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Stefańska, K.; Matys, J.;
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Abstract: Photobiomodulation (PBM), also called low-level laser treatment (LLLT), has been con-
sidered a promising tool in periodontal treatment due to its anti-inflammatory and wound healing
properties. However, photobiomodulation’s effectiveness depends on a combination of parameters,
such as energy density, the duration and frequency of the irradiation sessions, and wavelength,
which has been shown to play a key role in laser-tissue interaction. The objective of the study was
to compare the in vitro effects of two different wavelengths—635 nm and 808 nm—on the human
primary gingival fibroblasts in terms of viability, oxidative stress, inflammation markers, and specific
gene expression during the four treatment sessions at power and energy density widely used in
dental practice (100 mW, 4 J/cm2). PBM with both 635 and 808 nm at 4 J/cm2 increased the cell
number, modulated extracellular oxidative stress and inflammation markers and decreased the
susceptibility of human primary gingival fibroblasts to apoptosis through the downregulation of
apoptotic-related genes (P53, CASP9, BAX). Moreover, modulation of mesenchymal markers ex-
pression (CD90, CD105) can reflect the possible changes in the differentiation status of irradiated
fibroblasts. The most pronounced results were observed following the third irradiation session. They
should be considered for the possible optimization of existing low-level laser irradiation protocols
used in periodontal therapies.

Keywords: low-level laser treatment; LLLT; photobiomodulation; PBM; human gingival fibroblasts;
in vitro
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1. Introduction

Since the first successful implementation of lasers in the mid-1960 for retina coagu-
lation, lasers quickly have found their application in other fields of medicine, including
dentistry [1]. In 1964, after high-energy lasers proved their effectiveness for bone ablation or
osteotomy, Goldman et al. described the beneficial effects of the laser beam for dental caries
treatment [2,3]. While high-energy lasers appeared to be a promising tool for hard tissue
treatment, photobiomodulation (PBM), also called soft laser therapy or low-level laser irra-
diation (LLLI), may represent a treatment of choice for soft tissues. Low-level lasers cover
a spectrum of red and near-infrared light (600–1100 nm), characterized by low absorption
in water and the ability to penetrate biological tissues in a depth of 3 mm–15 mm [1,4].

Photobiomodulation has been used in periodontal treatment to stimulate repair and
reduce pain and inflammation [5–8]. Application of PBM along with gingivectomy results
in improved condition and faster regeneration [9]. In a study on wound healing after
gingivectomy and gingivoplasty surgeries, low-level laser therapy application resulted
in increased epithelialization and wound healing [10]. Laser irradiation was shown to be
effective as an adjunctive treatment in promoting revascularization and pain control during
the early healing of free gingival graft [10,11]. Moreover, LLLT was reported to exert a
therapeutic effect in the nonsurgical treatment of chronic periodontitis [1,12,13]. Scaling
and root planning combined with LLLT managed to improve radiographic bone density
and to probe pocket depth short-term reduction in patients with chronic periodontitis [12].

The photobiomodulation effects on cells and periodontal tissues imply several com-
plex mechanisms. Red and near-infrared light is primarily absorbed by cytochrome c
oxidase in the respiratory chain of the mitochondria membrane. Following the cascade of
reactions, cell signaling and messenger molecules are upregulated due to increased mito-
chondrial activity, including reactive oxygen species (ROS) and adenosine triphosphate
(ATP) synthesis. The application of near-infrared light (810–1064 nm) stimulates light-
sensitive ion channels increasing the levels of calcium ions (Ca2+) and its interaction with
ROS and cyclic AMP (cAMP). All of these activities stimulate cell proliferation, migration
and differentiation [7].

Additionally, near-infrared light has been suggested to increase the activity in the cell
plasma membrane [14]. Low biochemical activity has been observed in wavelengths in the
range of 700–770 nm. The optimum wavelength for near-infrared irradiation of biological
tissues is usually considered to be around 810 nm [15]. However, some clinical trials have
speculated that 630 to 660 nm may be the most effective wavelength to bring desirable
effects on cells and tissues [16].

Notably, the effectiveness of photobiomodulation on the target tissues is dependent
on a combination of parameters such as wavelength, energy density, the duration and
frequency of the laser application [17]. The wavelength plays a key role in laser-tissue
interaction, modulating the absorption and scattering characteristics [4,17]. Meanwhile, a
biphasic dose-response affects the PBM clinical outcomes, indicating a therapeutic window
for the optimal therapeutic reaction [18]. Despite the considerable efforts of accumulating
in vitro and in vivo studies, the exact parameters remain controversial [12,19–22]. Sub-
stantial heterogeneity has been reported in the laser parameters and regimens among
the different studies, with wavelengths ranging from 630 nm to 830 nm, output powers
between 0.2 and 250 mW, and application frequencies ranging from 4 to 10 treatments [23].
The dose-dependent effects of PBM can be described by Arndt–Schultz’s curve, suggesting
that the weak stimuli have the potential to enhance the physiological activity of treated
cells and tissues. However in case of moderate stimuli, the activity is decreased, and
extreme stimulation restrains and eliminates the activity [24,25] underlying the crucial
role of the appropriate dosage for laser therapies. It has been revealed that the energy
density ranging between 1–5 J/cm2 is optimal to achieve an optimal biological effect in
different cells and organs, including periodontal tissues [23,24,26,27]. In addition to be-
ing used in various studies on different wavelengths, the doses falling within the range
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of 2–4 J/cm2 are mentioned in the World Association for Photobiomodulation Therapy
(WALT) recommendations LLLT application in different fields of medicine [28].

The present study aimed to compare the in vitro effects of two different wavelengths.
This included 635 nm and 808 nm on the human gingival fibroblasts in terms of viability,
oxidative stress markers and specific genes expression during the four treatment sessions
at power and energy density widely used in dental practice (100 mW, 4 J/cm2).

2. Materials and Methods
2.1. Cell Isolation

Human primary gingival fibroblasts were obtained from healthy gingival tissues of
12 patients (6 males, 6 females, age range 25–48 years old) undergoing impacted tooth
extraction. The patients involved in the study had no systemic and metabolic diseases and
did not receive any periodontal therapy within the last year. The patients with aggressive
or generalized periodontitis, intraoral lesions, and smokers were excluded from the study.
All patients meeting the criteria gave informed written consent to participate in the study.

Each gingival fragment was placed in a sterile 15 mL Falcon tube containing 5 mL of
Dulbecco’s modified Eagle’s medium (DMEM, Sigma-Aldrich; Merck KGaA, Darmstadt,
Germany). It was supplemented with 1% antibiotic/antimycotic solutions (Gibco; Thermo
Fisher Scientific, Inc., Waltham, MA, USA) and transported to the laboratory for further
cell isolation. Next, the samples were cut into small pieces and digested with collagenase
type I (1 mg/mL) and Dispase II (1 mg/mL, both from Gibco; Thermo Fisher Scientific,
Inc., Waltham, MA, USA) at 37 ◦C overnight.

The enzyme solution containing cells and tissue debris was centrifuged at 300× g for
8 min. The cellular pellet was resuspended in fresh DMEM supplemented with 10% fetal
bovine serum (Sigma-Aldrich; Merck KGaA, Darmstadt, Germany), 4 mM L-glutamine
(stock 200 mM; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA), 10 mg/mL
gentamicin (Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA), 10,000 U/mL
penicillin and 10,000 µg/mL streptomycin (Gibco; Thermo Fisher Scientific, Inc., Waltham,
MA, USA). Then it was transferred to T25 cell culture flasks and cultured at 37 ◦C in a
humid 5% CO2 atmosphere. The culture medium was changed every 48 h until 80–90%
confluence was reached. Cells were sub cultured using 0.25% trypsin-EDTA solution
(Sigma-Aldrich; Merck KGaA, Darmstadt, Germany). The cells were propagated and
passaged three times before the experiment (Figure 1).

2.2. Phenotypic Characterization

The mesenchymal character of isolated gingival fibroblasts was confirmed by inves-
tigating the presence of the following surface markers: CD44, CD90, and CD105 with
a FACScan flow cytometer (Becton Dickinson, San Jose, CA, USA). The following anti-
bodies were used: CD44-PE (human, 130-113-897); CD90-FITC (human, clone: REA897,
130-114-901); CD105-APC (human, clone: REA794, 130-112-324) and REA Control (S)-PE
(130-113-438), REA Control (S)-FITC (130-113-437), REA Control (S)-FITC (130-113-437),
REA Control (S)-APC (130-113-434) and REA Control (S)-PE (130-113-438) from Miltenyi
Biotec (Bergisch Gladbach, Germany). The data were analyzed using CellQuest Pro Soft-
ware (Becton Dickinson, San Jose, CA, USA, version 5.2.1).
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Figure 1. Schematic representation of the experimental design. (A) Gingival tissue samples were 
enzymatically digested to isolate the gingival fibroblasts for further primary in vitro culture. The 
cells were propagated and passaged three times and immunophenotyped before the experiment. 
(B) The cells were divided into control (untreated) and two experimental groups, which were sub-
jected to LLLT sessions with red (635 nm) or near-infrared (808 nm) light. Following 24 h after each 
LLLT session, the metabolic activity assay was performed. The cells were harvested for gene expres-
sion analysis. The conditioned medium was collected to assess the level of extracellular oxidative 
stress and inflammation markers, created with BioRender. 
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tered irradiation. After 24 h, the culture medium was changed to remove the unattached 
cells. One group was treated with a diode laser emitting at the wavelength of 635 nm, 
power 100 mW and energy density 4 J/cm2. In contrast, another group was subjected to 
irradiation at 808 nm, 100 mW, 4 J/cm2, (handpiece diameter: 8 mm, spot area: 0.5024 cm2, 
average power density: 199.04 mW/cm2, continuous mode, dose: 4 J/cm2, time: 20 s, the 
total energy dose after all sessions were 16 J/cm2), (Smart M, Lasotronix, Poland). The cells 
were irradiated every 24 h during the four days. The untreated cells served as a control 
with medium changed every 24 h. Twenty four hours after each LLLI, we assessed the cell 
viability, selected genes expression, ROS and NO accumulation in the culture medium. 

2.4. Cell Viability Assay 
The number of viable cells in culture was estimated with TOX8 resazurin-based assay 
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Figure 1. Schematic representation of the experimental design. (A) Gingival tissue samples were
enzymatically digested to isolate the gingival fibroblasts for further primary in vitro culture. The cells
were propagated and passaged three times and immunophenotyped before the experiment. (B) The
cells were divided into control (untreated) and two experimental groups, which were subjected to
LLLT sessions with red (635 nm) or near-infrared (808 nm) light. Following 24 h after each LLLT
session, the metabolic activity assay was performed. The cells were harvested for gene expression
analysis. The conditioned medium was collected to assess the level of extracellular oxidative stress
and inflammation markers, created with BioRender.

2.3. Laser Irradiation

To examine the effects of low-level laser irradiation, the gingival fibroblasts at the third
passage were seeded into 48-well plates at the number of 5× 103 cells per well. Empty wells
separated the experimental wells seeded with the cells to avoid overlapping of scattered
irradiation. After 24 h, the culture medium was changed to remove the unattached cells.
One group was treated with a diode laser emitting at the wavelength of 635 nm, power
100 mW and energy density 4 J/cm2. In contrast, another group was subjected to irradiation
at 808 nm, 100 mW, 4 J/cm2, (handpiece diameter: 8 mm, spot area: 0.5024 cm2, average
power density: 199.04 mW/cm2, continuous mode, dose: 4 J/cm2, time: 20 s, the total
energy dose after all sessions were 16 J/cm2), (Smart M, Lasotronix, Poland). The cells
were irradiated every 24 h during the four days. The untreated cells served as a control
with medium changed every 24 h. Twenty four hours after each LLLI, we assessed the cell
viability, selected genes expression, ROS and NO accumulation in the culture medium.

2.4. Cell Viability Assay

The number of viable cells in culture was estimated with TOX8 resazurin-based assay
following the manufacturer’s protocol (TOX8, In vitro Toxicology Assay Kit, Sigma-Aldrich;
Merck KGaA, Darmstadt, Germany). Briefly, following 24 h after each photobiomodulation,
the culture medium was replaced with a fresh one containing 10% of the TOX8 dye solution.
The plates were placed in the incubator for the next 4 h. Afterwards, 100 µL of medium
from each well was transferred into a 96-well plate. The absorbance level was measured
at 600 nm and 690 nm (reference wavelength) using a Synergy 2 plate reader (BioTek,
Winooski, VT, USA). The decrease in absorbance is proportional to the metabolic activity
and, consequently, to the number of living cells.

Furthermore, the number of viable cells was estimated based on the growth curve
calculated in parallel with the cytotoxicity test. The cells were seeded at the density of
2.5 × 103, 5× 103, 7.5× 103 and 104 per well, and the level of dye absorbance was measured
concerning the specific cells number to prepare the growth curve. The obtained linear
trendline equation allowed us to estimate the number of cells.
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2.5. Estimation of Extracellular Oxidative Stress and Inflammation Markers

The conditioned culture medium was collected from the wells following 24 h after each
PBM treatment. ROS concentration in the conditioned medium was assessed by incubation
with 2′,7′-dichlorodihydrofluorescein diacetate solution (H2D-CF-DA, Invitrogen, Thermo
Fisher Scientific, Inc., Waltham, MA, USA) for 30 min at 37 ◦C and subsequent spectroscopic
measurement at wavelengths of 495 nm and 529 nm. Nitric oxide (NO) concentration
was determined with the Griess Reagent Kit (Invitrogen, Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). Each samples’ absorbance was measured at 548 nm and converted
to nitrite concentrations relative to the reference sample, following the manufacturer’s
instructions. All procedures were performed in triplicate. The Synergy 2 (BioTek, Winooski,
VT, USA) multi-mode plate reader was used for spectroscopic measurements.

2.6. Analysis of Chosen Genes Expression

Gingival fibroblasts were collected following 24 h after each PBM treatment. The
process of RNA isolation was performed according to the modified Chomczyński and
Sacchi method [29,30]. Briefly, the cells were suspended in a monophase solution of guani-
dine thiocyanate and phenol (TRI Reagent®, Sigma-Aldrich; Merck KGaA, Darmstadt,
Germany). Next, the chloroform was added, with the samples centrifuged to obtain three
separate phases. Total RNA located in the upper, aqueous phase was then precipitated with
2-propanol (Sigma-Aldrich; Merck KGaA, Darmstadt, Germany) and washed twice with
75% ethanol. Finally, RNA was dried and resuspended in 30 µL of pure water. RNA quan-
tity and purity were examined spectrophotometrically (Epoch, Biotek, Bad Friedrichshall,
Germany). Samples with a 260/280 absorbance coefficient greater than 1.8 were used
for further experiments. The reverse transcription reaction was conducted according to
the protocol provided by the manufacturer—SA Biosciences (RT2 First Stand kit-330401).
RT-qPCR was performed using LightCycler (Roche Diagnostics GmbH, Mannheim, Ger-
many). The amplification process was carried out using a 2 µL of cDNA solution, 18 µL
of QuantiTect® SYBR® Green PCR (Master Mix Qiagen GmbH, Hilden, Germany) and
primers (Table 1).

Table 1. Sequences of primers used in RT-qPCR.

Gene Primer Sequence (5′–3′) Product Size (bp)

P53 GCTGAATGAGGCCTTGGAAC
TTATGGCGGGAGGTAGACTG 114

CASP3 ATGTCGATGCAGCAAACCTC
GCACACAAACAAAACTGCTCC 150

CASP9 TGATGTCGGTGCTCTTGAGA
CGCAACTTCTCACAGTCGAT 162

BAX TGACATGTTTTCTGACGGCA
CACCCTGGTCTTGGATCCA 179

BCL2 ATGTGTGTGGAGAGCGTCAA
GAAATCAAACAGAGGCCGCA 168

CD44 TCTGTGCAGCAAACAACACA
TAGGGTTGCTGGGGTAGATG 234

THY1/CD90 CTAGTGGACCAGAGCCTTCG
TGGAGTGCACACGTGTAGGT 236

ENG/CD105 CACTAGCCAGGTCTCGAAGG
CTGAGGACCAGAAGCACCTC 165

ACTB AAAGACCTGTACGCCAACAC
CTCAGGAGGAGCAATGATCTTG 132

GAPDH TCAGCCGCATCTTCTTTTGC
ACGACCAAATCCGTTGACTC 90

Relative gene expression was obtained using the 2−∆∆Ct method [31]. The geometric
mean of CT of β-actin (ACTB) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
was used as the reference.
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2.7. Analysis of Chosen Genes Expression

Statistical analysis was carried out using GraphPad Prism 8 software (San Diego, CA,
USA, version 8.0.1.244).

The Shapiro-Wilk test was used to verify the normality of the data distribution. One-
way analysis of variance (ANOVA) with Tukey’s post hoc test was applied for multiple
comparisons between the studied groups. The results are presented as mean ± standard
deviation (SD), and p < 0.05 was considered statistically significant.

3. Results

The cells isolated from the gingival tissue samples presented the surface antigens
typical for mesenchymal lineage cells, i.e., expression of CD44, CD90, and CD105 markers
(Figure 2).
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Figure 2. Phenotypical characterization of human primary gingival fibroblasts. Isolated cells were positive for CD44, CD90,
and CD105.

The resazurin-based assay (TOX8) revealed that photobiomodulation positively af-
fected the cell number in gingival fibroblast cultures (Figure 3). The treatment with a
635 nm laser resulted in significant cell numbers 24 h after the first PBM (D1) compared to
the control group. Instead, the second treatment (D2) did not influence the number of cells
in the case of both 635 nm and 808 nm wavelengths. In contrast, the third PBM significantly
improved this parameter in treated groups compared to control (D3). However, 24 h
after the fourth PBM (D4), there was no significant difference between the irradiated and
non-treated cells.
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The conditioned medium was collected 24 h after every PBM treatment to assess the
effects of photobiomodulation on the accumulation of molecular markers associated with
oxidative stress and inflammation into the extracellular environment (Figure 4). After
the second irradiation (D2), there was a significantly higher concentration of ROS in
the medium collected from wells irradiated with 808 nm when compared to the 635 nm
wavelength. Noticeably, the highest statistically significant differences were obtained
after the third exposure to laser irradiation (D3). There was a significantly higher ROS
accumulation in the conditioned medium of the gingival fibroblasts treated with 635 nm
and 808 nm diode laser compared to the medium collected from the control group. After
the fourth irradiation (D4), the differences between the experimental groups were not
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statistically significant. Interestingly, the ROS levels decreased considerably in all three
groups when compared to earlier time points (D4).
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Figure 4. The levels of extracellular oxidative stress and inflammation markers in cultured human
gingival fibroblasts. Results expressed as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

No difference was noted in extracellular NO concentrations between the groups
following the first two PBM treatments (D1, D2). The level of NO decreased significantly
after the third exposure to 635 nm wavelength compared to 808 nm (D3). Interestingly,
the fourth treatment revealed the opposite effect—NO concentrations rose significantly
in wells exposed to 635 nm than 808 nm. Additionally, in contrast to ROS accumulation
dynamics, there was a significant increase in NO concentrations following the fourth PBM
(D4) compared to the third laser treatment (D3).

The RT-qPCR method demonstrated a significant decrease in pro-apoptotic P53 and
CASP9 gene expression following the third (D3) exposure to 635 nm and 808 nm diode
laser (Figure 5). The expression of CASP3 remained unchanged in all groups. The downreg-
ulation of BAX was observed following the third exposure to 635 nm wavelength only (D3).
After the fourth laser treatment, the expression of anti-apoptotic BCL2 was significantly
higher in cells subjected to the 808 nm wavelength compared to 635 nm.
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RT-qPCR evaluation of CD44, CD90, and CD105 gene expression demonstrated that
PBM did not significantly affect the CD44 mesenchymal gene expression (Figure 6). In
contrast, the first stimulation with 808 nm upregulated the mesenchymal gene expression
of both CD90 and CD105 genes (D1). Following the second PBM (D2), a significant CD90
downregulation in the group exposed to 808 nm irradiation compared to the control. The
observed decrease in CD105 gene expression was not statistically significant. The third
exposure resulted in significant CD90 and CD105 downregulation in the case of both
wavelengths (D3). Following the fourth PBM with 635 nm, CD90 expression remained
significantly downregulated.
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4. Discussion

The gingival tissue is composed of the superficial oral epithelium and underlying
connective tissue. These tissues represent the first sites affected by interaction with biofilms
and develop an inflammatory response. The gingival tissue is considered to be the initial
location for destructive periodontal diseases [32].

As the main cells forming the connective tissue, fibroblasts are responsible for the
extracellular matrix formation and maintaining the normal gingival tissue homeostasis. In
the case of chronic pathological stimuli leading to connective tissue damage or managing
loss of the gingival tissue, supplementing periodontal fibroblasts by grafting or stimulating
cell migration, proliferation and viability seem to be a reasonable approach [33].

It has been documented that all these cell characteristics can be improved using
photobiomodulation [34]. Almeida-Lopez et al. suggested enhanced human gingival
fibroblasts proliferation in vitro following irradiation with diode laser at 670, 780, 692,
or 782 nm and 2.0 J/cm2 [27]. It was noted that shorter exposure resulted in higher
proliferation. Frozanfar et al. observed a significant increase in gingival fibroblasts (HGF3-
PI53) proliferation on days 2 and 3 following the irradiation with 810 nm and 4.0 J/cm2 [35].
Additionally, day three was marked by the dramatically increased expression of the collagen
type 1 gene in cultured cells. Periera et al. described 3- to 6-fold higher NIH-3T3 fibroblasts
number following the treatment with 904 nm diode laser at 3.0 and 4.0 J/cm2 [36]. However,
this effect was restricted to a small range of energy densities since the exposure to 5.0 J/cm2

had no significant effect on fibroblast growth.
Increased proliferation and improved viability in gingival fibroblasts were confirmed

by deregulation of apoptosis-related gene expression [33,34,37–42]. The assessment of cell
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viability is important in studies on PBM effects. Photobiomodulation stimulates mitochon-
dria by affecting their respiratory chain components, resulting in cAMP, ATP, and ROS
production, directly influencing cell proliferation by initiating the intracellular signaling
cascades [43]. The proliferation of cells may explain the steady growth of cell number
between D1 and D3 in each group after the seeding. However, 635 nm wavelength seemed
to induce the proliferation at the earlier time (D1) and stimulated its significant growth after
the third irradiation session (D3). At D4, the difference between the irradiated and control
cells was not significant, which underlines the importance of an appropriate dose and
session number correction. PBM therapies should be adjusted to induce proliferation but
avoid overstimulation which could have a cytotoxic effect because of excessive free radicals
production [44]. The highest cell number was observed following the third application of
both 635 and 808 nm PBM, corresponding to the significantly higher ROS accumulation in
the culture medium at D3. By contrast, George et al. observed the lower ROS generated
using 636 nm laser than the non-irradiated cells. The 825 nm laser, instead, provoked a
significant increase in the level of ROS compared to the control [16]. Interestingly, the au-
thors tested different laser irradiation parameters and concluded that the ROS production
within biological systems is more dependent on the wavelength of the laser rather than
energy density.

Treatment with 635 nm and 808 nm revealed similar effects in most assays. The
physiologic and pathologic role of ROS in periodontitis has been studied for years. Studies
suggest that although low ROS levels can be beneficial, excessive concentration of ROS
can result in the initiation and exacerbation of periodontitis. There is still not enough
data explaining crosstalk between ROS and autophagy in periodontal disease. However,
data are suggesting that ROS may play a crucial role in determining cell fate by inducing
autophagy or apoptosis [45].

Significant differences between the wavelength effects were observed in the case of
extracellular NO concentration. The third irradiation session (D3) resulted in a significant
decrease in NO level in the group treated with 635 nm, compared to 808 nm. In contrast,
there was an increase in NO following the fourth treatment (D4). NO may represent one
of the by-products of PBM mediating the cellular effects of the therapy [46]. Moreover,
Karu et al. reported the irradiation-controlled mitochondrial NO signaling pathway in
cultured cells [47]. In contrast, PBM has been shown to reduce inflammation, including NO
synthesis [43,48–50]. However, the present data revealed no significant difference between
the irradiated and non-treated cells.

In addition to cell viability, oxidative stress, and inflammation, the present study
assessed the dynamics of mesenchymal marker expression in irradiated primary gingival
fibroblasts. Several previous studies have shown fibroblasts share a mesenchymal stem
cell phenotype, including the similar expression pattern of antigens characteristic for the
mesenchymal stem cells (MSCs) and multilineage differentiation potential [51–55]. Surface
immunophenotyping by flow cytometry confirmed CD44, CD90, CD105 markers before
the experiment. Next, the appropriate gene mRNA level was evaluated 24 h after each
irradiation session to investigate the possible effect of PBM on mesenchymal-like features
of the gingival fibroblasts. While the expression of CD44 remained unchanged during the
whole experiment, CD90 and CD105 were significantly modulated by laser treatment, with
the most pronounced changes following the third exposure (D3). CD90, also known as
Thy-1, is typically referred to as a mesenchymal marker associated with fibroblasts [56].
CD90 was shown to control MSCs differentiation by acting as an obstacle in the pathway of
differentiation commitment [57]. In fibroblasts, the existence of correlations between CD90
expression and particular cell function was presumed. For example, in the study of Liu
et al., fibroblasts revealed the heterogeneous CD90 expression in lung fibroblasts [58]. Cells
expressing CD90 were more susceptible to apoptosis than cells lacking its expression. The
authors showed that CD90 expression is associated with decreased levels of anti-apoptotic
molecules Bcl-2 and Bcl-xL and upregulation of cleaved caspase-9. The present study
revealed that CD90 downregulation at D3 was accompanied by the significant decrease in



Materials 2021, 14, 3427 10 of 13

pro-apoptotic BAX expression following 635 nm laser irradiation suggesting a correlation
between CD90 and apoptosis-related factors expression.

Decreased CD90 levels may reflect the differentiation of cultured fibroblasts. For
example, Mokoena et al. reported that PBM at 660 nm with 5 J/cm2 successfully stimulated
the human skin fibroblast differentiation into myofibroblasts [59]. Following 24, 48, and
72 h, the authors observed a significant increase in cell viability in the treated fibroblasts
accompanied by decreased Thy-1 (CD90) expression and modulation of differentiation-
related gene expression.

Interestingly, in the case of endoglin (CD105), the initial significant upregulation of
gene expression followed the first treatment (D1). The third photobiomodulation resulted
in the downregulation, similar to CD90. Endoglin, or CD105, is a type III coreceptor
for TGF-β1, and its overexpression in fibroblasts was reported to affect physiological
Smad/Alk1/Alk5 signaling to suppress the synthesis of TGF-β1 and extracellular matrix
(ECM) proteins [60]. Endoglin may induce fibrosis development in different tissues, and its
expression is higher in fibroblasts from fibrotic tissue than in non-fibrotic tissue [61]. CD90
and CD105 are overexpressed in carcinoma-associated fibroblasts [62]. PBM may modulate
the differentiation status of cultured gingival fibroblasts, which agrees with recent studies
describing that laser treatment may affect cell differentiation in human gingival fibroblasts,
periodontal ligament cells, and stem cells [49,63,64]. The present study represents the
first evidence of mesenchymal markers expression modulation in response to PBM in
human primary gingival fibroblasts, which in part can explain the LLLI effects on cell
differentiation reported in previous studies.

In conclusion, the present study revealed that PBM with 635 and 808 nm at 4 J/cm2

increased the cell proliferation, modulated extracellular oxidative stress and inflamma-
tion markers, and decreased the susceptibility of human primary gingival fibroblasts to
apoptosis through the downregulation of apoptosis-related genes. Moreover, the data
indicate that the modulation of CD90 and CD105 mesenchymal markers expression can
reflect the possible changes in differentiation status of irradiated fibroblasts. The laser
irradiation parameters used in the present in vitro study proved safe and exerted several
beneficial effects on treated cells from healthy donors. However, further studies should
consider the effectiveness of their application in the gingival tissues affected by pathological
changes to elucidate the possible differences in biological response and, finally, to adjust
the periodontal treatment protocols.
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Abbreviations

PBM photobiomodulation
LLLI low-level laser irradiation
LLLT low-level laser treatment
ROS reactive oxygen species
NO nitric oxide
ATP adenosine triphosphate
cAMP cyclic adenosine monophosphate
H2D-CF-DA 2′,7′-dichlorodihydrofluorescein diacetate
DMEM Dulbecco’s modified Eagle’s medium
MSCs mesenchymal stem cells
ECM extracellular matrix
WALT World Association for Photobiomodulation Therapy
ACTB β-actin
GAPDH glyceraldehyde 3-phosphate dehydrogenase
P53 tumor protein P53
CASP3 caspase 3
CASP9 caspase 9
BAX BCL2 associated X protein
BCL2 B-cell lymphoma 2
CD44 cluster of differentiation 44
THY1/CD90 thymocyte differentiation antigen 1/cluster of differentiation 90
ENG/CD105 endoglin/cluster of differentiation 105
AU arbitrary units
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7. Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Leśniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba,
T.H.I.; et al. Photobiomodulation—Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [CrossRef]
[PubMed]
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30. Kocherova, I.; Stefańska, K.; Bryl, R.; Perek, J.; Pieńkowski, W.; Zakova, J.; Crha, I.; Ventruba, P.; Mozdziak, P.; Ješeta, M.
Apoptosis-related genes expression in primary in vitro culture of human ovarian granulosa cells. Med. J. Cell Biol. 2020, 8, 176–182.
[CrossRef]

31. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method.
Methods 2001, 25, 402–408. [CrossRef]

32. Bao, K.; Akgül, B.; Bostanci, N. Establishment and Characterization of Immortalized Gingival Epithelial and Fibroblastic Cell
Lines for the Development of Organotypic Cultures. Cells Tissues Organs 2014, 199, 228–237. [CrossRef]
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