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Abstract: Photodynamic therapy (PDT) has been reported as a possible pathway for the treatment
of tumors. The exploration for promising PDT systems thus attracts continuous research efforts.
This work focused on an ordered core–shell structure encapsulated by mesoporous SiO2 with the
upconverting emission property following a surfactant-assisted sol–gel technique. The mesoporous
silica shell possessed a high surface area-to-volume ratio and uniform distribution in pore size,
favoring photosensitizer (rose bengal) loading. Simultaneously, upconverting nanocrystals were
synthesized and used as the core. After modification via hydrophobic silica, the hydrophobic
upconverting nanocrystals became hydrophilic ones. Under near-infrared (NIR) light irradiation, the
nanomaterials exhibited strong green upconverting luminescence so that rose bengal could be excited
to produce singlet oxygen. The photodynamic therapy (PDT) feature was evaluated using a 1O2

fluorescent indicator. It was found that this core–shell structure generates 1O2 efficiently. The novelty
of this core–shell structure was the combination of upconverting nanocrystals with a mesoporous
SiO2 shell so that photosensitizer rose bengal could be effectively adsorbed in the SiO2 shell and then
excited by the upconverting core.

Keywords: upconverting; photodynamic therapy; singlet oxygen generation

1. Introduction

It has been reported that tumor tissues are sensitive to some photosensitive reagents
when being exposed to an appropriate irradiation wavelength which makes photodynamic
therapy (PDT) a candidate for effective and economical treatment method for body tumors
and premalignant conditions [1]. It is well-known that PDT works by way of a photochem-
ical reaction between photoexcited photosensitizers (PS) and O2 molecules. The excited
photosensitizer molecules can interact with nearby oxygen molecules, generating singlet
oxygen 1O2, causing damage to tumor cells and ultimately their death [2,3]. Regardless of
the promising future of PDT in the field of cancer treatment, there are still problems to be
solved. For example, the penetration depth of excitation light in a living body is still too
short to be applied; some photosensitizer molecules are incompatible with water-based
environments; their photostability under excitation light is unsatisfied [4–8]. Actually, the
currently reported photosensitizer molecules for PDT application are usually driven by
blue or even ultraviolet (UV) light. As a consequence, the penetration depth is unsatisfac-
tory in a living body, which prevents PDT from clinical application. Compared to visible
and UV irradiation, near-infrared (NIR) irradiation is a promising way to improve pene-
tration depth owing to the low absorption in a living body; background light interference
and photodamage to normal tissues are greatly avoided [9]. The application of RE-based
upconverting nanomaterials which transform NIR radiation to higher-energy excitation
light may offer a new pathway for PDT. They present good photostability, low toxicity,
and unique emission bands upon NIR excitation [10–15]. Upconverting nanosystem-based
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PDT materials claim an appropriate photosensitizer structure with proper absorbance for
upconverting emission. Upconverting luminescence can excite neighboring photosensitizer
molecules to initiate the PDT effect. Till now, there have been some reports about PDT sys-
tems based on upconverting nanomaterials such as silica coatings, polymer immobilization,
and hydrophobic reactions [16–22].

Recently, porous silica-derived nanomaterials have been attracting more and more
research interest as a host for pharmaceutical delivery and fluorescent labeling in virtue of
their large surface-area-to-volume ratio, homogeneous porous structure, favorable biocom-
patibility, and stability in living tissues [23–29]. Combining porous silica materials with a
functional component via a hybrid structure has been reported as a promising protocol.
Here, porous silica materials offer a sufficient number of surface sites for the immobilization
of functional component molecules, and their porous structure accelerates analyte adsorp-
tion and accumulation for later reaction with functional component molecules [30]. Hence,
photosensitizer molecules are dispersed into silica channels with a high doping level to be
conveniently absorbed by living tissues [31–34]. As for the upconverting nanomaterials,
the NaYF4 lattice is the most widely reported one owing to its high upconverting efficiency
and good stability with controllable photoluminescence (PL), adjustable size, and good
biocompatibility [35–42]. Zhang et al. were the first to demonstrate NaYF4 upconverting
nanoparticles for PDT application, which sparked the following research [43].

In this work, we synthesized an ordered core–shell structure encapsulated by meso-
porous silica with the upconverting emission property following a surfactant-assisted
sol–gel technique. The β-NaYF4 nanocrystals were coated by a thin layer of silica and a
mesoporous SiO2 layer, which still showed strong upconverting emission. At the same
time, the porous silica layer had sufficiently large channels, offering immobilization sites
for photosensitizer molecules (rose bengal). Here, rose bengal had strong absorption for
the upconverting emission from NaYF4 upconverting nanoparticles. Multicolor emission
shall be generated upon NIR excitation so that the photosensitizer rose bengal could be
effectively adsorbed in the SiO2 shell and then excited by the upconverting core. It was
found that this core–shell structure generates 1O2 efficiently, making it a candidate for
PDT application.

2. Materials and Methods
2.1. Reagents

All the regents used for synthesis in this paper were AR (analytical reagent) grade ones.
They were used as received. Y2O3, Yb2O3, and Er2O3 were purchased from Wuxi Chemical
Industrial Co. Lanthanide nitrates were obtained by reacting lanthanide oxides with nitric
acid. Natural evaporation resulted in bulk crystals. EtOH (99%), acetone, NH3·H2O
(28 wt%), oleic acid (85 wt%), tetraethoxysilane (TEOS), hexadecyltrimethylammonium
bromide (CTAB), rose bengal and 1,3-diphenylisobenzofuran (DPBF) were purchased
from Beijing Chemical Company. Triton X-100 (tert-octylphenoxypolyethoxyethanol) was
bought from Guoyao Chemistry Co. (Shanghai, China), NaOH (Beijing Chemistry Co.,
Beijing, China) and NaF (Tianjin Chemicals Co., Tianjin, China) were used as they were.
Double distilled water was used for synthesis.

2.2. Synthesis of NaYF4 Nanocrystals

Hexagonal-phased β-NaYF4 nanocrystals doped with Yb3+ and Er3+ ions were syn-
thesized through a solvothermal reaction according to the literature [44]. First, 1.4 g
(35.0 mmol) of NaOH, 14.2 g (45.2 mmol) of oleic acid and 20.0 g of EtOH were mixed
together. Then, 20.0 mL (16 mmol) of 0.78 M NaF solution were added dropwise. After that,
4.0 mL of 0.41 M Y(NO3)3, 2.0 mL (0.4 mmol) of 0.21 M Yb(NO3)3, and 4.0 mL (0.04 mmol)
of 0.011 M Er(NO3)3 were added. After 30 min of stirring, the final mixture was sealed in
a Teflon bottle and heated at 200 ◦C for a whole day. After cooling, the solid sample was
collected and washed with EtOH and water. The crude sample was placed under 75 ◦C for
18 h.
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2.3. Synthesis of Upconverting Mesoporous Silica Nanocomposites

Upconverting mesoporous silica nanocomposites were synthesized using CTAB as
a mesostructural template [45]. A representative operation is described as follows. First,
0.20 g of upconverting nanocrystals are mixed with 40 mL of Triton X-100. Then, this
mixture is placed in an ultrasonic bath for 12 min. After that, 160 mL of deionized H2O are
added, and the final solution is stirred for another 8 h. The solid sample is collected and
washed with EtOH and water. Then, NH3·H2O (4.0 mL), EtOH (320 mL), and H2O (80 mL)
are mixed with TEOS (0.12 g). Under stirring, the solid sample obtained above is added
and stirred for further 8 h. The solid sample is collected, washed with EtOH and water, and
mixed with CTAB (0.6 g), H2O (160 mL), NH3·H2O (2.0 g), and EtOH (120 mL). The final
mixture is treated under ultrasonication for 45 min. Then, TEOS (0.360 g) is added. This
resulting mixture is stirred for another 8 h. The solid product is collected and washed with
EtOH and H2O. The resulting solid sample is dispersed in acetone (80 mL) and distilled for
two days so that CTAB could be removed. This CTAB procedure is performed two more
times. The final solid sample is collected, washed with H2O, and dried for later use.

2.4. Adsorption of Rose Bengal Molecules

Rose bengal (5 mg) was dissolved in ethanol (10 mL) and then the as-synthesized
nanocrystals were added. An ultrasonic bath was used for 12 min; then, the solvent EtOH
was naturally vaporized to obtain β-NaYF4@SiO2@mSiO2 loaded with rose bengal.

2.5. Characterization

XRD (X-ray diffraction) curves were obtained using a Bruker D4 X-ray diffractome-
ter (Bruker, Baltimore, MD, USA, Cu Ka radiation). SEM (scanning electron microscope)
images were obtained using a Hitachi S-4800 microscope (Hitachi, Tokyo, Japan). N2 ad-
sorption/desorption experiment was conducted on a Nova l000 analyzer (Quantachrome,
Boynton Beach, FL, USA) at 77 K. Before the measurements, the samples were placed in
vacuum at 100 ◦C for 5 h. Porous parameters of all the samples, such as surface area, pore
volume, and pore size distribution, were determined by BET (Brunauer–Emmett–Teller)
and BJH (Barrett–Joyner–Halenda) methods. Optical measurements, such as of absorption
and emission spectra, were acquired using a Shimadzu UV-3101 spectrophotometer (Shi-
madzu, Tokyo, Japan) and a Hitachi F-4500 fluorescence spectrophotometer (λex = 980 nm,
Hitachi, Tokyo, Japan).

2.6. Determination for Singlet Oxygen Production by DPBF

In a typical DPBF experiment, DPBF was dissolved in EtOH (400 µL, 1 mM). Then,
β-NaYF4@SiO2@mSiO2 loaded with rose bengal was added (2 mg). The solution was
kept in the dark and irradiated using a 980-nm laser for 40 min, and the absorbance of
DPBF at 410 nm was collected every 5 min. As a control, the solution of upconverting
nanorods without loading photosensitizer molecules containing an equal amount of DPBF
was measured under 980-nm irradiation.

3. Results and Discussion
3.1. Microstructure and Micromorphology

The synthesis protocol is presented in Scheme 1. It has been mentioned above that
the upconverting mesoporous silica nanocomposites adjusted the core–shell structure and
was synthesized following a surfactant-assisted sol–gel technique. Firstly, nanocrystals
of β-NaYF4 doped with Yb(III) and Er(III) ions were synthesized and used as the core
following a literature method [44]. Oleic acid was applied during synthesis to stabilize the
formation of β-NaYF4 nanocrystals. Lanthanide nitrates and NaF served as the starting
chemicals. The excess and concentrated F– ions in the reaction system allowed crystal
growth following the [001] direction during the hydrothermal procedure so that long
rod-shaped nanocrystals were finally obtained [44]. The β-NaYF4 crystal nature and
purity were tentatively evaluated using XRD patterns as shown in Figure 1. All the XRD



Materials 2021, 14, 3660 4 of 10

peaks were found to be consistent with those of a pure hexagonal-phase β-NaYF4 crystal
structure [44]. No sign of the mixing phase was observed. It was thus confirmed that
Yb3+ and Er3+ were effectively trapped in the crystal lattice of β-NaYF4. As presented in
the SEM image in Figure 2, the as-synthesized β-NaYF4 was composed of multiple long
hexagonal nanorods, presenting homogeneous morphology and size. These nanorods were
as wide as 120 nm in diameter and as long as 1000 nm in length. Both ends of these long
nanorods exhibited hexagonal-phase morphology, indicating successful sample synthesis.
These nanocrystals, however, were fully covered by a hydrophobic shell made of oleic
acid (OA). Phase transfer catalyst Triton X-100 was applied here since it features both a
hydrophobic end and a hydrophilic end. The former one features high affinity for oleic
acid via its alkyl group. Thus, after the treatment with Triton X-100, these β-NaYF4 were
transformed from hydrophobic to hydrophilic, which made the following Stober silica
coating easy to perform. Additionally, a template reagent CTAB was introduced so that
the silica-based porous shell could be established and well-grown. After the reaction, a
refluxing operation extracted the CTAB template from the silica channels, leaving the pure
mesoporous structure in β-NaYF4@SiO2@mSiO2. This statement is tentatively confirmed
by the SEM image in Figure 2 (right) of β-NaYF4@SiO2@mSiO2. It is clear that the silica shell
fully covers β-NaYF4 nanocrystals, presenting smooth and puffy surface. After consulting
the wide-angle XRD measurement (Figure 1), it was observed that β-NaYF4@SiO2@mSiO2
exhibited diffraction peaks ranging from 15◦ to 65◦, which were found to be nearly identical
to the corresponding ones of β-NaYF4. These sharp peaks indicate good preservation
of crystallinity of the β-NaYF4 core in β-NaYF4@SiO2@mSiO2, which means that the
NaYF4 lattice was well-preserved during silica coating and modification. The EDX (energy
dispersive X-ray spectroscopy) of β-NaYF4@SiO2@mSiO2 shown in Figure 1 (right) fully
matches its desired elemental composition as shown in Figure 1 (right).
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The porous shell in β-NaYF4@SiO2@mSiO2 was analyzed via its low-angle XRD pat-
tern shown in the Figure 2 inset. A strong diffraction peak of 2.3° is observed, which con-
firms the successful synthesis of the SiO2 porous shell. With the help of SEM images shown 
in Figure 2, it was finally confirmed that the mesoporous shell was successfully planted 
in β-NaYF4@SiO2@mSiO2. N2 adsorption and desorption measurements were performed 
on the upconverting mesoporous silica nanocomposite as shown in Figure 3. There were 
typical type IV isotherms according to the IUPAC (International Union of Pure and Ap-
plied Chemistry) definition for β-NaYF4@SiO2@mSiO2, suggesting the existence of its mes-
oporous shell. A narrow pore size distribution is observed in the Figure 3 inset, which 
shows an average pore size value of 2.30 nm. The Brunauer–Emmett–Teller (BET) surface 
area of β-NaYF4@SiO2@mSiO2 was determined to be 415 m2∙g−1, while the total pore vol-
ume of β-NaYF4@SiO2@mSiO2 was recorded to be 0.34 cm3∙g−1. These obtained nanomateri-
als exhibited a rather homogeneous size distribution, along with large surface area and 
high pore volume. These porous parameters favored photosensitizer molecule loading 
and consequently the improvement of the singlet oxygen generation efficiency in β-
NaYF4@SiO2@mSiO2. Finally, the core–shell nanostructure of β-NaYF4@SiO2@mSiO2–rose 
bengal was confirmed by SEM, TEM (transmission electron microscopy), and elemental 
mapping images shown in Figure 3. 
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The porous shell in β-NaYF4@SiO2@mSiO2 was analyzed via its low-angle XRD
pattern shown in the Figure 2 inset. A strong diffraction peak of 2.3◦ is observed, which
confirms the successful synthesis of the SiO2 porous shell. With the help of SEM images
shown in Figure 2, it was finally confirmed that the mesoporous shell was successfully
planted in β-NaYF4@SiO2@mSiO2. N2 adsorption and desorption measurements were
performed on the upconverting mesoporous silica nanocomposite as shown in Figure 3.
There were typical type IV isotherms according to the IUPAC (International Union of Pure
and Applied Chemistry) definition for β-NaYF4@SiO2@mSiO2, suggesting the existence
of its mesoporous shell. A narrow pore size distribution is observed in the Figure 3 inset,
which shows an average pore size value of 2.30 nm. The Brunauer–Emmett–Teller (BET)
surface area of β-NaYF4@SiO2@mSiO2 was determined to be 415 m2·g−1, while the total
pore volume of β-NaYF4@SiO2@mSiO2 was recorded to be 0.34 cm3·g−1. These obtained
nanomaterials exhibited a rather homogeneous size distribution, along with large surface
area and high pore volume. These porous parameters favored photosensitizer molecule
loading and consequently the improvement of the singlet oxygen generation efficiency in β-
NaYF4@SiO2@mSiO2. Finally, the core–shell nanostructure of β-NaYF4@SiO2@mSiO2–rose
bengal was confirmed by SEM, TEM (transmission electron microscopy), and elemental
mapping images shown in Figure 3.
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3.2. Optical Properties of Upconverting Mesoporous Silica Nanocomposite
β-NaYF4@SiO2@mSiO2–Photosensitizer

The upconverting luminescence spectrum of β-NaYF4@SiO2@mSiO2 upon irradiation
of 980 nm and the UV-Vis absorption spectrum of photosensitizer molecules (rose bengal)
can be found in Figure 4. Upon 980-nm excitation, the upconverting nanocomposite
exhibited multiple upconverting emission lines, peaking at 520, 538, and 650 nm. These
emission lines were generated from 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2
transitions of Er3+, respectively. It is observed in Figure 4 that the green upconverting
luminescence band overlaps perfectly with the absorption spectrum of the rose bengal
molecules, indicating the possibility of the rose bengal molecules absorbing green emission
from the upconverting nanocore (β-NaYF4). Figure 4 shows the upconverting emission of β-
NaYF4@SiO2@mSiO2–rose bengal nanocomposite after 980-nm excitation. It was observed
that the two upconverting emission bands (521 nm and 539 nm) were strongly quenched,
while the low-energy emission band of 651 nm was not affected. In the meanwhile, there
was an emission band centering at 583 nm, corresponding to the fluorescence from rose
bengal, confirming that rose bengal can efficiently accept the upconverting emission bands
from the upconverting nanocore and transfer their energy to its own emission. Moreover,
rose bengal is a highly efficient photosensitizer in generating 1O2 [46]. Therefore, it is
predicted that upconverting luminescence excites neighboring photosensitizers to produce
singlet oxygen (1O2).
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3.3. Performance of 1O2 Production by β-NaYF4@SiO2@mSiO2–Rose Bengal Nanocomposite

The 1O2 production performance of β-NaYF4@SiO2@mSiO2-Rose-bengal nanocom-
posite was investigated using a reference method with 1,3-diphenylisobenzofuran as an
indicator, which is a widely used singlet oxygen quencher. Singlet oxygen generation is in
the inverse ratio of DPBF absorption intensity peaking at 411 nm. This is because there is
an irreversible reaction between DPBF and singlet oxygen. Figure 5 shows absorption spec-
tral monitoring for the DPBF solution upon the presence of β-NaYF4@SiO2@mSiO2–rose
bengal when exposed to various irradiation timespans (λex = 980 nm). The absorbance of
DPBF at 410 nm displayed a continuous decrease when exposed to the 980-nm light for
40 min, which indicates successful 1O2 generation upon continuous 980-nm radiation. A
linear decrease was observed for the spectral integral. In the meanwhile, the absorption
peak position (410 nm) was well-preserved with no obvious spectral shift. The FWHM
(full-width-at-half-maximum) values of these absorption spectra fell in the narrow region of
64.8 ± 0.4 nm. This result indicates uniform and steady generation of 1O2. This promising
feature is attributed to the homogeneous distribution of the photosensitizer (rose bengal)
molecules in the uniform mesopores of β-NaYF4@SiO2@mSiO2.
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In order to prove the relationship between 1O2 generation and rose bengal, a control
experiment with both DPBF and upconverting nanorods but without loading photosen-
sitizer molecules was conducted using a 980-nm laser. It is observed in Figure 6 that
the DPBF absorption intensity (410 nm) was nearly unchanged. These results suggest
that the rose bengal activated by emission from upconverting nanorods transports its
fluorescent energy to neighboring O2 molecules and causes the production of singlet-
state 1O2 with NIR (980 nm) excitation. Aiming at a better understanding of the 1O2
generation performance of β-NaYF4@SiO2@mSiO2–rose bengal, various amounts of β-
NaYF4@SiO2@mSiO2–rose bengal were examined in various solvents, including EtOH
(ethanol), MeOH (methanol), DMF (dimethyl formamidine), and MeCN (acetonitrile). It is
observed in Figure 7 that, given the same amount of β-NaYF4@SiO2@mSiO2–rose bengal,
DPBF absorption decreases in different solvents were rather similar to each other. On
the other hand, with the increasing amount of β-NaYF4@SiO2@mSiO2–rose bengal, DPBF
absorption correspondingly decreased. This result suggests that the 1O2 generation perfor-
mance of β-NaYF4@SiO2@mSiO2–rose bengal is mainly controlled by its photosensitizer
amount and has only minor correlation with the solvent used.
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solvents under 980-nm excitation.

4. Conclusions

In conclusion, we demonstrated the successful synthesis of mesoporous silica coat-
ing β-NaYF4@SiO2@mSiO2 upconverting nanomaterials with a core–shell structure by
the surfactant-assisted approach. The as-synthesized porous silica shells possessed a
high surface-area-to-volume ratio and uniform distribution in pore size (BET surface
area = 415 m2·g−1, pore volume = 0.34 cm3·g−1, mean pore size = 2.30 nm), favoring
photosensitizer (rose bengal) loading. At the same time, the hydrophobic surface of
as-synthesized NaYF4 nanocrystals was transformed by a covalent modification using
mesoporous SiO2. Large pore channels were beneficial for loading photosensitizer rose
bengal, the absorption spectrum of which overlapped and matched the upconverting lumi-
nescence. Under NIR light irradiation, nanomaterials exhibit strong green upconverting
luminescence, which can further activate rose bengal to produce 1O2. The 1O2 generation
performance of β-NaYF4@SiO2@mSiO2–rose bengal was evaluated using a fluorescent in-
dicator. This result shall he helpful for future design of nanostructures and nanocomposites
for potential PDT application.
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