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Abstract: The PU (partition-of-unity) based FE-RPIM QUAD4 (4-node quadrilateral) element was
proposed for statics problems. In this element, hybrid shape functions are constructed through
multiplying QUAD4 shape function with radial point interpolation method (RPIM). In the present
work, the FE-RPIM QUAD4 element is further applied for structural dynamics. Numerical examples
regarding to free and forced vibration analyses are presented. The numerical results show that: (1) If
CMM (consistent mass matrix) is employed, the FE-RPIM QUAD4 element has better performance
than QUAD4 element under both regular and distorted meshes; (2) The DLMM (diagonally lumped
mass matrix) can supersede the CMM in the context of the FE-RPIM QUAD4 element even for the
scheme of implicit time integration.

Keywords: FE-Meshfree; finite element method; FE-RPIM; mesh distortion; RPIM

1. Introduction

The FEM (finite element method) [1] has been widely adopted to model structural
dynamics. The problem domain to be considered is discretized by a series of elements of
simple shapes. In a two-dimensional problem domain, finite elements are either triangles
or quadrilaterals [2]. TRIG3 (3-node triangular) element is much easier than QUAD4
element in mesh generation but has poorer accuracy. The QUAD4 element can generally
obtain satisfactory results for regular mesh but performs badly for distorted mesh. Often
in practice, the generation of a high-quality quadrilateral mesh is a time-consuming task
for problems with complex geometric boundary.

A lot of work has been done in the past several decades to develop more powerful
numerical methods than the FEM for the analysis of time-dependent problems. Due to
the use of higher-order interpolation with specific quadrature formulae [3,4], the spec-
tral finite element method (SFEM) is capable of simulating dynamic problems, such as
wave propagation, and has better convergent rate than FEM [5]. The meshless methods,
was also expected to become an effective procedure since the mesh is not needed [6–16].
However, some meshless methods’ shape functions have no Kronecker-delta character,
which means special treatment is required for essential boundary condition implementa-
tion. Moreover, the computational cost to form the trial functions of meshless methods
cannot be neglected [17]. Hence, several schemes were proposed to optimize meshless
methods [18,19].

In other front, a class of PU [20] based methods were proposed, such as the PUFEM
(PU FEM) [21], the GFEM (generalized FEM) [22] and the NMM (numerical manifold
method) [23–45]. In these methods, global approximations with high order are usually
built by using high order local approximations. However, the LD (linear dependence)
problem [20] will arise if the local approximations and the PU functions were simultane-
ously constructed using explicit polynomials [21]. For the purpose of eliminating the LD
problem, a lot of efforts have been made [46–48].
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Recently, a series of FE-Meshfree elements including FE-LSPIM QUAD4 element [46],
were proposed. In the FE-LSPIM QUAD4 element, shape functions are usually built
through multiplying the FE shape function (QUAD4) and the meshfree shape functions
(LSPIM). As a result, good properties of meshless method and FEM are inherited [46].
Compared to FEM, higher accuracy can be obtained by FE-LSPIM QUAD4 element, because
global approximations with high order are constructed. In contrast to meshless method,
FE-LSPIM QUAD4 shape functions have Kronecker-delta character, which means special
treatment is not needed for essential boundary condition implementation. Moreover, the
FE-LSPIM QUAD4 element is immune to LD problem. However, since a pure polynomial
basis is adopted in the LSPIM, the moment matrix singularity may arise if the polynomial
basis functions were inappropriately employed [14,49].

To avoid the drawback of LSPIM, the RPIM (radial point interpolation method) [14] has
been employed to replace it, resulting in a new FE-RPIM QUAD4 element [49]. According
to the report from Xu and Rajendran [49], FE-RPIM QUAD4 element has higher accuracy
than FE-LSPIM QUAD4 element for linear and geometry nonlinear static problems if the
same number of polynomial terms are employed. Apart from FE-LSPIM QUAD4 and
FE-RPIM QUAD4 elements, there are also other types of FE-Meshfree elements [50–53].

The FE-RPIM QUAD4 element is further applied for structural dynamics in the present
work. After the statement of the formulations related to FE-RPIM QUAD4 element in
Section 2, equations related to elastodynamic problems are presented in Section 3. Besides,
the expressions for the stiffness matrix, the CMM and the DLMM are given. In Section 4,
five numerical examples are investigated using the FE-RPIM QUAD4 element. At the last
section, some conclusions will be presented.

2. Shape Functions for FE-RPIM QUAD4 Element
2.1. Formulation of Shape Functions

Before expounding formulation of the shape functions, two important concepts,
namely, the nodal support domain (Ωi) and the element support domain (Ω̂e), are in-
troduced. The nodal support domain is adopted to determine all the support nodes of a
given node (also named as central node) to construct its local approximation. According to
the scope of the support domain, we can define different order of nodal support domain
(Ωi). The nodal support domain of first order is determined through the nodal connectivity
of first order. Figure 1 shows an example for the nodal support domain of first order for
node 1, where 9 support nodes are obtained in Figure 1a and Figure 4 support nodes are
determined in Figure 1b. Similarly, the nodal support domain of second order or third
order can be defined. As shown in Figure 2, Ω̂ is the union of 4 nodal support domains
(Ωi), which is defined as Ω̂e

= U4
i=1Ωi.

Figure 1. The nodal support domain of first order (Ωi) for a central node 1: (a) central node within
computational domain; (b) central node on computational boundary.
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Figure 2. Element support domain: (a) central node within computational domain; (b) central node
on computational boundary.

Let domain Ωe be defined with nodes {P1 P2 P3 P4}. The global approximation uh(x)
of FE-RPIM QUAD4 element can be simply written as [49]

uh(x) = w1(x)u1(x) + w2(x)u2(x) + w3(x)u3(x) + w4(x)u4(x) (1)

where wi(x) represents PU function, while ui(x) represents local approximation function
related to node i. Since quadrilateral mesh is employed, wi(x) is equivalent to QUAD4
shape function. It is noticed that the global approximation of QUAD4 element can be
considered as a special case of FE-RPIM QUAD4 element. If ui(x) is set as a constant, then
uh(x) in Equation (1) becomes the global approximation for QUAD4 element.

The local approximation functions are obtained by the RPIM [14], which is
defined with:

ui(x) =
M

∑
k=1

pk(x, y)bk +
n[i]

∑
j=1

rj(x, y)aj = pb + ra (2)

where M and n[i] represent the specified polynomial term number and the number of nodes
within Ωi. a and b are two unknown vectors. r represents the radial basis functions, while
p represents the polynomial functions formulated as:

p(x) = {1 x y} for M = 3; (3)

p(x) = {1 x y xy} for M = 4; (4)

p(x) = {1 x y xy x2 y2} for M = 6. (5)

According to the discussion in [49], the FE-RPIM QUAD4 element with three- or
four-term basis can give as accurate results as with six-term basis for static problems.
Furthermore, the computational cost of six-term basis or four-term basis is more than that
of three-term basis. Hence, in the present paper, we set M = 3, namely, a three-term basis is
used; r(x, y) can be formulated with [14,16]:

r(x, y) =
[
r1(x, y) r2(x, y) · · · rn[i](x, y)

]
(6)

in which
rj(x, y) =

(
d2

j + c
)q

(7)

in which dj(x, y) =
√(

x− xj
)2

+
(
y− yj

)2. The numerical values of q and c have an
influence on the accuracy of RPIM, which have been discussed in great details in [49]. In the
present work, q and c are separately set to 2.01 and 0.0001 according to the recommendation
in [49].

Enforcing Equation (2) to pass through all the nodes in within Ωi, the following
equations are obtained:

ui = Ra + Pb (8)
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where ui is a vector of corresponding nodal displacements of all the nodes in Ωi, and

R =


r1(x1, y1) · · · rn[i](x1, y1)

...
. . .

...
r1

(
xn[i] , yx

n[i]

)
· · · rn[i]

(
xn[i] , yx

n[i]

)
 (9)

P =

 1 x1 y1
...

...
...

1 xn[i] yx
n[i]

 (M = 3, so three columns) (10)

Obviously, there are totally (M + n[i]) parameters in Equation (8). However, only n[i]

equations are available. Nevertheless, according to the work finished in [14,54], vectors of
a and b can be eliminated as proposed in their work and local approximation function in
Equation (2) is eventually expressed as [14]:

ui(x, y) = Φiui, i = 1, 2, 3, 4, (11)

Φi = r(x, y)sa + p(x, y)sb (12)

with
Φi =

[
Φi

1 Φi
2 · · · Φi

n[i]

]
(13)

ui =
[
u1 u2 · · · un[i]

]T (14)

sb =
[
PTR−1P

]−1
PTR−1 (15)

sa = R−1[I− Psb] (16)

a = saui (17)

b = sbui (18)

Note that Wendland [55] has presented the evident of the existence of R−1 for any
scattered nodes.

2.2. Properties of Shape Functions

Through substituting Equation (11) into Equation (1), uh(x) for the FE-RPIM QUAD4
element can then be formulated with a more compact form:

uh(x) = w1(x)Φ1u1 + w2(x)Φ2u2 + w3(x)Φ3u3 + w4(x)Φ4u4 =
p

∑
i=1

φi(x)di (19)

where φi(x) and di represent a shape function and nodal displacement associated with
node i. p represents node number within Ω̂e.

The attractive properties of φi(x) in Equation (19) can be listed as follows [49]:

(i) Kronecker-delta character

φi
(
xj
)
= δij (20)

(ii) Compatibility property at the interface of elements.
(iii) High order completeness, in other words, reproducibility of all the assumed Cartesian

terms (Equation (3)).

To investigate the changes of shape functions within element, we consider a two-
dimensional domain discretized with four quadrilateral elements and 9 nodes
(Figure 3). The 3D graphics of shape functions of FE-RPIM QUAD4 element for different
nodes (node 1, node 2, node 3 and node 5) are plotted in Figure 4. For the purpose of com-
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parison, the 3D graphics of shape functions of QUAD4 element are also plotted, as shown in
Figure 5. As can be seen in Figures 4 and 5, the shape function of FE-RPIM QUAD4 element
is smoother than that of Quad4 element.

Figure 3. A two−dimensional domain (2 m× 2 m) discretized with 4 quadrilateral elements and
9 nodes.

Figure 4. Cont.
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Figure 4. Cont.
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Figure 4. Shape functions of FE−RPIM QUAD4 element for different nodes at different locations:
(a) node 1; (b) node 2; (c) node 3; (d) node 5.

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Shape functions of QUAD4 element for different nodes at different locations. (a) node 1;
(b) node 2; (c) node 3; (d) node 5.

3. FE-RPIM QUAD4 for Elastodynamic Problems
3.1. FE-RPIM QUAD4 for Dynamic Analysis

Let the problem domain Ω discretized using a series of QUAD4 elements: Ω = ∑
e

Ωe.

In the context of the FE-RPIM QUAD4 element, the discretized form of the system equations
about dynamic analysis can be expressed as [56]:

M
..
d + C

.
d + Kd = f (21)

in which M is the global mass matrix, K is the global stiffness matrix, and f is the global
load vector, which can be computed as:

M = ∑
e

Mce, f = ∑
e

fe, K = ∑
e

Ke; (22)

where
Ke =

∫
Ωe

BTDBdΩ, (23)

Mce =
∫

Ωe
ρNTNdΩ, (24)

and
fe =

∫
Γe

σ

NTtdS +
∫

Ωe
NTbdΩ, (25)

in which ρ is the material density, D is the matrix of the elastic constants of the material, t
is the specified traction vector applied on stress boundary Γe

σ, b is the body force per unit
volume, N represents the matrix of shape function for Ωe, expressed as:

N =
[
φe

1I, · · · , φe
pI
]
=

[
φe

1 0
0 φe

1
, · · · ,

φe
p 0

0 φe
p

]
, (26a)
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and B is the gradient matrix expressed as:

B =


∂φe

1
∂x 0
0 ∂φe

1
∂y

∂φe
1

∂y
∂φe

1
∂x

, · · · ,

∂φe
p

∂x 0

0
∂φe

p
∂y

∂φe
p

∂y
∂φe

p
∂x

, (26b)

where φe
i represent a shape function associated with node i. p represents the node number

within Ω̂e.
The Rayleigh damping is adopted in the present work. Hence, the damping matrix C

can be formulated into,
C = β1M + β2K (27)

in which β1, β2 represent the coefficients of Rayleigh damping.

3.2. Time Integration Scheme

The Newmark method [56] will be employed in this study to solve Equation (21).
Assuming that dn, vn and an separately represent approximation values of d(tn),

.
d(tn) and

..
d(tn). When t = tn+1 = tn + ∆t,

d̃n+1 = dn + ∆tvn +
∆t2

2
(1− 2β)an, (28)

ṽn+1 = vn + ∆t(1− γ)an, (29)

then the approximations of d(tn+1) and
.
d(tn+1) are expressed as:

dn+1 = d̃n+1 + β∆t2an+1, (30)

vn+1 = ṽn+1 + γ∆tan+1 (31)

Here, an+1 represents the solution of Equation (32).

Man+1 = fn+1, (32)

with
fn+1 = fn+1 − Cṽn+1 −Kd̃n+1, (33)

M = M + γ∆tC + β∆t2K. (34)

a0 is computed with Equation (35).

Ma0 = f0 − Cv0 −Kd0. (35)

It is noticed that M obtained from Equations (22) and (24) is named as CMM (consistent
mass matrix). If M is a diagonally lumped mass matrix (DLMM), solving a0 should be a
very easy task. Moreover, if the damping effect is ignored, as is done frequently and β = 0,
then M reduces to M. Consequently, if M is a positive DLMM whose inverse M−1 is easy
to calculate, solving Equation (32) for an+1 would be very easy.

3.3. Generalized Eigenvalue Problem

If the terms associated to damping matrix and force vector are neglected, Equation (21)
will reduce to the following form [14]:

M
..
d + Kd = 0 (36)
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The general solution for Equation (36) is formulated as:

d =
¯
d exp(iωt) (37)

in which t represents time. ω represents the natural frequency, while d represents the
eigenvector.

Based on Equations (36) and (37), ω is obtained from Equation (38).

K
¯
d = λM

¯
d, λ = ω2 (38)

Here, d determines the mode shape related to ω. Note that it is time-consuming to
compute all the modes. Hence, the subspace iteration procedure is usually adopted to
obtain only those modes with small values of ω.

However, if M is a DLMM, Equation (38) becomes a standard eigenvalue problem,

K̃
¯
d = λ

¯
d (39)

where K̃ is defined as:
K̃ = M−1K (40)

Since M is a DLMM, the inversion of M, namely, M−1, can be easily obtained. There are
more powerful algorithms available to solve the standard eigenvalue problem
(Equation (39)) [57].

3.4. Diagonally Lumped Mass Matrix

Here, we propose to use the “special lumping technique” introduced by
Hinton et al. [58] to obtain the diagonally lumped mass matrix (DLMM). This proce-
dure always leads to positive lumped masses at the nodes. Moreover, the requirement
for mass conservation can be ensured. With little change, this procedure can be used for
FE-RPIM QUAD4 element. For the FE-RPIM QUAD4 element, we obtain:

Mle
ii = αMce

ii , i = 1, 2, · · · 2p; (41)

Mle
ij = 0 (i 6= j) (42)

where Mce
ii is the i-th diagonal entry of the element consistent mass matrix (CMM) obtained

through Equation (24), Mle
ii is the i-th diagonal entry of the DLMM, α is a constant defined

as:

α =
2
∫

Ωe ρdV
∑i Mce

ii
(43)

where ρ represents the density of material.

4. Numerical Examples

In this section, a static example and five examples regarding to free and forced vi-
bration analyses will be presented to investigate the performance of FE-RPIM QUAD4
element. For comparison, other well-known element types, such as the TRIG3, QUAD4
and QUAD8 (8-node quadrilateral element) will also be used to conduct these tests. In the
computation for dynamic problems, both the CMM and the DLMM will be employed in
the context of FE-RPIM QUAD4 element, while only the CMM will be employed in the
context of QUAD4, TRIG3, and QUAD8.

Physical units in this section will be according to the unit system of international
standard without specification. n is the node number within discretized model. Natural
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frequency’s relative error expressed in Equation (44) is adopted to evaluate the accuracy of
the numerical models.

Re =
ωnum −ωref

ωref , (44)

in which “num” and “ref” separately represent the numerical solution and
reference solution.

4.1. Cook’s Skew Beam

Before proceeding with dynamic analysis, the well-known example of Cook’s skew
beam (Figure 6a) is adopted to test the performance of the FE-RPIM QUAD4 element for
static problem. A mesh with 10 × 10 quadrilateral elements and 121 nodes is plotted in
Figure 6b. The reference solution for the vertical displacement of point A for Cook’s skew
beam is 23.96 [49].

Figure 6. Cook’s skew beam: (a) geometry and load; (b) a mesh with 10 × 10 elements.

With the mesh presented in Figure 6b, the solutions for the vertical displacement
of point A based on the FE-RPIM QUAD4 element is 23.8170, which is better than that
based on the QUAD4 element (22.6965). Note that this problem was also solved in [59] by
the spectral finite element (SFEM) [60]. If the problem domain is discretized into 10 × 10
elements, where each element has 2 × 2 nodes, the solution based on the SFEM is 22.6940,
which is inferior to that based on the FE-RPIM QUAD4 element (23.8170). However, If the
problem domain is discretized into 1 element with 11 × 11 nodes, the solution based on
the SFEM is 23.9414, which is even slightly better than that based on the FE-RPIM QUAD4
element (23.8170).

4.2. A Slender Rod

Free vibration analysis for a slender rod [61] is conducted, as shown in Figure 7. The
ith natural frequency from the analytical solution is [62]:

ω = C0π
i
L
=
√

E/ρπ
i
L

, (45)

in which L represents the length of the rod.
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Figure 7. Free vibration analysis of a slender rod.

Geometric and mechanical parameters used in this example are L = 100, thickness
t = 1, D = 1, Poisson’s ratio v = 0, Young’s modulus E = 72× 109, mass density ρ = 2700. Since
L/D = 100 > 10, the geometric parameters used assure that the one-dimensional slender
rod can be well represented by the two-dimensional model without causing unacceptable
error. In the computation, both upside and down sides of the model are fixed in the
normal direction.

For investigating the convergence of the solution, three regular discretized models
(Figure 8) are constructed. Table 1 lists the numerical results from different numerical
models. According to Table 1, the results from all the listed numerical models approach
the analytical solution gradually, as the mesh density increases.

Table 1. Comparisons of computed frequencies (Hz) for the slender rod with regular.

Mesh Mode TRIG3 QUAD4 QUAD8
FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Analytical
Solution [62]

Mesh A (100 × 1)

1 25.820968 25.820965 25.819889 25.820844 25.820870 25.819889

2 51.648164 51.645511 51.639778 51.636459 51.647617 51.639778

3 77.487948 77.485357 77.459667 77.333589 77.486075 77.459667

4 103.346621 103.353319 103.279556 103.770772 103.341991 103.279556

5 129.231393 129.235285 129.099445 129.144371 129.220982 129.099445

6 155.144150 155.090370 154.919334 154.271801 155.128495 154.919334

7 181.097287 181.093361 180.739223 179.861768 181.069767 180.739223

8 207.100128 207.044472 206.559112 207.167158 207.049784 206.559112

9 233.139899 233.163742 232.379001 231.620531 233.073245 232.379001

10 259.236693 259.205890 258.198890 257.916223 259.144523 258.198890

Mesh B (200 × 2)

Mode TRIG3 QUAD4 QUAD8
FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Analytical
Solution [62]

1 25.820157 25.820255 25.819884 25.819736 25.819876 25.819889

2 51.641819 51.643160 51.639488 51.642793 51.639674 51.639778

3 77.466851 77.468030 77.460498 77.428906 77.459316 77.459667

4 103.296728 103.295143 103.276931 103.223462 103.278723 103.279556

5 129.132375 129.129519 129.098294 129.103269 129.097812 129.099445

6 154.976563 154.971476 154.916664 154.910322 154.916499 154.919334

7 180.830533 180.849114 180.739424 180.695709 180.734699 180.739223

8 206.695973 206.729136 206.571040 206.625255 206.552319 206.559112

9 232.574473 232.597669 232.373245 232.226958 232.369264 232.379001

10 258.459661 258.424349 258.192677 258.548565 258.185433 258.198890



Materials 2021, 14, 2288 14 of 28

Table 1. Cont.

Mesh Mode TRIG3 QUAD4 QUAD8
FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Analytical
Solution [62]

Mesh C (400 × 4)

Mode TRIG3 QUAD4 QUAD8
FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Analytical
Solution [62]

1 25.819955 25.819955 25.819872 25.819892 25.819889 25.819889

2 51.640264 51.640326 51.639657 51.639523 51.639777 51.639778

3 77.461418 77.461344 77.455360 77.458972 77.459663 77.459667

4 103.283785 103.284022 103.280289 103.281014 103.279545 103.279556

5 129.107774 129.107848 129.098050 129.100114 129.099422 129.099445

6 154.933575 154.933779 154.917190 154.920049 154.919292 154.919334

7 180.762060 180.761938 180.731242 180.738237 180.739152 180.739223

8 206.593046 206.592175 206.540550 206.564266 206.558998 206.559112

9 232.427179 232.427476 232.386967 232.371678 232.378826 232.379001

10 258.265837 258.264934 258.234066 258.188904 258.198630 258.198890

Figure 8. Normalized mesh for slender rod in Figure 3.

By using the consistent mass scheme, the result from FE-RPIM QUAD4 element is
better than that from QUAD4 element and TRIG3 element, but slightly inferior to that from
QUAD8 element. Note that QUAD8 element requires more nodes than FE-RPIM QUAD4
element to discretize the problem domain. In addition, results from the CMM and the
DLMM in the context of FE-RPIM QUAD4 element are close to each other.

4.3. An Annulus

As the second example, an annulus without constraint shown in Figure 9 is employed
to validate the FE-RPIM QUAD4 element. The geometric and mechanical parameters used
in this example are Ra = 0.4, Rb = 0.5, v = 0.33, E = 72 × 109, t = 1, ρ = 2700.

For the purpose of investigating the convergence of the solution, several regular
discretized models shown in Figures 10 and 11 are constructed. Table 2 lists the frequencies
assessed by different numerical models. The reference solution for this problem, which is
listed in the last column of Table 2, can be found in [61]. According to Table 2, the result
from FE-RPIM QUAD4 element is much better than that from QUAD4 and TRIG3 elements,
but slightly inferior to that from QUAD8 element, if the CMM was employed.
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Figure 9. Free vibration analysis of an annulus.

Figure 10. Triangular meshes for the annulus. (a) Mesh A (20 elements, 20 nodes); (b) Mesh B (80
elements, 60 nodes); (c) Mesh C (320 elements, 200 nodes); (d) Mesh D (1280 elements, 720 nodes).
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Figure 11. Quadrilaterial meshes for the annulus: (a) Mesh A (10 elements, 20 nodes); (b) Mesh B
(40 elements, 60 nodes); (c) Mesh C (160 elements, 200 nodes); (d) Mesh D (640 elements, 720 nodes).

In addition, FE-RPIM QUAD4 element can obtain better result if the DLMM is em-
ployed instead of the CMM.
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Table 2. Comparisons of computed frequencies (Hz) for the annulus.

Mesh Mode TRIG3 QUAD4 QUAD8
FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Reference
Solution [61]

Mesh A

1 1069.0 764.6 331.6 465.7 459.3 307.3

2 1069.0 765.7 331.6 465.8 459.3 307.3

3 1973.0 1917.4 945.3 1683.8 1623.6 838.5

4 2759.1 2346.5 945.3 1686.7 1623.6 838.5

5 2760.6 2350.0 1823.4 1938.7 1937.9 1535.4

6 2779.7 2775.5 1823.9 2665.5 2714.8 1535.4

Mesh B

Mode TRIG3 QUAD4 QUAD8
FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Reference
Solution [61]

1 601.2 430.5 310.7 318.9 317.8 307.3

2 601.2 430.5 310.7 318.9 317.8 307.3

3 1622.2 1221.1 851.1 895.7 890.0 838.5

4 1622.2 1221.3 851.1 895.8 890.0 838.5

5 1869.2 1855.6 1566.6 1689.0 1665.2 1535.4

6 2619.8 2351.4 1567.6 1691.0 1665.2 1535.4

Mesh C

Mode TRIG3 QUAD4 QUAD8
FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Reference
Solution [61]

1 402.7 340.1 308.0 308.0 307.8 307.3

2 402.7 340.1 308.0 308.0 307.8 307.3

3 1098.2 938.0 840.6 841.7 841.2 838.5

4 1098.4 938.0 840.6 841.7 841.2 838.5

5 1843.9 1742.3 1539.8 1544.0 1542.4 1535.4

6 2013.4 1742.4 1539.9 1544.0 1542.4 1535.4

Mesh D

Mode TRIG3 QUAD4 QUAD8
FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Reference
Solution [61]

1 333.8 315.7 307.4 307.4 307.4 307.3

2 333.8 315.7 307.4 307.4 307.4 307.3

3 911.4 863.7 839.0 839.0 839.0 838.5

4 911.4 863.8 839.0 839.0 839.0 838.5

5 1670.8 1587.3 1536.3 1536.5 1536.6 1535.4

6 1670.8 1587.6 1536.3 1536.5 1536.6 1535.4

4.4. Mesh Distortion Test

In the previous two examples, regular meshes are adopted. In this section, mesh
distortion test based on the cantilever beam (Figure 12) is conducted. The parameters used
are D = 10 mm, L = 100 mm, v = 0.3, E = 2.1 × 104 kg/mm2, ρ = 8.0 × 10−10 kg fs2/mm4,
t = 1 mm.
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Figure 12. Free vibration analysis of a 2D cantilever beam.

As shown in Figure 13a,b, the beam is meshed with two elements for QUAD4 element,
FE-RPIM QUAD4 element and QUAD8 element. For TRIG3 element, the problem domain
is meshed with four elements, as shown in Figure 13c. A distortion parameter, 2d/D, is
adopted to control mesh distortion.

Figure 13. The mesh used for the distortion sensitivity test: (a) Mesh A; (b) Mesh B; (c) Mesh C.

Table 3 lists the fundamental natural frequency assessed by different numerical models.
The corresponding relative errors are plotted in Figure 14. To better see the reached accuracy
of FE-RPIM QUAD4(CMM) and FE-RPIM QUAD4(DLMM), Figure 15 is plotted. According
to Table 3, Figures 14 and 15, we can draw the following conclusions:

(1) First, as distortion parameter’s value increases, the errors based on FE-RPIM QUAD4
element do not change appreciably, while those based on QUAD4 element, TRIG3
element and QUAD8 elements change rapidly. The FE-RPIM QUAD4 element is
immune to mesh distortion.

(2) Second, accuracy of FE-RPIM QUAD4 element is always much higher than QUAD4
and TRIG3 elements.

(3) Third, when 2d/D < 0.2, QUAD8 element’s accuracy is higher than QUAD4, FE-RPIM
QUAD4 and TRIG3 elements. However, as the value of 2d/D increases, accuracy
through QUAD8 element deteriorates quickly. If meshes used are distorted severely,
QUAD8 element’s accuracy is much lower than FE-RPIM QUAD4 element.

(4) Fourth, compared to CMM, FE-RPIM QUAD4 element can achieve better results if
DLMM is employed.
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Table 3. Computed natural frequencies (Hz) of the first mode for the mesh distortion sensitivity test.

2d/D TRIG3 (CMM) QUAD4
(CMM)

QUAD8
(CMM)

FE-RPIM
QUAD4
(CMM)

FE-RPIM
QUAD4
(DLMM)

Reference
Solution [61]

0.000 4140.56 2623.12 868.78 1024.59 984.12 822.13

0.025 4296.89 2709.93 871.92 1028.00 986.58 822.13

0.050 4444.46 2888.54 880.81 1033.54 989.62 822.13

0.075 4556.81 3052.25 894.10 1037.37 989.81 822.13

0.100 4642.17 3168.80 910.07 1039.62 987.54 822.13

0.150 4772.43 3294.48 947.03 1041.76 979.18 822.13

0.200 4880.56 3350.17 999.17 1042.67 969.09 822.13

0.250 4979.99 3382.91 1085.88 1043.14 958.78 822.13

0.300 5074.54 3412.02 1219.18 1043.44 948.37 822.13

0.400 5255.27 3484.76 1593.73 1043.84 925.26 822.13

0.500 5428.50 3586.06 1988.16 1044.17 894.74 822.13

0.600 5596.39 3714.14 2309.06 1044.52 853.35 822.13

0.700 5759.40 3867.25 2551.71 1044.91 802.31 822.13

0.800 5919.14 4040.12 2741.70 1045.38 747.99 822.13

0.900 6073.71 4229.27 2904.91 1045.94 698.62 822.13

Figure 14. Error in fundamental natural frequency for mesh distortion sensitivity test.
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Figure 15. Comparison of accuracy of FE−RPIM QUAD4 (CMM) and FE−RPIM QUAD4(DLMM)
for mesh distortion sensitivity test.

4.5. A Plate with Four Holes

In this section, a plate with four holes shown in Figure 16 is considered. The me-
chanical parameters used are v = 0.3, E = 72 × 109 and ρ = 2700. Left side of the plate
is fixed.

Figure 16. A plate with four holes.

For the purpose of investigating the convergence of the solution, four discretized
models shown in Figures 17 and 18 are constructed. In order to get a reference solution,
the QUAD4 element is adopted with a very dense discretized model (43,704 nodes, 43,058
elements). Table 4 lists the results from different numerical models. The results from
different numerical models all approach the reference solution gradually, as the mesh
density increases. In addition, by using the CMM, FE-RPIM QUAD4 element’s accuracy is
much higher than QUAD4 and TRIG3 elements.



Materials 2021, 14, 2288 21 of 28

Figure 17. Triangular mesh for the plate with four holes. (a) Mesh A (1584 elements and 871 nodes);
(b) Mesh B (2350 elements and 1278 nodes); (c) Mesh C (3170 elements and 1710 nodes); (d) Mesh D
(5302 elements and 2814 nodes).

Table 4. Comparisons of computed frequencies (Hz) for the plate with four holes.

Mesh Mode TRIG3 QUAD4 FE-RPIM QUAD4 (CMM) FE-RPIM QUAD4 (DLMM) Reference Solution

Mesh A

1 49.21 48.60 48.24 48.26 47.93

2 118.15 117.29 116.73 116.72 116.25

3 129.69 128.04 126.93 126.96 126.13

4 209.36 206.57 204.58 204.76 203.25

5 214.32 210.56 207.54 207.42 205.34

6 235.48 232.65 230.54 230.80 229.13

Mesh B

Mode TRIG3 QUAD4 FE-RPIM QUAD4 (CMM) FE-RPIM QUAD4 (DLMM) Reference Solution

1 48.85 48.39 48.11 48.12 47.93

2 117.70 116.97 116.55 116.54 116.25

3 128.71 127.38 126.61 126.63 126.13

4 207.63 205.38 204.02 204.10 203.25

5 211.84 208.73 206.59 206.53 205.34

6 233.86 231.49 229.97 230.00 229.13
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Table 4. Cont.

Mesh Mode TRIG3 QUAD4 FE-RPIM QUAD4 (CMM) FE-RPIM QUAD4 (DLMM) Reference Solution

Mesh C

Mode TRIG3 QUAD4 FE-RPIM QUAD4 (CMM) FE-RPIM QUAD4 (DLMM) Reference Solution

1 48.65 48.26 48.05 48.05 47.93

2 117.37 116.79 116.46 116.46 116.25

3 128.19 127.06 126.46 126.45 126.13

4 206.78 204.86 203.79 203.76 203.25

5 210.77 207.83 206.20 206.12 205.34

6 233.10 231.02 229.73 229.83 229.13

Mesh D

Mode TRIG3 QUAD4 FE-RPIM QUAD4 (CMM) FE-RPIM QUAD4 (DLMM) Reference Solution

1 48.40 48.13 47.99 47.99 47.93

2 116.92 116.55 116.34 116.34 116.25

3 127.41 126.65 126.27 126.27 126.13

4 205.48 204.17 203.49 203.46 203.25

5 208.73 206.80 205.72 205.68 205.34

6 231.49 230.13 229.39 229.44 229.13

Figure 18. Quadrilateral mesh for the plate with four holes: (a) Mesh A (792 elements and 871 nodes);
(b) Mesh B (1175 elements and 1278 nodes); (c) Mesh C (1585 elements and 1710 nodes); (d) Mesh D
(2651 elements and 2814 nodes).
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The first six mode shapes obtained through the FE-RPIM QUAD4 element under
CMM are presented in Figure 19. Mode shapes through CMM agree well with those
through DLMM in the context of FE-RPIM QUAD4 element.

Figure 19. First 6 mode shapes of the plate with four holes using FE-RPIM QUAD4 element (CMM): (a) Mode 1; (b) Mode 2;
(c) Mode 3; (d) Mode 4; (e) Mode 5; (f) Mode 6.
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4.6. A Cantilever Beam under Harmonic Load

In the context of FE-RPIM QUAD4 element, accuracy for natural frequencies obtained
through the DLMM is as good as or even better than those through the CMM. This
conclusion was also hold FEM [61,63]. However, the CMM is considered to be a better
choice to calculate deformation and mode shapes [61,63]. In this section, following the same
purpose as in [61], an example is employed to show that the FE-RPIM QUAD4 element
is able to obtain satisfactory results by employing DLMM even for the scheme of implicit
time integration.

A cantilever beam (Figure 20) under harmonic load ( f (t)) on the right end is con-
sidered. The parameters used are ρ = 1 kg/m3, D = 1 m, L = 4 m, v = 0.3, E = 1 Pa,
f (t) = sin ω f t, ω f = 0.04 rad/s, β1 = 0.005 and β2 = 0.272.

Figure 20. A 2D cantilever beam subjected to a harmonic loading on the right end.

In the computation, scheme of implicit time integration with γ = 1 and β = 0.5 is used.
Time step size ∆t = 1.57s is adopted. Shown in Figure 21 is the discretized model used by
the FE-RPIM QUAD4 element. Apart from the FE-RPIM QUAD4 element, this dynamic
problem is also investigated using QUAD4 element (27 nodes, 16 elements), TRIG3 element
(27 nodes, 32 elements) and QUAD8 element (69 nodes, 16 elements). In order to compute
a reference solution, the QUAD4 element is adopted with a very dense discretized model
(6601 nodes, 6400 elements).

Figure 21. Discretized model of the 2D cantilever beam subjected to a harmonic loading.

As can be seen from Figure 22, if CMM scheme is employed, FE-RPIM QUAD4 ele-
ment’s accuracy is higher than QUAD4 and TRIG3 elements. More importantly, the result
of FE-RPIM QUAD4 (DLMM) almost coincides with FE-RPIM QUAD4 (CMM), which
means DLMM can supersede the CMM in the context of the FE-RPIM QUAD4 element.
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Figure 22. Transient responses of a cantilever beam subjected to a harmonic loading.

5. Conclusions

FE-RPIM QUAD4 element is further extended for problems of structural dynamics.
Some important conclusions, which can be drawn from this work, are as follows:

(1) Based on 4-node quadrilateral mesh, FE-RPIM QUAD4 element’s accuracy is much
higher than QUAD4 and TRIG3 elements (Table 2).

(2) Although FE-RPIM QUAD4 element’s accuracy is slightly inferior to QUAD8 element,
QUAD8 element requires more nodes than FE-RPIM QUAD4 element to discretize the
problem domain. In addition, FE-RPIM QUAD4 element can achieve results closing
to the reference solution, even for coarse mesh (Figure 22).

(3) For distorted meshes, FE-RPIM QUAD4 element’s accuracy is always much higher
than QUAD4 and TRIG3 elements. Moreover, FE-RPIM QUAD4 element is immune
to mesh distortion, but TRIG3, QUAD4 and QUAD8 elements give very bad results
as the mesh quality deteriorates (Figure 14).

(4) In the tests associated to the analysis of free vibration, the result based on the DLMM
are very close to those based on the CMM in the context of FE-RPIM QUAD4 element.
In the test on forced vibration analysis, the result from the DLMM also agrees well
with that from the CMM, which means DLMM can supersede the CMM in the context
of the FE-RPIM QUAD4 element even for the scheme of implicit time integration.
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