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Abstract: The mathematical model of heating process for a friction system made of functionally
graded materials (FGMs) was proposed. For this purpose, the boundary-value problem of heat
conduction was formulated for two semi-spaces under uniform sliding taking into consideration
heating due to friction. Assuming an exponential change in thermal conductivities of the materials,
the exact, as well as asymptotic (for small values of time), solutions to this problem were obtained.
A numerical analysis was performed for two elements made of ZrO2–Ti-6Al-4V and Al3O2–TiC
composites. The influence of the gradient parameters of both materials on the evolution and spatial
distributions of the temperature were investigated. The temperatures of the elements made of FGMs
were compared with the temperatures found for the homogeneous ceramic materials.

Keywords: frictional heating; functionally gradient materials; temperature; composite; ceramic

1. Introduction

A new class of composite materials with non-homogeneous spatial distribution of
properties has emerged in recent years in the field of materials science [1]. Such properties
are intentionally obtained during manufacturing by grading the internal structure of a
material. Depending on the fabrication process, they are designed as stepwise-graded
or continuous-graded materials [2]. The typical representatives of stepwise-graded com-
posites are the laminates. The defect of such materials is the discontinuity of stress on
the interfaces between adjacent discrete layers [3]. Materials with a continuous change in
properties, known as functionally graded materials (FGMs) are devoid of this drawback.
Nowadays, FGMs are usually a mixture of two distinct materials with continuously varying
volume fractions of the constituents that, in effect, possess smooth properties which change
along a certain direction [4]. Functionally graded materials possess a number of advan-
tages that make them attractive in potential applications [5]. For example, a significant
reduction of thermal stress in a heated element has been be achieved by introducing a
thermal conductivity gradient in the material [6]. The results of studies indicate that a
controlled continuous change in material properties can lead to a significant improvement
in resistance to contact deformation and damage [4,7]. Thus, functionally graded coatings
have been proposed as an alternative to replace conventional homogeneous coatings of
frictional elements [8,9]. It has been proven that FGM coatings subjected to thermal shocks
may suffer less damage than conventional ceramic coatings [6].

Usually, functionally graded materials are made of ceramic-metal composites and
have superior characteristics of both components, i.e., heat and corrosion resistance of the
ceramic and mechanical strength of the metal, at the same time [10]. Therefore, FGMs are
considered to be advanced materials resistant to wear and elevated temperature conditions,
and therefore they have great potential for use in heavy loaded sliding systems. One such
application is brake discs exposed to intensive heating due to friction. At the core of an
FGM disc, the material is steel to maintain structural rigidity, which gradually changes
along the thickness and approaches purely ceramic at the friction surfaces to resist the
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severe thermal loading [5,11]. This significantly improves the thermomechanical behavior
of the brake system as a whole [12].

Investigations associated with the development of frictional heating models for FGMs
to determine the distributions of temperature and thermal stresses in brake systems, have
received a great deal of attention from many researchers. The most common investigations
have simulated the temperature regime in FGM brakes using numerical methods, in
particular, by means of the finite element method (FEM). The finite element analysis of
axisymmetric thermoelastic contact problems for a functionally graded disc with material
property changes in the radial direction was performed by Shahzamanian et al. [13,14].
In [5], the corresponding problem was analyzed for a disc with properties dependent on
the depth, along a normal direction to the friction surface of the disc. It was established that
with the same operating parameters, the temperature gradient in a functionally graded
disc was significantly lower than in a conventional steel disc. In a study by [9], the finite
element methodology was used to compute the subsurface stresses in functionally graded
coatings subjected to frictional contact with heat generation.

In addition to the well-established finite element method, there are other numerical
methods for solving the corresponding heat problems of friction for functionally gradient
materials. An advanced computational method for transient heat conduction analysis in a
non-homogeneous FGM, based on local boundary integral equations, was proposed by
Sladek et al. [15]. The Green’s functions for the three-dimensional FGM transient heat
conduction equation was derived using an exponential variation transform by [16]. The
boundary integral equation based upon this approach has been solved numerically using a
Galerkin approximation. The hybrid numerical method, based on the weighed residual
and Fourier transform methods, to investigate the temperature distribution in the FGM
plates under the exponential heat source load, was adopted by Tian and Jiang [17].

However, the closed-form analytical solutions to the thermal problems of friction for
FGMs have higher accuracy and require less computational time than other methods. In
general, the problems of thermomechanical contact with frictional heating for material with
non-homogeneous properties are difficult to solve analytically due to the high mathematical
complexity. For such materials, the equations of thermal conductivity and thermoelasticity
contain coefficients that depend on the spatial coordinate [18]. Thus, the exact solutions of
these equations and the determination of temperature distributions on their basis, require
some special assumptions [19]. It is known that the superb performance of a functionally
graded brake disc is achieved by introducing the appropriate gradient of thermomechanical
properties by adjusting the gradient index [4]. The distribution of material properties in
the FGM models is usually limited to unidirectional changes in the constituents of the
composite [5]. There are two main distinctive ways to approximate the distribution of
material properties through the graded direction, i.e., by means of an exponential and
a power function. Note that the actual variations of properties depend on the material
manufacturing process, which is neither exponential nor power law, therefore, in both
cases, some level of curve fitting is implied [20]. However, both of these functions have
a parameter that can be regulated to improve the fit and to adjust the gradation of the
material. This role is played by the exponential decay rate in the exponential and the power
exponent in the power law. The selection of these functions is also crucial from the point of
view of the difficulty solving the thermal problems for FGMs by analytical methods.

The one-dimensional transient heat conduction problem for an axisymmetric FGM
cylindrical shell with nonlinear thermal conductivity distributed according to the power
law has been solved by the methods of separation of variables and Bessel functions [21].
The analytical formulas for calculating the thermal and mechanical stresses in a hollow
cylinder made of FGM with properties modeled by the power law, using the direct method
of solution to the Navier equation were obtained by [16]. Steady-state and unsteady tem-
perature and thermal stress distributions in a plate, a hollow circular cylinder, and a hollow
sphere made of functionally gradient material have been studied [22–24]. They proposed
the original analytical method for solution to the one-dimensional heat conductivity prob-
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lem for heterogeneous FGMs, which was performed with proper displacement of variables,
Laplace transform, and the perturbation method. It should be noted that the perturbation
method may be employed for the study of all classes of thermoelastic problems for function-
ally graded materials, even with consideration of the thermal sensitivity of material [11].
In [10], an analytical solution of the heat conduction problem for FGM cylinders subjected
to non-uniform heat flux was obtained by using the method of matched asymptotic ex-
pansion in the perturbation technique. In [25], the Hankel transform method was used to
obtain an analytical solution of the axisymmetric stationary problem of heat conduction for
an FGM layer with thermal conductivity dependent on the depth from the heated boundary
surface. The same technique has been applied to solve the steady axisymmetric boundary
problem of thermoelasticity for non-homogeneous semi-space with thermomechanical
properties that depend exponentially on the distance from the heated surface [26]. This
approach can be used for modeling layered composites with stepwise gradation of the
properties, and also for approximate modeling of the materials with a functional change in
properties. In this last case, the functionally graded coatings were replaced by a package
of layers, whose material properties were assumed to be constant. This simplification of
material property gradation allows one to implement analytical methods for each sublayer,
using the known solutions to the thermoelastic problems of friction for isotropic bodies.
This approach is known as the multi-layered model of functionally graded materials. It has
been shown that the results obtained for the FGM layer, divided into a sufficient number of
the sublayers, are in good agreement with the data found using the corresponding exact
solutions [26]. The same approach has been used to simulate FGM with sinusoidal and
cosinusoidal power and exponential distribution of properties for a cylinder subjected to
non-uniform heat flux [27]. Thermoelastic frictional contact of the FGMs with arbitrarily
varying properties has been investigated using the multi-layered model by Liu et al. [4,7].
On the basis of the same approach, the non-stationary temperature field in a functional
gradient layer with continuous and piecewise change in material properties has been
determined by means of the Laplace transform, asymptotic analysis and integration tech-
nique [6]. The multi-layered model has been developed for analysis of the two-dimensional
sliding frictional contact problem with a functionally graded coating [28]. This model has
been used to solve the transient heat conduction and thermal stress problems for the FGM
plate taking into consideration temperature-dependent material properties [17].

Most of the above-mentioned studies have considered the problems for a heated FGM
layer on homogeneous substrate or cylinder, which can successfully simulate thermoelastic
behavior of a brake disc with FGM coating. The temperature mode of a pad-disc tribosys-
tem has been simulated using the thermal problem of friction for a functionally graded
coated half-space (a disc) sliding against a homogeneous body (a pad) in [4,7–9,27,29].
While modern materials for friction pads in brake systems are usually composites, the
proportion of individual components can also be changed along with the distance from the
friction surface. Experimental investigations have shown that functional variations in the
properties of the pad material significantly improve their braking characteristics [12,30].
In particular, the results have indicated that the wear resistance of a specimen made of a
functionally graded material is higher than the wear resistance of its analogue made of a
homogeneous material [12]. Therefore, FGMs are real candidates for the role of automotive
brake pads [29,31]. In connection with this potential application, we see the need for the
development of mathematical models of frictional heating of two element systems of the
pad-disc type, both made of functionally graded materials. The development of such mod-
els is also associated with the possibility of their use in the study of thermoelastic instability
(TEI) due to frictional heating. It is known that the system exhibits TEI in brakes when the
sliding speed exceeds a critical value [13]. The emergence of instability is accompanied by
the concentration of frictional heating over regions much smaller than the nominal contact
region, thus, leading to high localized temperature and contact pressure. The appearance
of these so-called hot spots results in various undesirable effects such as material trans-
formations, thermal cracking, and brake fade [20]. The studies concerning the effect of
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material non-homogeneity on thermal instability in brakes have shown that an FGM disc
reduces the susceptibility towards TEI by increasing the critical speed of sliding [8,20,27].

2. Statement of the Problem

Consider a heat-conduction problem for two semi-infinite FGM bodies (Figure 1).
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Figure 1. Scheme of the problem.

It is assumed that:

1. The bodies are related to the coordinate Cartesian system Oxyz, and their initial
temperature distribution is homogeneous and equal to the ambient temperature Ta;

2. At the initial time moment t = 0, the bodies are pressed to each other with uniform
pressure p0 acting parallel to the z axis and simultaneously start sliding with constant
relative speed V0 in the positive direction of the x axis;

3. Due to friction, on the contact surface z = 0 heat is generated, which is absorbed by
the elements of friction pair in the form of heat fluxes, causing an increase in their
temperature T(z, t) over the initial value Ta;

4. During frictional heating, the sum q1 + q2 of intensities of heat fluxes directed from
the contact surface z = 0 along the normal to the insides of the bodies, is equal to
the specific power of friction q0 = f p0V0, where f is the coefficient of friction. At the
same time, the temperatures T on the friction surfaces of both bodies are equal [32,33];

5. Changes in the temperature gradients in the directions x and y are negligible and the
gradient in the direction z decreases, along with the distance from the contact surface;

6. Thermal conductivity of materials Kl are exponential functions of variable z, and their
specific heat cl and density ρl , l = 1, 2 are constant [34]. Here and further, the lower
index l = 1 indicates the parameters and quantities relating to the first element, and
l = 2 to the second element.

On the basis of the above assumptions, the temperature rise Θ(z, t) = T(z, t)− Ta of
the friction pair was found as the solution to the following boundary-value problem of
heat conduction:

∂

∂z

[
K1(z)

∂Θ(z, t)
∂z

]
= c1ρ1

∂Θ(z, t)
∂t

, z > 0, t > 0, (1)

∂

∂z

[
K2(z)

∂Θ(z, t)
∂z

]
= c2ρ2

∂Θ(z, t)
∂t

, z < 0, t > 0, (2)

K2(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1(z)
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q0, t > 0, (3)

Θ(0−, t) = Θ(0+, t), t > 0, (4)

Θ(z, t)→ 0 , |z| → ∞ , t > 0, (5)



Materials 2021, 14, 4285 5 of 16

Θ(z, 0) = 0, |z| < ∞. (6)

Taking into consideration the dependencies:

Kl(z) = Kl,0eγl |z|, |z| < ∞, Kl,0 ≡ Kl(0), γl ≥ 0, l = 1, 2, (7)

the problem Equations (1)–(6) can be written in the form:

∂2Θ(z, t)
∂z2 + γ1

∂Θ(z, t)
∂z

=
e−γ1z

k1,0

∂Θ(z, t)
∂t

, z > 0, t > 0, (8)

∂2Θ(z, t)
∂z2 − γ2

∂Θ(z, t)
∂z

=
eγ2z

k2,0

∂Θ(z, t)
∂t

, z < 0, t > 0, (9)

K2,0
∂Θ(z, t)

∂z

∣∣∣∣
z=0−

− K1,0
∂Θ(z, t)

∂z

∣∣∣∣
z=0+

= q0, t > 0, (10)

Θ(0−, t) = Θ(0+, t), t > 0 (11)

Θ(z, t)→ 0 , |z| → ∞ , t > 0 (12)

Θ(z, 0) = 0, |z| < ∞ (13)

where
kl,0 =

Kl,0

clρl
, l = 1, 2. (14)

are the coefficients of thermal diffusivity of materials on the surface of friction z = 0.

3. Solution to the Problem

The Laplace transform [35]:

L[ Θ(z, t); p] ≡ Θ(z, p) =
∞∫

0

Θ(z, t)eptdt, Rep > 0. (15)

application to the problem Equations (8)–(13), gives:

d2Θ(z, p)
dz2 + γ1

dΘ(z, p)
dz

− p
k1,0

e−γ1zΘ(z, p) = 0, z > 0, (16)

d2Θ(z, p)
dz2 − γ2

dΘ(z, p)
dz

− p
k2,0

eγ2zΘ(z, p) = 0, z < 0, (17)

K2,0
dΘ(z, p)

dz

∣∣∣∣
z=0−

− K1,0
dΘ(z, p)

dz

∣∣∣∣
z=0+

=
q0

p
, (18)

Θ(0−, p) = Θ(0+, p), (19)

Θ(z, p)→ 0 , |z| → ∞. (20)

Introducing the new variables and dimensionless parameters:

ξ1 = ξe−γ1z/2, z ≥ 0, ξ2 = γεξeγ2z/2, z ≤ 0, γε = γ∗
√

k∗0, (21)

ξ =
2

γ1

√
p

k1,0
, γ∗ =

γ1

γ2
, k∗0 =

k1,0

k2,0
, (22)

the following derivatives can be found:

dΘ(z, p)
dz

= (−1)l 1
2

γlξl
dΘ(ξl , p)

dξl
,

d2Θ(z, p)
dz2 =

1
4

γ2
l ξ2

l
d2Θ(ξl , p)

dξl
2 +

1
4

γ2
l ξl

dΘ(ξl , p)
dξl

,l = 1, 2. (23)
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Taking into consideration the relations (23), Equations (16) and (17) are brought to
the form:

d2Θ(ξl , p)
dξ2

l
− 1

ξl

dΘ(ξl , p)
dξl

−Θ(ξl , p) = 0, ξl > 0, l = 1, 2 (24)

The general solution to Equation (24), satisfying the boundary condition (20), has
the form:

Θ(ξl , p) = Al(p)ξlI1(ξl), l = 1, 2 (25)

where Ik(·) are the modified Bessel functions of the first kind of the kth order, and Al(p) are
the unknown functions. After differentiating the solution (25), and taking into consideration
the relations (21), (22) and derivative [xI1(x)]′ = xI0(x) [36] (here and further, the symbol ‘
denotes the ordinary derivative), the following is found:

dΘ
dz

∣∣∣∣
z=0+

= −γ1

2
A1(p)ξ2I0(ξ),

dΘ
dz

∣∣∣∣
z=0−

=
γ2

2
A2(p)(γεξ)

2I0(γεξ). (26)

Substituting the derivatives (26) into the boundary conditions (18) and (19), the system
of two linear algebraic equations is obtained with respect to the unknown functions Al(p),
l = 1, 2, the solution of which, has the form:

A1(p) = 2Λ
I1(γεξ)

pγεξ2ψ(p)
, A2(p) = 2Λ

I1(ξ)

p(γεξ)
2ψ(p)

(27)

where
ψ(p) = I0(γεξ)I1(ξ) + KεI0(ξ)I1(γεξ), (28)

Kε =
K∗0√

k∗0
, K∗0 =

K1,0

K2,0
, Λ =

q0

γ2K2,0
. (29)

Taking into consideration the forms of variables ξl , l = 1, 2 (21), (22), and functions
Al(p), l = 1, 2 (27)–(29) the solutions (25) are given as:

Θ(z, p) = 2Λe−γ1z/2 ϕ1(z, p)
Ψ(p)

, z ≥ 0, Θ(z, p) = 2Λeγ2z/2 ϕ2(z, p)
Ψ(p)

, z ≤ 0, (30)

ϕ1(z, p) = I1(γεξ)I1(ξe−γ1z/2), ϕ2(z, p) = I1(ξ)I1(γεξeγ2z/2),
Ψ(p) = pγεξψ(p).

(31)

Using the Vashchenko–Zakharchenko theorem [37,38], the inverse Laplace transform
of the solutions (30) and (31) can be written in the form:

Θ(z, t) = 2Λe−
1
2 γ1z

[
ϕ1(z, 0)
Ψ′(0)

+
∞

∑
n=1

ϕ1(z, pn)

Ψ′(pn)
e−pnt

]
, z ≥ 0, t ≥ 0, (32)

Θ(z, t) = 2Λe
1
2 γ2z

[
ϕ2(z, 0)
Ψ′(0)

+
∞

∑
n=1

ϕ2(z, pn)

Ψ′(pn)
e−pnt

]
, z ≤ 0, t ≥ 0. (33)

where pn > 0, n = 1, 2, . . . are the real roots of the transcendental equation ψ(p) = 0 with
function ψ(p) (28).

With consideration of the expansions [36]:

I0(x) = 1 +
x2

4
+

x4

64
+ . . . , I1(x) =

x
2
+

x3

16
+ . . . , (34)

from Equation (31), it can be found that:

ϕl(z, p) ∼= ξ2 ϕ̃l(z, p), l = 1, 2, Ψ(z, p) ∼= ξ2Ψ̃(z, p), (35)
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ϕ̃1(z, p) =
1
4

γεe−γ1z/2
[

1 +
1
8
(γεξ)2

]
, z ≥ 0, ϕ2(z, p) =

1
4

γεeγ2z/2
(

1 +
1
8

ξ2
)

, z ≤ 0 (36)

Ψ̃(p) = pγε

[
1
2
(1 + γεKε) +

1
16

(1 + 2γεKε + 2γ2
ε + Kεγ

3
ε )ξ

2
]

, ξ2 =
4p

γ2
1k1,0

, (37)

At p→ 0 , Equations (35)–(37) lead to:

ϕ1(0)
Ψ′(0)

=
e−γ1z/2

2(1 + γεKε)
, z ≥ 0,

ϕ2(0)
Ψ′(0)

=
eγ2z/2

2(1 + γεKε)
, z ≤ 0, (38)

Using the relation [36]:

I0(x) = J0(ix), I1(x) = −i J1(ix), J′0(x) = −J1(x), J′1(x) = J0(x)− x−1 J1(x),
i ≡
√
−1,

(39)

where Jk(·) are the Bessel functions of the first kind of the kth order, and denoted µ ≡ iξ,
the temperature rise (32), (33), with consideration of Equations (22) and (38), can be written
in the form:

Θ(z, t) = Λe−γ1z/2

[
e−γ1z/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂1(z, µn)

Ψ̂′(µn)
e−pnt

]
, z ≥ 0, t ≥ 0, (40)

Θ(z, t) = Λeγ2z/2

[
eγ2z/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂2(z, µn)

Ψ̂′(µn)
e−pnt

]
, z ≤ 0, t ≥ 0, (41)

where

ϕ̂1(z, µn) = J1(µn)J1(γεµne−γ1z/2), ϕ̂2(z, µn) = J1(µn)J1(γεµneγ2z/2), (42)

Ψ̂′(µn) = µ2
n[(1 + γεKε)J0(µn)J0(γεµn)− (γε + Kε)J1(µn)J1(γεµn)], (43)

pn = 0.25k1,0γ2
1µ2

n, (44)

µn > 0, n = 1, 2, 3, . . ., are the real roots of the functional equation:

J0(γεµ)J1(µ) + Kε J0(µ)J1(γεµ) = 0. (45)

On the contact surface z = 0 from Equations (40)–(42), we achieve:

Θ(t) ≡ Θ(0, t) = Λ

[
1

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂(µn)

Ψ̂′(µn)
e−pnt

]
, t ≥ 0 (46)

ϕ̂(µn) ≡ ϕ̂1(0, µn) = ϕ̂2(0, µn) = J1(γεµn)J1(µn), (47)

Additionally, assuming that the materials of the friction pair are the same
(K1,0 = K2,0 ≡ K0, k1,0 = k2,0 ≡ k0, γ1 = γ2 ≡ γ), then, from Equations (21), (22), and (29),
it follows that Kε = γε = 1 and solution (46) and (47) take the form:

Θ(t) = 2Λ

(
1
4
−

∞

∑
n=1

e−pnt

µ2
n

)
, t ≥ 0, (48)

where J0(µn) ≡ 0,pn = 0.25k0γ2µ2
n.

Introducing the following dimensionless variables and parameters:

ζ =
z
a

, τ =
k1,0t
a2 , γl =

γ∗l
a

, l = 1, 2, Θ0 =
q0a
K1,0

, Θ∗ =
Θ
Θ0

(49)
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where a is the thickness of the friction pair elements participating in heat absorption. These
parameters are closely related to the concept of effective thickness, i.e., the distance from
the friction surface where the temperature is equal to 5% of the maximum value [39].

Taking into consideration the notations (49) in Equations (40)–(45), the dimensionless
temperature rise can be written as:

Θ∗(ζ, τ) =
K∗0
γ∗2

e−γ∗1 ζ/2

[
e−γ∗1 ζ/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ∗1(ζ, µn)

Ψ̂′(µn)
e−λ2

nτ

]
, ζ ≥ 0, τ ≥ 0, (50)

Θ∗(ζ, τ) =
K∗0
γ∗2

eγ∗2 ζ/2

[
eγ∗2 ζ/2

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ∗2(ζ, µn)

Ψ̂′(µn)
e−λ2

nτ

]
, ζ ≤ 0, τ ≥ 0, (51)

where

ϕ∗1(ζ, µn) = J1(γεµn)J1(µne−γ∗1 ζ/2), ϕ∗2(ζ, µn) = J1(µn)J1(γεµneγ∗2 ζ/2), (52)

λn = 0.5γ∗1 µn, n = 1, 2, . . . (53)

On the contact surface ζ = 0 from Equations (50)–(52), it follows that:

Θ∗(τ) ≡ Θ∗(0, τ) =
K∗0
γ∗2

[
1

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ∗(µn)

Ψ̂′(µn)
e−λ2

nτ

]
, τ ≥ 0, (54)

where
ϕ∗(µn) ≡ ϕ∗1(0, µn) = ϕ∗2(0, µn) = J1(γεµn)J1(µn). (55)

4. An Asymptotic Solution at the Initial Stage of Sliding

At large values of the parameter p of the Laplace integral transform (15), and taking
into consideration the asymptotic behavior of the functions [36]:

Ik(x) ∼=
ex
√

2πx
, k = 0, 1, (56)

from Equations (28) and (31) it can be found that:

ϕ1(z, p) ∼=
e(1+γε−γ1z/2)ξ

2πξ
√

γε
eγ1z/4, z ≥ 0, ϕ2(z, p) ∼=

e(1+γε+γ2z/2)ξ

2πξ
√

γε
e−γ2z/4, z ≤ 0, (57)

Ψ(p) ∼= (1 + Kε)
pe(1+γε)ξ

2π
√

γε
. (58)

Substituting Equations (57) and (58) into Equation (30), the transforms of the tempera-
ture rise can be presented as:

Θ(z, p) =
2Λe−(1+2ξ)γ1z/4

(1 + Kε)pξ
, z ≥ 0, Θ(z, p) =

2Λe(1+2ξ)γ2z/4

(1 + Kε)pξ
, z ≤ 0, (59)

In view of the notation ξ (22), the transformed solutions (59) can be written in the form:

Θ(z, p) =
Λγ1

(1 + Kε)
e−γ1z/4 e

−
√

p
k1,0

z

p
√

p
k1,0

, z ≥ 0, Θ(z, p) =
Λγ1

(1 + Kε)
eγ2z/4 e

−
√

p
k2,0

z

p
√

p
k1,0

, z ≤ 0, (60)

Using the relation [40]:

L−1[p−3/2e−α
√

p; t] = 2
√

tierfc
(

α

2
√

t

)
, α ≥ 0, (61)
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Taking into consideration notations (29) and (49), the dimensionless temperature rise for
small values of the Fourier number τ was received as:

Θ∗(ζ, τ) =
2γεKε

(1 + Kε)
e−γ∗1 ζ/4√τierfc

(
ζ

2
√

τ

)
, ζ ≥ 0, 0 ≤ τ << 1, (62)

Θ∗(ζ, τ) =
2γεKε

(1 + Kε)
eγ∗2 ζ/4√τierfc

(
− ζ

2

√
k∗0
τ

)
, ζ ≤ 0, 0 ≤ τ << 1, (63)

where ierfc(x) = π−1/2e−x2 − xerfc(x), erfc(x) = 1− erf(x), and the erf(x) is the Gaussian
error function [36]. On the contact surface ζ = 0 from Equations (63) and (62), it can be
obtained that:

Θ∗(τ) =
2γεKε

(1 + Kε)

√
τ

π
, 0 ≤ τ << 1, (64)

Substituting γ1 = γ2 = 0 and γ∗ = 1 into Equations (62)–(64), the known solutions can
be found to determine the dimensionless temperature increase in the homogeneous bodies [41]:

Θ∗(ζ, τ) =
2K∗0

(1 + Kε)

√
τierfc

(
ζ

2
√

τ

)
, ζ ≥ 0, 0 ≤ τ << 1, (65)

Θ∗(ζ, τ) =
2K∗0

(1 + Kε)

√
τierfc

(
− ζ

2

√
k∗0
τ

)
, ζ ≤ 0, 0 ≤ τ << 1, (66)

Θ∗(τ) =
2K∗0

(1 + Kε)

√
τ

π
, 0 ≤ τ << 1. (67)

5. Numerical Analysis

The numerical analysis was performed based on the exact solutions (50)–(55) and
the asymptotic Equations (62)–(64). The elements are both made of functionally graded
materials in such a way that their friction surfaces z = 0 are purely ceramic ZrO2 and Al3O2
and, along the thickness of the elements, they approach the core materials Ti-6Al-4V and
TiC, respectively. The thermal properties of component materials are presented in Table 1.

Table 1. Thermal properties of the FGMs components [17,42].

Element
Number. Material Thermal Conductivity

K[Wm−1K−1]
Thermal Diffusivity

k × 106[m2s−1]

l = 1
ZrO2 2.09 0.86

Ti-6Al-4V 7.5 3.16

l = 2
Al3O2 1.5 4.98

TiC 33.9 9.59

In view of notations (49), Equation (7), describing the change in thermal conductivity
of materials with distance from the surface of friction, becomes:

Kl(z) = Kl,0K∗l (ζ), K∗l (ζ) = eγ∗l |ζ|, |ζ| < ∞, l = 1, 2 (68)

where the values of the dimensionless gradient parameters can be calculated from the
following relation [8]:

γ∗l = ln(Kl,1/Kl,0), Kl,0 ≡ K∗l (0), Kl,1 ≡ K∗l (1), l = 1, 2. (69)

The formula (69) provides that thermal conductivity changes in a manner suitable
for the FGM composition variations from pure ceramic on the friction surface, achieving
the pure core material on the effective thickness a (|ζ| = 1) inside elements. The effective
thicknesses 3.2 mm and 7.7 mm for the first (l = 1) and second (l = 2) elements, respectively
were calculated in accordance with the methodology [39]. Hence, it can be assumed that
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a = 7.7 mm. Then, from Table 1, the following data are taken: K1,0 = 2.09 Wm−1K−1,
K1,1 = 7.5 Wm−1K−1 for the FGM ZrO2–Ti-6Al-4V (l = 1) and K2,0 = 1.5 Wm−1K−1,
K2,1 = 33.9 Wm−1K−1 for the FGM Al3O2–TiC (l = 2). Substituting these coefficients
into the formula (69) we obtain the dimensionless gradient parameters values γ∗1 = 1.28,
γ∗2 = 3.12. Distribution of the thermal conductivity along the distance from the friction
surface, for considered tribosystem is presented in the Figure 2. The positive roots of the
nonlinear functional Equation (45) were found by means of the bisection method [43]. It
was necessary to take at least 70 roots of Equation (45) in order to perform calculations
according to Equations (50)–(55) with a relative accuracy of 10−3.
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Figure 2. Distributions of the dimensionless thermal conductivities K∗l , of FGM ZrO2–Ti-6Al-4V
(l = 1) and Al3O2–TiC (l = 2) along the dimensionless distance ζ from the friction surface.

Variations of the dimensionless temperature rise Θ∗(ζ, τ) (50)–(55) in the friction
elements ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC (l = 2) during the sliding, are shown
by the continuous curves in Figure 3, while the dashed lines in this figure illustrate the
corresponding results obtained from the solutions (65)–(67) for the friction pair elements
made of homogeneous materials ZrO2 (l = 1) and Al3O2 (l = 2). At a certain distance ζ,
the temperature monotonically increases over time (Fourier number τ). The highest
temperature is achieved on the contact surface ζ = 0. It can be seen that the elements
of tribocouple made of homogeneous materials are heated more intensively during the
sliding than the FGMs. Differences between the compared results increase over the time of
heating. Taking into consideration notations (49), it can be established that, the maximum
temperature rises are Θmax = 604 ◦C and Θmax = 765 ◦C achieved at the end of the process,
for the friction pairs made of functionally graded and homogeneous materials, respectively.

Distribution of dimensionless maximum temperature Θ∗max, achieved at the end of
the process, along the distance from the contact surface is presented in Figure 4. With the
distance from the contact surface in the element l = 1, the difference between continuous
and dashed lines decreases. Unlike in the element l = 2, where this difference remains
almost unchanged along the thickness, and even slightly increases (to the 238◦C at distance
|z| = 1.85 mm). A much higher temperature level is reached in the homogeneous element
l = 2 made of ceramic (Al3O2) as compared with the temperature achieved in the FGM
element Al3O2–TiC, which is caused by application of the core material (TiC) with high
thermal conductivity and diffusivity.
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and the dashed curves represent homogeneous materials: (a) ZrO2; (b) Al3O2.
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Figure 4. Distribution of the dimensionless maximum temperature rise Θ∗max reached at the end of
friction process, along the distance ζ from the friction surface. Continuous curves represent FGMs
ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC (l = 2); the dashed curves represent homogeneous materials
ZrO2 (l = 1) and Al3O2 (l = 2).

The time profiles of dimensionless temperature rise Θ∗ on the contact surface ζ = 0
for different values of the parameter γ∗l , l = 1, 2, are demonstrated in Figure 5. At a certain
moment of time, the temperature of the friction surface increases with a decrease in the
material gradient parameter (the continuous curves), approaching the temperature values
obtained for a friction pair made of homogeneous materials (the dashed curves). The
differences between the individual curves obtained for FGMs and homogeneous materials
grow with the time of sliding.
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Figure 5. Evolutions of dimensionless temperature rise Θ∗ on the contact surface of the friction
pair for various values of parameter: (a) γ∗1 for γ∗2 = 3.12; (b) γ∗2 for γ∗1 = 1.28. Continuous
curves represent FGMs ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC (l = 2), the dashed curves represent
homogeneous materials ZrO2 (l = 1) and Al3O2 (l = 2).

The influence of dimensionless gradients of materials γ∗l , l = 1, 2 (69) on the dimen-
sionless maximum temperature Θ∗max of the contact surface is shown in Figure 6 (the
continuous curves). The dashed lines in this figure present the corresponding data calcu-
lated on the basis of the solution found for the homogeneous materials. The highest values
Θ∗max are achieved for the elements of the friction pair made of the homogeneous ceramic
materials. Increasing the gradient parameters of the material reduces the maximum tem-
perature of the friction system. The highest reduction of Θ∗max takes place while increasing
the parameter γ∗1 in the element made of ZrO2–Ti-6Al-4V, while the parameter γ∗2 value of
the element Al3O2–TiC remains constant (Figure 6a).
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gradient of material: (a) γ∗1 for γ∗2 = 3.12; (b) γ∗2 for γ∗1 = 1.28. Continuous curves represent FGMs
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ZrO2 (l = 1) and Al3O2 (l = 2).
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Distributions of dimensionless temperature Θ∗ at the end of the sliding, along the
distance 0 ≤ |ζ| ≤ 1 from the friction surface is demonstrated in Figure 7. The highest
distance value |ζ| = 1 corresponds to the previously established maximum effective thick-
ness of heating a = 7 mm. As agreed, so far, on the contact surface ζ = 0, the temperature
of the friction pair made of FGMs is lower than that in the case of the tribocouple with
homogeneous materials. Increasing the distance from the contact surface reduces the
temperature in both cases, the system made of FGMs (continuous curves) and the friction
pair made of ceramic homogeneous materials (dashed curves).
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Figure 7. Dependencies of dimensionless temperature rise Θ∗ at the end of heating, on the dimen-
sionless distance |ζ| from the contact surface for different values of parameters: (a) γ∗1 for γ∗2 = 3.12;
(b) γ∗2 for γ∗1 = 1.28. Continuous curves represent FGMs ZrO2–Ti-6Al-4V (l = 1) and Al3O2–TiC
(l = 2) and the dashed curves represent homogeneous materials ZrO2 (l = 1) and Al3O2 (l = 2).

The temperature in the first element (l = 1) decreases faster than that in the case of the
homogeneous material ZrO2, while in the second element (l = 2), the temperature of the
homogeneous material Al3O2 remains higher than the temperature of the element made of
FGM Al3O2–TiC, throughout the whole effective thickness. At a certain distance from the
friction surface, increasing the material gradient parameters (enhancement of the volume
fraction of the core material in the composite structure) causes a drop of the temperature in
both FGMs used.

6. Conclusions

According to the obtained solutions, the numerical analysis of the temperature mode
was performed for friction pair elements made of functionally graded materials, under
uniform sliding. The friction surfaces of these elements are ceramic materials, i.e., zirconium
dioxide ZrO2 and aluminum oxide Al3O2. The volume fraction of ceramics in the materials
decreases with the depth, in favor of the core materials.

The composites are the high-class titanium-aluminum-vanadium alloy Ti-6Al-4V and
titanium carbide TiC, with higher thermal conductivities than ceramics. On the basis of
the results of the calculations, the influences of the values of the friction material gradient
parameters on the time-space temperature distributions in the tribological system were
investigated. The obtained data show that the use of selected composites with a continuous
(exponential) change of thermal conductivity, improves the friction conditions, causing a
significant decrease in the temperature level reached on the friction surface, especially the
maximum value at the end of the sliding.
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Despite its purely theoretical importance, the determined analytical solution also has
practical significance. On the basis of this closed-formed expression, it is possible to quickly
estimate the temperature mode of a friction system made of FGMs with an exponential
gradient under uniform sliding. Furthermore, the exact solutions play the role of a template
for testing the approximate numerical methods. It should be noted that the solution of
formulated thermal problem of friction was obtained assuming an exponential change
in thermal conductivity. Thus, the developed model is oriented only to the FGM class
with just such a gradient. In this sense, it is a natural limitation of the solution. Other
application limitations of this model (unidirectional heating process, ideal thermal contact
of bodies, etc.) are presented in the assumptions.

In the next report, we plan to present the results concerning a study of the impact of
functional gradient structure of friction materials on the temperature in a disc brake system
during braking.
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Nomenclature

a Effective depth of heat penetration (m)
cl Specific heat (Jkg−1K−1)
f Coefficient of friction (dimensionless)
Ik(·) The modified Bessel functions of the first kind of the kth order
Jk(·) The Bessel functions of the first kind of the kth order
kl Thermal diffusivity (m2s−1)
Kl Thermal conductivity (Wm−1K−1)
p Parameter of the Laplace transform (dimensionless)
p0 Contact pressure (Pa)
ql Intensity of the frictional heat flux (Wm−2)
q0 Specific power of friction (Wm−2)
t Time (s)
T Temperature (◦C)
Ta Initial (ambient) temperature (◦C)
V0 Sliding velocity (ms−1)
x, y, z Spatial coordinates (m)
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Glossary

γl Parameter of material gradient (m−1)
γ∗l Parameter of material gradient (dimensionless)
ζ Thickness (dimensionless)
Θl Temperature rise (◦C)
Θ∗l Temperature rise (dimensionless)
Θ0 Temperature scaling factor (◦C)
ρl Density (kgm−3)
τ Time (dimensionless)
lower l Number of the main (l = 1) and frictional (l = 2) elements of the friction pair
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