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Abstract: In this research, a biopolymer-based electrolyte system involving methylcellulose (MC)
as a host polymeric material and potassium iodide (KI) salt as the ionic source was prepared by
solution cast technique. The electrolyte with the highest conductivity was used for device application
of electrochemical double-layer capacitor (EDLC) with high specific capacitance. The electrical,
structural, and electrochemical characteristics of the electrolyte systems were investigated using
various techniques. According to electrochemical impedance spectroscopy (EIS), the bulk resistance
(Rb) decreased from 3.3 × 105 to 8 × 102 Ω with the increase of salt concentration from 10 wt %
to 40 wt % and the ionic conductivity was found to be 1.93 ×10−5 S/cm. The dielectric analysis
further verified the conductivity trends. Low-frequency regions showed high dielectric constant,
ε′ and loss, ε” values. The polymer-salt complexation between (MC) and (KI) was shown through
a Fourier transformed infrared spectroscopy (FTIR) studies. The analysis of transference number
measurement (TNM) supported ions were predominantly responsible for the transport process in the
MC-KI electrolyte. The highest conducting sample was observed to be electrochemically constant
as the potential was swept linearly up to 1.8 V using linear sweep voltammetry (LSV). The cyclic
voltammetry (CV) profile reveals the absence of a redox peak, indicating the presence of a charge
double-layer between the surface of activated carbon electrodes and electrolytes. The maximum
specific capacitance, Cs value was obtained as 118.4 F/g at the sweep rate of 10 mV/s.

Keywords: MC polymer electrolyte; impedance study; ion transport; ftir analysis; TNM; LSV;
CV analyses

1. Introduction

Besides improving energy and power efficiency, one of the remaining challenges in
the development of energy storage systems, including smart grids, portable electronic
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devices, and hybrid vehicles, is to minimize manufacturing costs and reduce environmental
pollution [1]. A more recent emphasis has been focused on solid polymer electrolytes
(SPEs) as an alternative conventional organic sol–gel electrolyte. Dimensional stability,
durability, a comparatively wide potential window above 1.5 V, and eco-friendliness are all
properties of these materials [2]. In the technology area, natural polymers for fabricating
SPEs have gained interest for application in electrochemical devices such as electrical
double-layer capacitors (EDLCs) and proton batteries. Due to their exceptional chemical
and mechanical performances, many studies have shown that natural SPEs exhibit a good
potential for device applications [3,4]. Natural polymers are defined as materials that
extensively happen in nature or are obtained from animals or plants. Natural polymers
are vital to way of life as our human forms are based on them. Some of the examples
of natural polymers are nucleic acid and proteins that happen in human body, natural
rubber, silk, and methylcellulose (MC). MC is known to be competitively marketed and is
environmentally safe. It has suitable film-forming characteristics with good mechanical
and electrical properties. Through dative bonds, cations can interact with oxygen atoms of
MC. As a consequence, MC comprises functional groups, such as alcohol (R-OH), ether
(R-O-R), and ester (RCOOR) groups which are promising as an ion conduction mechanism
due to their single pair of electrons. MC is also considered an amorphous polymer with its
comparatively high glass transition temperature [5,6].

Supercapacitors consist of two porous electrodes separated by an ionically conducting
electrolyte. The electrodes could be made of substances including polymers, carbon and
metal oxides. Supercapacitors can be a favorable energy conversion device for a wide
range of applications, where significant amounts of energy must be stored or released
in a short period. A supercapacitor is classified into three major types, namely pseudo-
capacitors, EDLCs, and hybrid capacitors. Pseudo-capacitors undergo a fast Faradaic
mechanism [7], some examples of which include under potential deposition, intercalation,
and reduction-oxidation reactions using metal oxide-based electrodes or electroactive
conducting polymer. However, EDLCs do not involve any Faradaic mechanisms. EDLCs
only require the accumulation of ions induced by the adsorption of charge carrier at the
electrode/electrolyte interfaces. Owing to the storage process, EDLC is the non-Faradaic
mechanism [8]. The main features of EDLCs, such as reliability, high energy capacity,
reversibility, and safety improvements have drawn considerable interest, and making it a
strong choice for various applications [9].

Activated carbon electrodes play a crucial role in the fabricating of EDLC due to
their good chemical and physical properties such as low cost and easy availability, and
high conductivity above 10−4 S/cm, which can be manufactured from a diversity of
precursors [10,11]. As a result, coal is the most common supply of activated carbon
production due to its availability, high content of carbons from 60% to 80%, and cost-
effectiveness [12,13].

T.-Y. Chen et al. [14] electrodeposited NiSe nanoparticles on a carbon nanotube (CNT)
forest to prepare a porous and intertwined network (denoted as CNT@NiSe/stainless
steel (SS)). They then used the CNT@NiSe/SS as a free-standing and multifunctional
electrode for supercapacitor (SC) application. The CNT@NiSe/SS composite electrode
showed excellent capacity retention of 85%, and higher specific capacity of 126 mA h g−1

(1007 F g−1) in comparison with individual CNTs and NiSe. Lien et al. [15] developed a
co-solvent-in-deep eutectic solvent (DES) system by mixing acetonitrile and water with a
typical DES electrolyte composed of lithium perchlorate and acetamide. They have also
used hydrogel composed of reduced graphene oxide (rGO) and 1T(trigonal)-MoS2 as the
electrode materials for SC application. The authors fabricated high voltage symmetric
supercapacitors using hydrogel and hybrid DES as the electrode and electrolyte materials,
respectively. The SC at an operating voltage of 2.3 V achieved the maximum energy density
of 31.2 Wh/kg at a power density of 1164 W/kg. The fabricated SC also showed 91% capaci-
tance retention after 20,000 cycles. Hsiang et al. [16] presented rationally materials design of
an optimum NiCo2S4 nanoparticle in a rGO matrix as a NiCo2S4/rGO nanocomposite. The
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authors reported the enhancements in the materials technology, showing the NiCo2S4/rGO
nanocomposite electrode material with a very good specific capacitance of 963–700 F/g at
1–15 A/g, long cycle life of 3000 cycles, and high capacitance retention of 70%.

Adding inorganic salt to a polymer provides ion mobility and the polymer host chain
plays a crucial role in the ion transport mechanism of the polymer electrolytes. Conse-
quently, ion motion arises across the amorphous area, which is aided by the segmental mo-
tion of the polymer chains [17]. The use of potassium complexed electrolyte films has been
discovered to have some benefits over their lithium counterparts. Nadimicherla et al. [18]
reported that the smaller ions such as (Li+ and Mg2+) possess lower mobility compared to
the larger cations of (K+ and Zn2+) in polymer-based electrolytes. The smaller cations are
entrenched or captured by the polymeric network. Furthermore, lithium–ion interactions
with the polar polymer chains are stronger than potassium ions, and thus lithium–ion
transport involves higher activation energy of 97.4 kJ mol−1 [19]. The aim of this study is
to prepare an SPE film using a biopolymer of MC doped with various concentrations of
potassium iodide (KI) as the ionic source for application in EDLC device. We have inves-
tigated the effect of different KI concentration has on the conductivity of MC. Also, the
electrolyte with the highest conductivity was employed in the EDLC and its decomposition
potential and specific capacitance were investigated. Figure 1 depicts the schematic dia-
gram of an EDLC cell. As seen in Figure 1, the electrolyte is inserted between two activated
carbon (AC) electrodes and then packed in coin cells of CR2032 to fabricate the EDLC.
The prepared EDLC device was sandwiched in a Teflon case holder with two stainless
steel electrodes to investigate the capacitive behavior of the device. While measuring the
impedance data of the films, the arrangement of the cell was stainless steel electrolyte film
stainless steel.
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Figure 1. The schematic diagram of an EDLC cell. Adapted from reference [4].

2. Experimental Details
2.1. Materials and Electrolyte Preparation

MC powder was used as a host polymeric raw material and KI salt was used as the
ionic source. Both reagents were purchased from Sigma-Aldrich (Kuala Lumpur, Malaysia).
The electrolytes were prepared using a solution casting technique by dissolving 1 g MC in
50 mL distilling water, with constant stirring, at room temperature for ~3 h. Subsequently,
various amounts of KI salt were added to the MC solutions separately. The solutions
were stirred continuously until a homogenous polymer–salt complex was obtained. The
quantity of salt was varied from 10 to 40 weight percent (wt %) in steps of ten to obtain
MC-KI electrolytes. The electrolyte samples were correspondingly specified as MCKI0,
MCKI1, MCKI2, MCKI3, and MCK4 for MC incorporated with 0, 10, 20, 30, and 40 wt % of
KI. The choice of KI concentrations is based on the ability of the MC to accommodate and
dissolve the salt. Eventually, the solutions were cast on four individual categorized glass
Petri dishes and left at room temperature to slowly evaporate the solvent. The films were
further dried by transferring the prepared films to a desiccator.
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2.2. Impedance Spectroscopy and FTIR Study

Electrical impedance spectroscopy (EIS) at the SPE was conducted using a Z HI-tester
(Nagano, Japan) at a DC potential was 0.04 V, onto which an Ac voltage of peak-to-peak
amplitude 10 mV was superimposed, over a frequency range of 5 MH and 50 HZ.

The inductance-capacitance-resistance (LCR) meter (Z HI-tester) was used to study
the solid polymer electrolyte’s electrical impedance spectroscopy (EIS) in the frequency
range of (50 Hz ≤ f ≤ 5 MHz). The DC potential was 0.04 V. An SPE film of geometric area
of 2.01 cm2 was kept between two stainless-steel electrodes by applying a spring pressure
which is used to press the electrolyte films. The stainless-steel electrode was used as the
working, reference, and counter electrodes while the reference and counter electrodes were
combined together. The EIS data were fitted with the electric equivalent circuit (EEC)
model. The common electrical elements such as resistors and capacitors are used in this
model. The EEC model is simple method and provides the entire picture of the system [5].

A spotlight 400 Perkin-Elmer spectrometer (Malvern Panalytical Ltd., Malvern, UK)
was employed to perform the Fourier Transforms Infrared (FTIR) spectroscopy measure-
ments. The transmitting range was performed between 940 and 4000 cm−1 with a resolution
of 2 cm−1.

It is vital to use Equation (1) to measure the DC ionic conductivity (σdc) of the MCKI
samples based on the bulk resistance (Rb) value [20,21]

σdc =

(
1

Rb

)
× (

t
A
) (1)

where t and A denote the sample thickness and electrode area, respectively. The dielectric
constant (ε′) and dielectric loss (ε′′) are obtained using Equations (2) and (3) [20,21].

ε′ =
Z′′

(Z′2 + Z′′2)Coω
(2)

ε′′ =
Z′

(Z′2 + Z′′2)Coω
(3)

where, ω and Co denote the angular frequency and capacitance, which are given by
(ω = 2πf ) and εoA/t, respectively, where εo stands for the free space permittivity, A the
electrode area and t the thickness of the film [22].

The real and imaginary (Mi and Mr) parts of complex electric modulus (M*) were
calculated using Equations (4) and (5) [23,24].

M′ = [
ε′

(ε′2 + ε′′2)
] = Z′′Coω (4)

M′′ = [
ε′′

(ε′2 + ε′′2)
] = Z′Coω (5)

2.3. Study of Transference Number Measurement (TNM) and Linear Sweep Voltammetry (LSV)

In TNM, two types of ionic transport, tion and electron transport tel for the most
conducting sample (MCKI4) were studied. A DP3003 digital DC power supply (V & A
instrument, Shanghai, China) was employed to polarize the cell against time at room
temperature by applying a working voltage of 0.2 V. Linear sweep voltammetry (LSV) was
used to determine the maximum potential window for the (MCKI4) film using a Digi-IVY
DY2300 potentiostat (Neware, Shenzhen, China). The scan rate was fixed at 10 mV/s,
and then the sample was sandwiched between two stainless steel electrodes with Teflon
holders. Equations (6) and (7) were used to measure the transport ions (tion) and transport
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electrons (tel) of the MCKI4 film, as the film was positioned between two stainless-steel
electrodes [25].

tion =
Ii − Iss

Ii
(6)

tel = 1− tion (7)

where Ii refers to the initial current, containing ions and electrons and Iss stands for the
current of the steady-state that contains only electrons.

2.4. EDLC Fabrication

Typically, the ingredients used to prepare electrodes include solvent and carbonaceous
materials. In preparing the EDLC electrodes, 0.25 g of carbon black, 3.25 g of activated
carbon, and 0.5 g of polyvinylidene fluoride (PVdF) were dry mixed in a planetary ball
miller (XQM-0.4, Fujian, China) at 500 rpm for ~20 min. Then, all powders were dissolved
and stirred continuously in 20 mL of N-methyl pyrrolidone until it became a dark black
solution. In the next step, the black solution was covered by an aluminum foil using a
doctor blade technique. Subsequently, an oven was used to dry the coated aluminum foil
for a specific time at ~60 ◦C. To eliminate any excess moisture, the electrodes were placed
in a silica gel desiccator. The relatively uppermost conducting sample was located between
a pair of activated carbon electrodes and packaged in coin cells of CR2032. Eventually, in
order to perform cyclic voltammetry (CV) of the assembled EDLC, the Digi-IVY DY2300
potentiostat has been employed at various scan rates of 10, 20, 50, and 100 mV/s and
charged from 0 to 0.9 V. The specific capacitance, Cs for the assembled EDLC has been
determined using Equation (8) [25].

Ccv =
∫ Vf

Vi

I(V)dV

2mv
(

Vf −Vi

) (8)

where Vi is the initial potential (i.e., 0 V), and Vf is the final potential (i.e., 0.9 V), m and υ
are the mass of active material and the potential sweep rates (mV/s), respectively. I(V)dV
denotes the area under a cyclic voltammetric trace.

3. Result and Discussion
3.1. Impedance Study

Polymer electrolytes were commonly applied to devices as a part of an advanced
material class. Impedance spectroscopy plays a crucial role in studying the electrical prop-
erties of a wide range of polymeric electrolyte materials. It is also a powerful technique
for analyzing the ionic conductivity of new materials used in electrochemical energy sys-
tems, including EDLCs, charge transfer resistance, and diffusion layer. Plots of impedance
spectra (Zi versus Zr) for the MCKI1, MCKI2, MCKI3, and MCKI4 systems are shown in
Figure 2a–d. In general, the impedance responses are usually characterized by a semicircle
in the high frequency region and a straight line in the low frequency region [26].

EIS data are commonly analyzed by fitting to an equivalent electrical circuit model
(EEC). Most of the circuit elements in the model are common electrical elements such as
resistors, capacitors, and inductors. To be useful, the elements in the model should have a
basis in the physical electrochemistry of the system. The EEC method has been used to
investigate the EIS because it is simple and shows the entire picture of the system [5,27].
The impedance diagrams in Figure 1 can generally be represented by an equivalent circuit
consisting of a charge transfer resistance (Rb) in a parallel arrangement with constant phase
element 1 (CPE1) in high frequency region and in a series arrangement with constant
phase element 2 (CPE2) in the low frequency region, as shown in the inset of Figure 1. The
impedance arising from CPE, ZCPE, is expressed by Equation (9) [5,27]

ZCPE =
1

Cωp

[
cos
(πp

2

)
− i sin

(πp
2

)]
(9)
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Here, C is the CPE capacitance, ω is the angular frequency and p is related to the EIS
deviation from the imaginary axis. The Zr and Zi related to the EEC (insets of Figure 2a–d)
are formulated by Equations (10) and (11)

Zr =
R2

bC1ωp1 cos(πp1/2) + Rb

2RbC1ωp1 cos(πp1/2) + R2
bC2

1ω2p1 + 1
+

cos(πp2/2)
C2ωp2

(10)

Zi =
R2

bC1ωp1 sin(πp1/2)
2RbC1ωp1 cos(πp1/2) + R2

pC2
1ω2p1 + 1

+
sin(πp2/2)

C2ωp2
(11)

Here, C1 is the capacitance of CPE1 at the bulk of the electrolyte; C2 is the CPE2
capacitance at the electrode-electrolyte interface; p2 is the offset from the real axis and
p1 is the offset of the semicircle from the imaginary axis. The fitting parameters in the
EEC are listed in Table 1. As seen in Table 1, C1 and C2 increased with increasing salt
concentration as the number density of ions increases and they transport from the bulk of
the electrolyte to the surface of the electrodes. In addition, the conductivity is also increased
with increasing salt amount due to the dissociation of more salts to ions and the decrease
in the Rb value as seen in Figure 2a–d.
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Table 1. The EEC fitting parameters for the systems fabricated.

Sample P1 (rad) P2 (rad) C1 (F) C2 (F)

MCKI1 0.90 0.41 2 × 10−10 3.33 × 10−7

MCKI2 0.87 0.42 4 × 10−10 1.43 × 10−6

MCKI3 0.76 0.65 6.67 × 10−9 2.44 × 10−6

MCKI4 0.73 0.62 1.11 × 10−8 4.55 × 10−6

The electrode polarization is responsible for appearing the spike in Figure 2a–d at the
interfaces between electrodes and electrolytes owing to blockage of ions at the electrode-
electrolyte interfaces. Consequently, the electrode polarization outcome is caused by the
formation of an electric double layer, resulting in free charge accumulation at the interfaces
between electrodes and electrolytes. The linear increase in impedance in low frequency
region in Figure 2 is expected to be a straight line (90 degree) parallel to the imaginary
axis. However, there is an inclination by nearly 45◦ from the straight line due to the
electrode polarization which causes to block of ions at the surface of the electrodes as
seen in Figure 2a–d. Notably, the semicircular feature in the high frequency region has
significantly diminished as KI was increased to 30 wt % and 40 wt %.

Equation (1) is used to compute the dc ionic conductivity by measuring the sample
thickness and Rb and the conductivity values are summarized in Table 2. As seen in Table 2,
the dc conductivity increased when concentration of salt increased as more ions formed
at higher salt concentration. From Equation (1), the lowest Rb value shows the highest
ionic conductivity [28]. It can be noted that the bulk resistance decreases with increasing
the KI salt concentrations from 10 to 40 wt %. µ is related to the number density (n) and
electrolyte conductivity (σdc) by Equation (12) [29]

σdc = neµ (12)

where, n is the density of the charge carrier, µ denotes mobility of ions, and e denotes an
electronic charge. It was established that the polymer electrolytes must have a dc ionic
conductivity in the range between 10−3 and 10−5 S cm−1 in order for it to be used in
electrochemical devices [25,30,31]. Researchers have discovered that the conductivity value
in this range is desirable for use in energy devices [25,30,31]. Shuhaimi et al. [32] were
obtained the highest conductivity of 2.1 × 10−6 S cm−1 for the system of MC-NH4NO3
based biopolymer electrolyte.

Table 2. Numerical values of σdc, D, µ, and n at ambient temperature.

Sample σdc
(S cm−1)

D
(cm2 s−1)

µ
(cm2 V−1 s)

n
(cm−3)

MCKI1 4.65 × 10−8 1.15 × 10−9 4.48 × 10−8 6.49 × 1018

MCKI2 3.59 × 10−7 1.35 × 10−9 5.26 × 10−8 4.25 × 1019

MCKI3 1.35 × 10−5 2.00 × 10−9 7.78 × 10−8 1.08 × 1021

MCKI4 1.93 × 10−5 2.13 × 10−9 8.29 × 10−8 1.45 × 1021

As all the impedance data composed of a semicircular feature and a linear impedance,
transport parameters including D, µ and n of ions are determined using the following
equations [26,28]. The D of the ions is calculated using Equation (13),

D =
(K2εoεr A)2

τ2
(13)

where εr is the dielectric constant, τ2 is the reciprocal of angular frequency, which corre-
sponds to the lowest value of Zi.
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The µ of the ions is determined using Equation (14)

µ =

[
eD

KBT

]
(14)

where T is the absolute temperature and Kb is the Boltzmann constant.
Since the σdc is given by Equation (12), the number density of ions (n) is calculated

using Equation (15)

n =

[
σdcKbTτ2

(eK2εoεr A)2

]
(15)

Table 2 lists the ion transport parameters for each electrolyte system.
Based on Table 2, the D increased as the KI concentration increased from 10 to 40 wt %.

The identical tendency is seen by µ as listed in Table 2 where µ increased. The increase
of µ and D is related to the increase of chain flexibility with the existence of slat [28].
Consequently, an improvement of conductivity is resulted.

Figure 3a,b show the Bode plot for each electrolyte film at room temperature. An
earlier study [33] indicated that the capacitive region is a plateau region between 10−2 Hz
and 100 Hz. However, this feature is not observed in Figure 3 because of the limitation
of frequency of our measuring equipment. As described at the EIS plots, the semicircle
is associated with ion transfer in the electrolyte and the linear feature arises from ions
diffusion and therefore their accumulation at the interfaces between electrode and elec-
trolyte [33] which leads to an electrical double-layer capacitances. It was shown that, by
increasing the amount of salt from 10 wt % to 40 wt %, the linear feature increased and
the resistance reduced from 3.3 × 105 to 8 × 102 Ω, because of the more carrier density. As
seen in Figure 3a the electrolyte film has high charge transfer resistance (Rct) while with
increasing salt the Rct decreased as shown in Figure 3b. The dispersion region between
40 Hz and 40,000 Hz is ascribed to the phenomena of ion diffusion and the high-frequency
region is ascribed to the Rct. In Figures 2 and 3, it is seen that the sample loaded with
40 wt % of KI has the lowest Rct and hence a large conductivity resulted. Therefore, the
Bode plot supports the result measured from the impedance study.
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3.2. Dielectric Properties

Complex electric modulus, defined as the inverse of complex relative permittivity,
can be a significantly powerful tool for analyzing dielectric behavior of a polymeric in-
sulating material, especially at relatively high temperatures, where complex permittivity
usually becomes very high due to electrode polarization and carrier transport. The core of
electrochemical devices are ions conducting solid electrolytes, and its electrical properties
investigation such as σdc, ε*, and electric modulus (M*) are essential to understanding the
ions transport process [21]. The real part (ε′) is related to ion storage efficiency or polarizing
ability, while the imaginary part (ε′′) is the necessary energy for dipole alignment [34]. The
ε′ and ε′′ are determined using Equations (2) and (3).

Figure 4a,b display the frequency dependency of the ε′ and ε′′ for the MC polymer
incorporated with various concentrations of KI salt. It can be noted that the system
integrated with 40 wt % of KI has the highest dielectric constant at a low-frequency region.
It might be owing to the electrode polarization and also space charge effects. The rise in
dielectric constant can be explained by the high charge carrier concentration of the system
and its amorphous composition [35]. It is seen that as the salt content (KI) increases, the
ε′ and ε′′ increase. This is in agreement with the increase in number density and mobility
of ions when the KI content increased as shown in Table 2. Both of the ε′ and ε′′ values
are elevated at low frequencies and decreased as frequency rises, indicating polarization
effect due to charge accumulations near electrodes at low frequency and dipoles do not
obey the field variation at a high dispersion frequency region [36]. The dielectric values
remain stable at high-frequency regions due to the interfaces of the electrode–electrolyte
become marginal as the frequency increases. The decreased value of both ε′ and ε′′ with
increasing frequency means that the electrolyte films are non-Debye behavior [37].
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The Zr and Zi data were achieved from the EIS data and then used to determine the
ε′ and ε′′ data. The ε′ and ε′′ were used to find the tan δ. The tan δ is the ratio between
energy disperse and energy stored in a periodical field which is also called dissipation
factor [23] and it is determined using Equation (16).

tan δ =
ε′′

ε′
(16)

Dielectric loss is the energy dissipation by the transfer of charges in an alternating
electric field as polarization switches direction. When the electric field is applied, polariza-
tion happens and charges are moved relative to the electric field. Dielectric loss causes a
decrease in the overall electric field. The total amount of polarization that can happen in a
dielectric relies on the molecular symmetry of the insulator material and is known as dipole
moment. The influence of the dipole moment in a dielectric material is called loss tangent.
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The ratio of ε′′ to ε′ is defined as tan δ, where δ denotes a loss angle. The tan δ is determined
using the relation below [23]. Loss tangent (tan δ) was further investigated for the MC
polymer incorporated with various KI concentrations. Figure 5 shows the loss tangent
(tan δ) spectra versus frequency at room temperature. The relation between loss tangent
and frequency reveals some interesting behavior. Overall, the loss tangent increases with
increasing the applied frequency due to the domination of the Ohmic components. It
reaches a high value at a certain frequency, and followed by decreases at a high frequency,
owing to the increasing nature of the reactive components [38]. Notably, MCKI4 displays
the highest shift to the high frequency and the maximum value relative to the other samples
due to the value of dielectric constant ε′ for the MCKI4 as shown in Figure 4a [39]. The
presence of the peaks at a characteristic frequency can be argued for indicating the presence
of dipole relaxation in the electrolytes. It has been reported that improving the segmental
motion of polymer chains decreases the relaxation time, allowing the transport process
easier. This is expressed mathematically as τ = 1/2π fmax, where τ is the ionic charge
carrier’s relaxation time [40].
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Figure 5. (tan δ) spectra versus frequency at room temperature for the MCKI electrolytes.

The real, Mr and imaginary, Mi components of the electric modulus M* against
frequency for the MCKI based solid polymer electrolytes are shown in Figures 6 and 7,
respectively. The M′ and M′′ are determined using Equations (4) and (5).

From the figures, Mr values are noted to decrease with decreasing frequencies until
they reach zero, meaning that the polarization was eliminated. Therefore, the Mr values
rise with increasing frequency and at the highest frequency, the maximum Mr was obtained.
This could be attributed to the fact that the relaxation process occurs at various frequency
values [41]. The observed dispersion is essentially as of conductivity relaxation covering
several frequencies, indicating the presence of τ that has to occur with a loss peak in the
figure of the imaginary part of the dielectric modulus versus frequency. As Mi has clearly a
lower value at a low frequency, this may be attributed to the higher capacitance coupled
with the polarization effect. No peak is present in Figure 6 along with its entire frequency
range. It could be referring to the Mr which is equivalent to the ε′ in the ε* representation,
which Mr shows the material’s potential for energy conversion [42].
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3.3. FTIR Study

The technique of FTIR spectroscopy has been used to investigate the interactions
between ions and atoms of the MCKI electrolytes. Also, such interactions can lead to the
changes in the vibration modes of the polymer electrolyte. The FTIR spectra of the pure MC
and MCKI based solid polymer electrolyte over the wavenumber range of 940–4000 cm−1

are displayed in Figure 8a,b. The broad peak observed at around 1050 cm−1 corresponds to
the antisymmetric stretch of an asymmetric oxygen bridge in its cyclohexane ring of pure



Materials 2021, 14, 4859 13 of 20

MC. The water contamination from the KI salt causes a broad peak at 3400 cm−1 of the O-H
stretching band. The observed peak intensity changes as the weight percent of KI salt was
increased from 0 to 40 % in the MC-KI electrolyte systems, as shown in Figure 8a,b [43,44].
A peak that appears in the wavenumber region of 2800–2950 cm−1 is corresponding to the
C-H stretching mode of methylcellulose. Through the inclusion of KI salt, the peak seems
to shift slightly from 2850 cm−1 to 2990 cm−1. This shift of the peak may be an indication
of the complexation of K+ cation and the MC host polymer. However, the slight change
in the C-O ether bands indicates that the complexation did not considerably modify the
molecular structure of the MC host polymer. Furthermore, the change in peak intensity
with increasing KI concentrations supports that the presence of KI salt in the system has a
significant impact on the conductivity of the MCKI electrolyte systems [45].
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Figure 8. FTIR spectra of the MCKI samples at a wavenumber of (a) 940–1200 cm−1 and (b) 2500–4000 cm−1 for (i) MCKI1
(ii) MCKI2, (iii) MCKI3, and (iv) MCKI4 electrolyte samples.

3.4. EDLC Study
3.4.1. Study of the TNM

Both ions and electrons in polymer electrolytes are generally responsible for their
conductivity. Through this technique, the dominant charge carrier in the polymer elec-
trolyte can be evaluated [46]. Figure 9 shows the current versus time plot, obtained by dc
polarization at 0.2 V, for the MCK14 film. Equations (6) and (7) were used to determine the
tion and tel of the MCKI4 film.

According to Figure 9, the initial total current was found to be 22 µA [47]. Therefore, a
large drop is observed over time until being constant in a completely depleted case due
to the transport of ionic species from the bulk of the MCKI4 electrolyte to the electrode-
electrolyte interfaces. When the cell reaches the steady state, it is polarized, and the residual
current is only carried by electrons due to the stainless-steel electrodes block both cations
and anions while allowing only electrons to move through it. In this analysis, the measured
tel value was 0.12 and the tion was found to be 0.88, which is close to an ideal value of 1 [28],
indicating that ions in the MCKI4 film is the majority charge carrier [48]. The finding
obtained in this work is comparable with the tion value of 0.86 as reported by Aziz et al. for
the polymer electrolyte system of chitosan: dextran: NH4Br [49].
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Figure 9. DC polarization curve of current versus time for the MCKI4 sample.

3.4.2. LSV Study

The potential stability of the polymer electrolyte systems needs to be established for
energy device research. The absolute potential limit of the electrolytes can be computed in
terms of linear sweep voltammetry LSV examination [50]. The LSV for the most conducting
sample MCKI4 at 10 mV/s is shown in Figure 10, in which the potential was scanned from
0 to 2.5 V. When potential approaches to 1.8 V, the electrolyte reaches decomposition voltage
as revealed by a significant increase in current values. Also, there is no evidence of a redox
reaction occurring within the potential window until 1.8 V. Based on the previous study,
the electrolyte with the potential window of 1.8 V is sufficient to be used for application in
proton energy devices [51]. Other research findings relating to MC-based biopolymer elec-
trolytes are comparable to this work. According to Kadir et al. [52], MC-based electrolytes
displayed a decomposition voltage of 1.53 V when NH4Br and glycerol were used as the
ionic source and plasticizer, respectively. The breakdown potential of 1.9 V was reported
for the biopolymeric system of starch-chitosan-NH4I with the existence of glycerol [53],
which is similar to this study.

3.4.3. Cyclic Voltammetry (CV) Study

CV as an insightful technique can be employed to examine the EDLCs in terms of
both qualitative and quantitative features [54]. It is used to further evaluate the efficiency
of the MCKI4 electrolyte in the construction of the EDLC. The CV responses of the MCKI4
electrolyte at various scan rates of 10, 20, 50, and 100 mV/s are shown in Figure 11 in the
potential range of 0 to 0.9 V.
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The CV response has a rectangular form, indicating that the current is independent
of the potential. However, the shape of the cyclic voltammogram (CV) deviates from
the rectangular shape when the scan rate increases [55]. The CV in Figure 11 showed
that the EDLC exhibits a capacitive behavior, indicating that the system of the energy
storage is a non-Faradaic mechanism. In this process, the charge stored in the EDLC system
comes from ion accumulation at the electrode/electrolyte interfaces. As a consequence,
ion accumulation and adsorption occur in the place of deintercalation and intercalation
via a non-Faradaic mechanism. In addition, ions from the bulk of the electrolyte form a
charge double-layer, which then saves potential energy [56,57]. Notably, the CV displays a
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leaf-like shape with no redox peaks. The CV profile revealed a little divergence from its
rectangular form at higher scan rates, which may be due to the porosity of the electrodes
as well as internal resistance. The porosity of the carbon electrodes induces a relatively
high internal resistance, which causes the CV to appear leaf-like in shape [58]. Since the CV
possesses no redox peaks, it is reasonable to infer that a quick Faradaic reversible reaction
has not occurred [59].

The specific capacitance (Cs)are determined using Equation (8) by measuring the area
of the CV profile, mass of the activated carbon electrode, scan rate, and the initial and final
values of applied voltage. The measured specific capacitance values, Cs using CV curves
for the assembled EDLC at different scan rates are shown in Table 3 and Figure 12. The
calculated Cs value of 113.39 F/g at the sweep rate of 10 mV/s decreased to 11.84 F/g at
100 mV/s. The low Cs value at high scan rates is attributed to the high energy loss caused
by the decrease in the density of stored charges, which results in a lower Cs value [60].
Table 4 displays the measured Cs value of the EDLC for several systems based on solid
biopolymer electrolytes mentioned in the literature. Interestingly, the Cs value obtained in
this work is high and comparable to some of these results.

Table 3. Specific capacitance (Cs) of the EDLCs using CV curves.

Scan Rates (mV/s) Specific Capacitance,
Cs F/g

10 113.39
20 69.16
50 27.48
100 11.84
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Table 4. Specific capacitance (Cs) of the EDLCs using different polymer electrolytes at room temperature.

Biopolymer Electrolytes Specific Capacitance,
Cs F/g Scan Rates (mV/s) Reference

Chitosan-PVA-Mg(CF3SO3)2:glycerol 32.69 10 [3]
Starch-LiClO4 8.7 10 [7]

MC-NH4NO3-PEG 38 1 [45]
MC-chitosan-NH4SCN 66.3 10 [33]

Carboxymethyl cellulose-NH4NO3 1.8 Not stated [61]
MC-chitosan-NH4I-glycerol 9.97 10 [62]

Cellulose acetate-LiClO4 90 10 [63]
Chitosan-NH4Br-glycerol 7.5 10 [64]

MC-Starch-LiClO4-glycerol 45.8 10 [65]
MC-KI 113.39 10 This work

4. Conclusions

In conclusion, a biopolymer-based electrolyte using methylcellulose (MC) incorpo-
rated with various content of potassium iodide (KI) salt is crucial for EDLC device appli-
cations. The EIS outcome shows that the resistance of the transfer of charge at the bulk
of the electrolyte reduced from 3.3 × 105 Ω to 8 × 102 Ω with KI concentration increased
from 10 wt % to 40 wt % due to an increase in the charge carrier density. The highest
conductivity of 1.93 × 10−5 S/cm was obtained for the electrolyte doped with 40 wt % of
KI. The dielectric analysis further verified the conductivity trends. The results from the
FTIR spectra indicated that the complexation between (K+) cation and (MC) host polymer
has occurred through intensity variations of bands. TNM measurements stated that the
ions were the dominant charge carrier, as the (tion) was identified to be 0.88. LSV analysis
showed that the most conducting sample has an electrochemical stability window up to
1.8 V, verifying the suitability of the electrolyte for EDLC application. The CV response
displayed its capacitance behavior, where no visible redox peak has appeared. A rela-
tively high value of the specific capacitance Cs (113.39 F/g) was obtained at the scan rate
of 10 mV/s.
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