of SCH was performed on the ESM303/Mark-10 system, and
the ascent speed was set to 20 mm·min−1. The MCR92 rheometer (Anton Paar, Shanghai,
China) was used to study the dynamic oscillation frequency sweep of the hydrogel in the
frequency range of 0.1 to 100 rad·s−1. A linear motor (Matsuura, Zurich, Switzerland)
is used as the mechanical energy input source, and the descend speed is set to 1.5 m/s.
A programmable electrometer (Keithley, Beijing, China) and the oscilloscope (Tektronix,
Beaverton, OR, USA) were used to test the output performance of SH-TENG. The linear
motor was used to provide periodic external force applied to the SH-TENG.

3. Results and Discussion

Through a simple array arrangement, we designed a tactile artificial electronic skin.
Figure 1a shows the electronic skin based on SH-TENG attached to the back of the curved
hand. It is attached to human skin and connected with a metal wire. When the fingertips
press different individual pixels on the sensor array, voltage signals output of different
intensities will be generated. SH-TENG exhibits excellent tactile sensing performance
and can be used as a self-power electronic skin for tactile sensing. SH-TENG is prepared
with a classic sandwich structure as shown in Figure 1b. An enameled copper wire was
fixed on the hydrogel with silver paste for electrical connection. For ease of operation, the
thickness of the hydrogel and VHB tape are controlled at 2 mm and 85 µm, respectively.
The final devices can be of arbitrary shapes. Figure 1c is a digital photo of the 8-pixel array
SH-TENG patch prepared by the above method in conformal contact with the back of hand.
As shown in optical images in Figure 1d, the prepared SH-TENG exhibits milk-white, it has
excellent flexibility and will not damage the sensing function of the device under various
mechanical deformations, such as stretching, knotting rolling, and so on (Figure 1e–g).
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Figure 1. (a) Schematic diagram of electronic skin wearing model based on SH-TENG. (b) Scheme of
the SH-TENG with sandwich structure. (c) An optical picture of an array SH-TENG patch attached
to the back of the hand. (d) Original. (e) Stretching. (f) Arbitrary deformation. (g) Rolling.

The self-healable functional electronic skin is of great significance to the wearable
flexible electronic devices. Figure 2 shows the self-healable result of PAA-Gel-NaCl hy-
drogel (Polyacrylic acid-Gelatin-Sodium chloride hydrogel). According to Figure 2a–d,
the hydrogel was cut in half. Then, connected together in a record, the healing time, the
hydrogel can self-heal in 2.5 min (The whole process is showed in movie S1, supporting
information). Figure 2e shows the schematic diagram of the structure of the PAA-Gel-NaCl
ionic hydrogels. The synthesized PAA-Gel-NaCl hydrogel can achieve rapid self-healing
within 2.5 min at room temperature without any other stimuli. The excellent self-healing
properties of the hydrogel may be due to the combined effect of the triple helix cross-linking
of gelatin and the reversible cross-linking network formed by the dynamic hydrogen bond
between PAA-Gel molecules, which helps to improve the mechanical properties of the
hydrogel [42]. When the hydrogel is cut in half, the dynamic hydrogen bond between PAA
molecules can be used as a special dynamic intersection point. Meanwhile, the reversible
non-covalent coordination interaction of the PAA-NaCl hybrid network makes the ion
hydrogel able to help rapid self-healing at room temperature. The capability of the electrical
recovery after cut was demonstrated in Figure 2f, the resistance before slicing was 359.28 Ω.
After 2.5 min of self-healing, the resistance returned to a stable 363.3 Ω, which was only
a slight increase from the original state. Uniaxial tensile tests are performed to evaluate
the mechanical properties of the hydrogel (Figure 2g). It can be seen from Figure 2g that
doping with a small amount of gelatin increases the toughness of the hydrogel. When the
mass fraction of gelatin is 1%, the strain of the hydrogel can reach 8 λ. When the mass
fraction of gelatin reaches 8%, the breaking strength of the gel becomes 109.5 kpa, the strain
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of the hydrogel becomes 6.2 λ. Because the mechanical properties of gelatin are weak and
brittle, too high gelatin concentration reduces Young’s modulus and breaking strength
of the gel, and the brittle network of high concentration gelatin reduces the mechanical
properties of the copolymer hydrogel. The frequency range of PAA-Gel-NaCl hydrogel
under dynamic oscillation frequency sweep is from 0.1 to 100 rad·s−1, the relationship
between storage energy (G′) modulus and loss modulus (G”) is shown in Figure 2h. Storage
modulus is also the elastic modulus, which refers to the amount of energy stored due to
elastic (reversible) deformation when the material is deformed, reflecting the elasticity
of the material; Loss modulu is also the viscous modulus, which refers to the amount
of energy lost due to viscous deformation (irreversible) when the material is deformed,
reflecting the viscosity of the material. When the storage modulus and loss modulus are in
an order of magnitude, the material is semi-solid, hydrogel material is a typical semi-solid
substance. From the variation curve of the storage modulus (G′) and loss modulus (G”) of
PAA-Gel-NaCl hydrogel with frequency (ω) (G′-ω curve, G”-ω curve), it can be seen that
within the scanning range, the storage modulus of the hydrogel is always greater than the
loss modulus at the dynamic oscillation frequency, indicating that the hydrogel exhibits
stable elastomer-like properties in the frequency sweep range, and mainly exhibits elastic
behavior.
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Figure 2. Self-healable property of PAA-Gel-NaCl hydrogel. (a–d) photographs of the PAA-Gel-NaCl
hydrogel before and after self-healed. (e) The schematic diagram of the structure of the PAA-Gel-
NaCl ionic hydrogels. (f) The capability of electrical recovery after sliced. (g) uniaxial tensile test
of PAA-Gel-NaCl hydrogels with different gelatin content. (h) The storage and loss moduli as a
function of frequency (1% strain).

The PAA-Gel-NaCl hydrogel has good self-healable ability and mechanical properties.
So, it is a suitable candidate material for preparing self-powered electronic skin based on
TENG. TENG generally has four working modes: contact-separation mode, sliding mode,
freestanding mode, and single-electrode mode [43]. The fundamental of the SH-TENG
is the single-electrode mode (Figure 3a). To ensure the accuracy and repeatability of the
experiment, the PTFE film (Poly tetra fluoroethylene) with high electronegativity was used
to periodically contact with the VHB film of the friction layer of SH-TENG, the interface
will be charged, and the same number of charges of opposite polarity will be generated on
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the surface of the dielectric film PTFE and VHB film, respectively (Figure 3(aii). During the
periodic movement, when the two films are attached, there is no potential difference on
the surface of the film because the two opposite charges overlap on the same plane. When
the two surfaces are separated and moved away, the charge on the surface of the VHB film
will induce ions to move in the hydrogel, thereby balancing the static charge and inducing
opposite charges on the surface of the hydrogel (Figure 3(aiii). Simultaneously, an electric
double layer is formed at the interface between the copper wire and the ion hydrogel,
and the same number of negative ions are formed at the interface to induce positive ions
that move in the direction of the copper wire (Figure 3(avi). In the double-layer structure,
electrons flow from the metal wire to the ground through an external circuit until all the
static charges in the electron beam are shielded by the elastic membrane (Figure 3(aiv).
If the moving PTFE membrane approaches the elastomer membrane, the whole process
will be reversed, and the reverse electron flux will be transferred from the ground to
the interface between the copper wire and the ionized hydrogel (Figure 3(av). Through
the regular contact and separation movement of the dielectric film PTFE and SH-TENG,
alternating current will be generated.
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Figure 3. Schematic diagram of the SH-TENG in the single-electrode mode. (a) Schematic diagram
of the working mechanism of the SH-TENG. (b–d) The measurements of the electrical output
performances of the SH-TENG. (b) Voc. (c) Isc. (d) Qsc. (e) The output current density and power
density change with the external resistance.
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When the PTFE film is in contact with SH-TENG, both Voc (open circuit voltage) and
Qsc (the amount of charge transferred under open-circuit voltage) are zero. However, when
the PTFE membrane and SH-TENG are gradually separated, the alternating current will be
generated in the circuit. At this time, the relationship between Voc and Qsc conforms to the
following formula:

Voc = −σA/2C (1)

Qsc = −σA/2 (2)

In the above formula, C is the capacitance of the SH-TENG. σ is the density of electro-
static charge generated on the surface of the VHB film, and A is the contact area between
the PTFE film and the VHB film.

We use a commercial PVDF film to perform the contact-separation motion (area,
2 cm × 3 cm) relative to SH-TENG. A linear motor with a frequency of 2 Hz and a speed of
0.5 m·s−1 was used to measure the electrical output of PP-TENG under contact-separation
motion conditions. Voc, Qsc, Isc are shown in Figure 3b–d. It can be observed that SH-TENG
can provide a stable output (Voc = 22 V, Isc = 400 nA, Qsc = 16 nC). The maximum power
density of SH-TENG was ~2.9 µW·cm−2 when the matching resistance was ~140 MΩ
(Figure 3e).

The flexible SH-TENG has a linear output response under different gradient tensile
strains. The feasibility of SH-TENG energy harvesting in the stretched state was further
evaluated. The SH-TENG (2 cm × 3 cm) is uniaxially stretched to different stretches
or strains (Figure 4a), when it comes into contact with a fixed shape and size dielectric
film (VHB) during contact-separation movement, the corresponding electrical output is
recorded. Compared with the initial unstrained state (λ = 1), when stretch λ = 2–8, the
open circuit voltage of SH-TENG shows a decreasing trend, when λ = 8, the open circuit
voltage only accounts for the initial unstrained half of the output in the state reaches ~11 V.
The decrease in Voc is due to the reduction in the contacted surface area of the hydrogel,
which reduces the charged contact area in the stretched state. After recovering from the
stretched state, the electronic output is equivalent to the initial state, indicating that the
device is not degraded. Figure 4b shows stability tests of SH-TENG. Generally, tactile
sensor based on the SH-TENG is typically vulnerable to the external environment, so it is
necessary to measure its long-term output performance and stability. After 12,000 working
cycles, the open-circuit voltage of tactile sensor remained stable relative to the initial state,
showing its excellent durability and stability. Tactile sensor exhibits good tactile sensing
characteristics, and has demonstrated great applications in artificial electronic skin. As
shown in Figure 4c, an area of 2 cm × 3 cm of the tactile sensor is prepared by using a
sandwich structure and placed on the back of the hand. Under the linear increased touch
pressure, the open-circuit voltage of the sensor also shows a linear increase. Similarly,
the detection range of the tactile sensor was quantified by using the commercial pressure
sensor. The sensor showed good sensing characteristics in the low-pressure range, with a
minimum pressure detection limit of about 0.61 kpa. The voltages recorded under different
contact pressures are shown in Figure 4d. It further shows that our device can achieve
accurate pressure response, which can be used in a simple human–computer interaction
system. Figure 4e shows the prepared 8 pixel sensor array. The number of the pixels are
related to the number of unit devices in the array. An eight-channel oscilloscope was used
to test the performance of the tactile sensing. By touching different pixels, the sensor array
corresponds to the open-circuit voltage signal. This flexible array-type pixel strip shows a
great potential application in human–computer interaction interface, when the pixels are
dense enough, high-resolution pressure recognition can be performed. As a biomechanical
energy harvesting device, SH-TENG can be used to collect low-frequency forces (Figure 4f).
Six red light-emitting diodes (LEDs) were lightened by the SH-TENG. The working process
is fully demonstrated in Video S2.
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Figure 4. The stretchability and tactile sensing of the SH-TENG. (a) Digital photographs of an SH-
TENG at initial state and different stretched states and Voc output of SH-STENG under different
stretch rates. (b) Voc of the SH-TENG that lasted for ~12,000 cycles of contact-separation motions.
(c) The voltage signal obtained by pressing the tactile sensor with an area of 2 cm × 3 cm under
increasing pressure. (d) Detection range of the tactile sensor was quantified by using the commercial
pressure sensor. (e) The voltage signal obtained by pressing the sensor array of different pixels with
fingers. (f) An image of six red light-emitting diodes (LEDs) lightened by the SH-TENG.

4. Conclusions

In summary, we prepared PAA-Gel-NaCl hydrogel by a simple in situ free radical
polymerization method, and then prepared a stretchable, self-healable single electrode
TENG based on the hydrogel. The SH-TENG can provide a stable output (Voc = 22 V,
Isc = 400 nA, Qsc = 16 nC), the maximum output areal power density is ~2.9 µW·cm−2

at a matched resistance of ~140 MΩ. The electrical output of the SH-TENG is sensitive
to pressure, and the voltage output also changes linearly under linear pressure changes.
The electronic skin prepared by using this SH-TENG can accurately realize simple human–
computer interaction applications, and it is expected to expand the use scene by increasing
the pixel resolution. As a biomechanical energy harvesting device, it also can be used to
collect low-frequency forces. We successfully light up a set of LEDs. In the next research,
we can develop other flexible electrodes with greater deformability under tension and
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maintain the electrical output performance of flexible electrodes. We believe that TENG
based on ionic hydrogel has advantages in flexible and wearable electronic devices.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14071689/s1, Figure S1: Synthesis route and Formation mechanism of PAA-Gel-NaCl
hydrogel. Video S1: Powering a set of LED lights by SH-TENG. Video S2: Self-healable video of
PAA-Gel-NaCl hydrogel.

Author Contributions: Conceptualization, X.H. and D.J.; methodology, X.H. and D.J.; software,
X.H., X.Q. and D.J.; validation, X.H., D.J. and Z.L.; formal analysis, X.H., D.J., X.Q., Y.B., Y.C., and
R.L.; investigation, X.H., and D.J.; resources, Z.L.; data curation, X.H., D.J., X.Q., Y.B., Y.C., and
R.L.; writing—original draft preparation, X.H. and D.J.; writing—review and editing, X.H. and D.J.;
visualization, X.H., D.J., and X.Q.; supervision, Z.L.; project administration, Z.L.; funding acquisition,
Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by National Natural Science Foundation of China (61875015),
the Beijing Natural Science Foundation (JQ20038), Science and Technology Planning Project of
Guangdong Province (2018B030331001), Fundamental Research Funds for the Central Universities
(Y954019, E0EG6802) and the National Youth Talent Support Program.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hashemi, S.A.; Ramakrishna, S.; Aberle, A.G. Recent progress in flexible-wearable solar cells for self-powered electronic devices.

Energy Environ. Sci. 2020, 13, 685–743. [CrossRef]
2. Park, W.H.; Bae, J.W.; Shin, E.J.; Kim, S.Y. Development of a flexible and bendable vibrotactile actuator based on wave-shaped

poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices. Smart Mater. Struct. 2016, 25. [CrossRef]
3. Wang, C.; Xia, K.; Wang, H.; Liang, X.; Yin, Z.; Zhang, Y. Advanced Carbon for Flexible and Wearable Electronics. Adv. Mater.

2019, 31, e1801072. [CrossRef] [PubMed]
4. Cheng, T.; Zhang, Y.; Lai, W.Y.; Huang, W. Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and

Stretchability. Adv. Mater. 2015, 27, 3349–3376. [CrossRef] [PubMed]
5. Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.H. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated

with Nanomaterials. Adv. Mater. 2016, 28, 4203–4218. [CrossRef] [PubMed]
6. Pu, X.; Liu, M.; Chen, X.; Sun, J.; Du, C.; Zhang, Y.; Zhai, J.; Hu, W.; Wang, Z.L. Ultrastretchable, transparent triboelectric

nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015. [CrossRef]
7. Purusothaman, Y.; Alluri, N.R.; Chandrasekhar, A.; Venkateswaran, V.; Kim, S.J. Piezophototronic gated optofluidic logic

computations empowering intrinsic reconfigurable switches. Nat. Commun. 2019, 10, 4381. [CrossRef]
8. Wehner, M.; Truby, R.L.; Fitzgerald, D.J.; Mosadegh, B.; Whitesides, G.M.; Lewis, J.A.; Wood, R.J. An integrated design and

fabrication strategy for entirely soft, autonomous robots. Nature 2016, 536, 451–455. [CrossRef] [PubMed]
9. Jiang, D.; Shi, B.; Ouyang, H.; Fan, Y.; Wang, Z.L.; Li, Z. Emerging Implantable Energy Harvesters and Self-Powered Implantable

Medical Electronics. ACS Nano 2020, 14, 6436–6448. [CrossRef]
10. Zou, Y.; Liao, J.W.; Ouyang, H.; Jiang, D.J.; Zhao, C.C.; Li, Z.; Qu, X.C.; Liu, Z.; Fan, Y.B.; Shi, B.J.; et al. A flexible self-arched

biosensor based on combination of piezoelectric and triboelectric effects. Appl. Mater. Today 2020, 20. [CrossRef]
11. Young, S.; Wong, M.; Tabata, Y.; Mikos, A.G. Gelatin as a delivery vehicle for the controlled release of bioactive molecules.

J. Control. Release 2005, 109, 256–274. [CrossRef]
12. Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control.

Release 2012, 161, 38–49. [CrossRef]
13. Pierce, B.F.; Pittermann, E.; Ma, N.; Gebauer, T.; Neffe, A.T.; Holscher, M.; Jung, F.; Lendlein, A. Viability of human mesenchymal

stem cells seeded on crosslinked entropy-elastic gelatin-based hydrogels. Macromol. Biosci. 2012, 12, 312–321. [CrossRef]
[PubMed]

14. Bao, D.Q.; Wen, Z.; Shi, J.H.; Xie, L.J.; Jiang, H.X.; Jiang, J.X.; Yang, Y.Q.; Liao, W.Q.; Sun, X.H. An anti-freezing hydrogel based
stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 2020, 8,
13787–13794. [CrossRef]

15. Han, Y.; Chu, X.; Zhang, H.T.; Huang, H.C.; Tian, G.; Wang, Z.X.; Gu, B.N.; Chen, N.J.; Deng, W.; Deng, W.L.; et al. All-
Sprayable Hierarchically Nanostructured Conducting Polymer Hydrogel for Massively Manufactured Flexible All-Solid-State
Supercapacitor. Energy Technol. 2019, 7, 1801109. [CrossRef]

16. Niu, S.; Wang, X.; Yi, F.; Zhou, Y.S.; Wang, Z.L. A universal self-charging system driven by random biomechanical energy for
sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/ma14071689/s1
https://www.mdpi.com/article/10.3390/ma14071689/s1
http://doi.org/10.1039/C9EE03046H
http://doi.org/10.1088/0964-1726/25/11/115020
http://doi.org/10.1002/adma.201801072
http://www.ncbi.nlm.nih.gov/pubmed/30300444
http://doi.org/10.1002/adma.201405864
http://www.ncbi.nlm.nih.gov/pubmed/25920067
http://doi.org/10.1002/adma.201504150
http://www.ncbi.nlm.nih.gov/pubmed/26779680
http://doi.org/10.1126/sciadv.1700015
http://doi.org/10.1038/s41467-019-12148-y
http://doi.org/10.1038/nature19100
http://www.ncbi.nlm.nih.gov/pubmed/27558065
http://doi.org/10.1021/acsnano.9b08268
http://doi.org/10.1016/j.apmt.2020.100699
http://doi.org/10.1016/j.jconrel.2005.09.023
http://doi.org/10.1016/j.jconrel.2012.04.036
http://doi.org/10.1002/mabi.201100237
http://www.ncbi.nlm.nih.gov/pubmed/22311831
http://doi.org/10.1039/D0TA03215H
http://doi.org/10.1002/ente.201801109
http://doi.org/10.1038/ncomms9975
http://www.ncbi.nlm.nih.gov/pubmed/26656252


Materials 2021, 14, 1689 10 of 10

17. Ding, Y.; Qiu, Y.; Cai, K.; Yao, Q.; Chen, S.; Chen, L.; He, J. High performance n-type Ag2Se film on nylon membrane for flexible
thermoelectric power generator. Nat. Commun. 2019, 10, 841. [CrossRef]

18. Jella, V.; Ippili, S.; Eom, J.H.; Pammi, S.V.N.; Jung, J.S.; Tran, V.D.; Nguyen, V.H.; Kirakosyan, A.; Yun, S.; Kim, D.; et al. A
comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites. Nano Energy 2019,
57, 74–93. [CrossRef]

19. Jia, L.B.; Chen, M.Q.; Yang, S.F. Functionalization of fullerene materials toward applications in perovskite solar cells. Mater. Chem.
Front. 2020, 4, 2256–2282. [CrossRef]

20. Mo, R.; Rooney, D.; Sun, K.; Yang, H.Y. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped
graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 2017, 8, 13949. [CrossRef]
[PubMed]

21. Wang, Y.; Yang, Y.; Wang, Z.L. Triboelectric nanogenerators as flexible power sources. NPJ Flex. Electron. 2017, 1. [CrossRef]
22. Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [CrossRef]
23. Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors.

Energy Environ. Sci. 2015, 8, 2250–2282. [CrossRef]
24. Xu, M.; Zhao, T.; Wang, C.; Zhang, S.L.; Li, Z.; Pan, X.; Wang, Z.L. High Power Density Tower-like Triboelectric Nanogenerator

for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano 2019, 13, 1932–1939. [CrossRef]
25. Yao, G.; Jiang, D.; Li, J.; Kang, L.; Chen, S.; Long, Y.; Wang, Y.; Huang, P.; Lin, Y.; Cai, W.; et al. Self-Activated Electrical Stimulation

for Effective Hair Regeneration via a Wearable Omnidirectional Pulse Generator. ACS Nano 2019, 13, 12345–12356. [CrossRef]
[PubMed]

26. Shi, B.; Liu, Z.; Zheng, Q.; Meng, J.; Ouyang, H.; Zou, Y.; Jiang, D.; Qu, X.; Yu, M.; Zhao, L.; et al. Body-Integrated Self-Powered
System for Wearable and Implantable Applications. ACS Nano 2019, 13, 6017–6024. [CrossRef]

27. Xiong, W.; Hu, K.; Li, Z.; Jiang, Y.X.; Li, Z.G.; Li, Z.; Wang, X.W. A wearable system based on core-shell structured peptide-Co9S8
supercapacitor and triboelectric nanogenerator. Nano Energy 2019, 66, 104149. [CrossRef]

28. Yang, Y.; Sun, N.; Wen, Z.; Cheng, P.; Zheng, H.; Shao, H.; Xia, Y.; Chen, C.; Lan, H.; Xie, X.; et al. Liquid-Metal-Based
Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics. ACS Nano 2018, 12, 2027–2034.
[CrossRef]

29. Yang, Y.; Xie, L.; Wen, Z.; Chen, C.; Chen, X.; Wei, A.; Cheng, P.; Xie, X.; Sun, X. Coaxial Triboelectric Nanogenerator and
Supercapacitor Fiber-Based Self-Charging Power Fabric. ACS Appl. Mater. Interfaces 2018, 10, 42356–42362. [CrossRef]

30. Li, X.Y.; Xu, G.Q.; Xia, X.; Fu, J.J.; Huang, L.B.; Zi, Y.L. Standardization of triboelectric nanogenerators: Progress and perspectives.
Nano Energy 2019, 56, 40–55. [CrossRef]

31. Zhang, X.S.; Han, M.D.; Kim, B.; Bao, J.F.; Brugger, J.; Zhang, H.X. All-in-one self-powered flexible microsystems based on
triboelectric nanogenerators. Nano Energy 2018, 47, 410–426. [CrossRef]

32. Zi, Y.; Wang, J.; Wang, S.; Li, S.; Wen, Z.; Guo, H.; Wang, Z.L. Effective energy storage from a triboelectric nanogenerator. Nat.
Commun. 2016, 7, 10987. [CrossRef]

33. Huang, L.B.; Bai, G.; Wong, M.C.; Yang, Z.; Xu, W.; Hao, J. Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting
Mechanical Energy into Electricity and Light Emissions. Adv. Mater. 2016, 28, 2744–2751. [CrossRef]

34. Lee, J.H.; Hinchet, R.; Kim, S.K.; Kim, S.; Kim, S.W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy
Environ. Sci. 2015, 8, 3605–3613. [CrossRef]

35. Guan, Q.B.; Dai, Y.H.; Yang, Y.Q.; Bi, X.Y.; Wen, Z.; Pan, Y. Near-infrared irradiation induced remote and efficient self-healable
triboelectric nanogenerator for potential implantable electronics. Nano Energy 2018, 51, 333–339. [CrossRef]

36. Bartlett, M.D.; Dickey, M.D.; Majidi, C. Self-healing materials for soft-matter machines and electronics. NPG Asia Mater. 2019, 11,
1–4. [CrossRef]

37. Chen, D.D.; Wang, D.R.; Yang, Y.; Huang, Q.Y.; Zhu, S.J.; Zheng, Z.J. Self-Healing Materials for Next-Generation Energy
Harvesting and Storage Devices. Adv. Energy Mater. 2017, 7, 1700890. [CrossRef]

38. Huynh, T.P.; Sonar, P.; Haick, H. Advanced Materials for Use in Soft Self-Healing Devices. Adv. Mater. 2017, 29, 1604973.
[CrossRef] [PubMed]

39. Annabi, N.; Shin, S.R.; Tamayol, A.; Miscuglio, M.; Bakooshli, M.A.; Assmann, A.; Mostafalu, P.; Sun, J.Y.; Mithieux, S.; Cheung, L.;
et al. Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels. Adv. Mater. 2016, 28, 40–49. [CrossRef] [PubMed]

40. Jing, X.; Mi, H.Y.; Lin, Y.J.; Enriquez, E.; Peng, X.F.; Turng, L.S. Highly Stretchable and Biocompatible Strain Sensors Based on
Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2018, 10,
20897–20909. [CrossRef] [PubMed]

41. Wang, C.; Hu, K.; Zhao, C.; Zou, Y.; Liu, Y.; Qu, X.; Jiang, D.; Li, Z.; Zhang, M.R.; Li, Z. Customization of Conductive Elastomer
Based on PVA/PEI for Stretchable Sensors. Small 2020, 16, e1904758. [CrossRef] [PubMed]

42. Zheng, C.; Lu, K.; Lu, Y.; Zhu, S.; Yue, Y.; Xu, X.; Mei, C.; Xiao, H.; Wu, Q.; Han, J. A stretchable, self-healing conductive hydrogels
based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym. 2020, 250, 116905.
[CrossRef] [PubMed]

43. Niu, S.M.; Wang, Z.L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192. [CrossRef]

http://doi.org/10.1038/s41467-019-08835-5
http://doi.org/10.1016/j.nanoen.2018.12.038
http://doi.org/10.1039/D0QM00295J
http://doi.org/10.1038/ncomms13949
http://www.ncbi.nlm.nih.gov/pubmed/28051065
http://doi.org/10.1038/s41528-017-0007-8
http://doi.org/10.1016/j.nanoen.2012.01.004
http://doi.org/10.1039/C5EE01532D
http://doi.org/10.1021/acsnano.8b08274
http://doi.org/10.1021/acsnano.9b03912
http://www.ncbi.nlm.nih.gov/pubmed/31503449
http://doi.org/10.1021/acsnano.9b02233
http://doi.org/10.1016/j.nanoen.2019.104149
http://doi.org/10.1021/acsnano.8b00147
http://doi.org/10.1021/acsami.8b15104
http://doi.org/10.1016/j.nanoen.2018.11.029
http://doi.org/10.1016/j.nanoen.2018.02.046
http://doi.org/10.1038/ncomms10987
http://doi.org/10.1002/adma.201505839
http://doi.org/10.1039/C5EE02711J
http://doi.org/10.1016/j.nanoen.2018.06.060
http://doi.org/10.1038/s41427-019-0122-1
http://doi.org/10.1002/aenm.201700890
http://doi.org/10.1002/adma.201604973
http://www.ncbi.nlm.nih.gov/pubmed/28229499
http://doi.org/10.1002/adma.201503255
http://www.ncbi.nlm.nih.gov/pubmed/26551969
http://doi.org/10.1021/acsami.8b06475
http://www.ncbi.nlm.nih.gov/pubmed/29863322
http://doi.org/10.1002/smll.201904758
http://www.ncbi.nlm.nih.gov/pubmed/31909565
http://doi.org/10.1016/j.carbpol.2020.116905
http://www.ncbi.nlm.nih.gov/pubmed/33049881
http://doi.org/10.1016/j.nanoen.2014.11.034

	Introduction 
	Materials and Methods 
	Materials 
	Preparation of SCHs 
	Characterization 

	Results and Discussion 
	Conclusions 
	References

