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Abstract: Statistically, road accidents involving pedestrians occur in the autumn and winter months,
when outdoor temperatures reach −30 ◦C. The research presented in this paper investigates the
impact of a pedestrian’s head on laminated windscreen, taking into account the effects of external
temperature, heating of the windscreen from the inside, and fatigue of the glass. The automotive
laminated windscreen under study is made from two layers of glass and a Polyvinyl Butyral (PVB)
resin bonding them together. PVB significantly changes its properties with temperature. The Finite
Element Method (FEM) simulations of a pedestrian’s head hitting the windscreen of an Opel Astra II
at <−30 ◦C, +20 ◦C> were performed. The obtained Head Injury Criterion (HIC) results revealed an
almost twofold decrease in safety between +20 ◦C and −20 ◦C. The same test was then performed
taking into account the heating of the windscreen from the inside and the fatigue of the glass layers.
Surprisingly, the highest HIC value of all the cases studied was obtained at −30 ◦C and heating the
windscreen. The nature of safety changes with temperature variation is different for the cases of
heating, non-heating, and fatigue of glass layers. Glass fatigue increases pedestrian safety throughout
the temperature range analysed.

Keywords: laminated windshield; pedestrian safety; glass failure; polyvinyl butyral; temperature effect

1. Introduction

The safety of so-called Vulnerable Road Users (VRU), i.e., pedestrians, cyclists, motor-
cyclists, and all those who are potential victims during a collision with a motor vehicle, is
currently one of the leading topics in the field of vehicle safety. In 2007, pedestrian safety
tests were made compulsory worldwide and in the European Union [1] for the homologa-
tion of motor vehicles. That action was the genesis of the VRU safety improvement process.
A line of work has been set out, which includes improvement of safety not only for users
inside the vehicle, but also for those outside. Tests for pedestrian safety on the vehicle are
carried out for fixed conditions: temperature of 20 ± 4 ◦C and humidity of 40 ± 30% [2].

One of tests of this type is when a pedestrian’s head strikes the windscreen of a car [2].
The accidents involving VRU occur in a variety of climatic conditions. The windscreen
operating temperature is affected by both the outside temperature, external factors such as
wind, vehicle speed, precipitation, the vehicle’s internal temperature, and the consequences
of the vehicle’s interior heating system operation.

A car windscreen is a laminated panel usually made up of two layers of glass with
Polyvinyl Butyral (PVB) resin bonding them together. The issues of verification of phenom-
ena for laminated sandwich systems with the use of two-dimensional and solid elements
have been the subject of scientific studies [3–9]. The laminate behaviour was investigated
by Timmel [10] using 2D shell elements with smeared technique. This type of modelling
uses two layers of coincident shell elements with the same thickness which represents all
layers of composite by calculate thickness and density equivalence. The assumption is
full bonding between glass layers and PVB, which can be adjusted by stiffness factor, but
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always need correlation and are used only for a specific type of load case. Later work by
Peng [11] consider additionally laminate windshield modelling as three separate layers of
shell element with tie contacts or with share nodes.

In 2002 D’Haene [12] described experimentally the relation of shear modulus of PVB
for different temperatures. The data shows a 10-foold increase of the modulus between
+25 ◦C and −5 ◦C. The range between −5 ◦C and +25 ◦C do not cover the VRU and
passenger cars daily usage environment. Furthermore, the investigation of pedestrian
safety in any different condition than standard +20 ◦C was not considered in the science.

Other studies (e.g., Jun Hu [13]) were focused on comparison between low speed and
high speed impact scenarios of PVB and on compression experiments on PVB material. An-
other interesting study by Gevers investigated optimization of laminated windshields [14].
This was enhanced work performed by a car manufacturer where they improved the
correlation between test and laminated windshield simulation models from 2008 to 2011.
The latest model matches closely with the real impact of a headform. The assessment of
the influence of the boundary conditions on the delamination process of layered glass
structures was described in [4,15]. The issues of elasticity solution and the influence of the
thickness of laminated glass structural elements are discussed in [5,16].

Based on the author study, the mechanical properties of PVB were found to be strongly
temperature dependent. The PVB tensile tests for temperatures from −30 ◦C up to +20 ◦C
are presented in the author’s publication [17]. It describes the issue of fatigue in the
polymer–ceramic system, which has not been analysed so far, using the example of a
laminated glass panel subjected to loads from external temperatures <−30 ◦C, 0 ◦C> and
forced heating of the panel from the inside. The effect of fatigue of the laminated windscreen
associated with car body torsion on the behaviour of the system was also analysed.

2. Materials and Methods

The validity of research related to pedestrian safety at temperatures much lower than
+20 ◦C is reflected in the statistics of accidents involving pedestrians in Poland in 2019,
prepared by the Police Headquarters [18].

The highest number of accidents involving pedestrians was recorded in the months
from October to January. The highest number of such accidents was recorded in December,
i.e., 13.8%. In November it was 10.9%. The number of injured and killed is also highest
during the autumn and winter months. The highest number of killed was recorded in
December, i.e., 16%. In January it was 12%. The highest number of injured was recorded
in December, i.e., 13.7%, and in November 11.1%. The pedestrian fatal injuries are mainly
related to head injuries during the collision. It is necessary to carry out a verification of the
problem of pedestrian safety in various thermal conditions, with particular attention paid
to the temperatures prevailing in the autumn and winter months.

The issues of pedestrian head impact on laminated windscreen during an accident
involving VRU for operating conditions covered by the temperature range <−30 ◦C,
+20 ◦C> have been analysed. The following cases have been characterised:

(1) collision with VRU at a laminated windscreen temperature of −30 ◦C, all vehicle
heating systems were switched off;

(2) collision with VRU at a laminated windscreen temperature close to −30 ◦C, the
vehicle heating systems were on during vehicle start-up but the windscreen was not
fully heated;

(3) collision with VRU at a laminated windscreen temperature close to −30 ◦C, the
vehicle heating systems were on during vehicle start-up but the windscreen was not
fully heated, the laminated windscreen subjected to additional fatigue loads from
under-window frame operation related to the vehicle body torsional rigidity.

When considering cases 2 and 3, attention should be paid to the complex state of
operational loads to which the laminated vehicle windscreen is subjected when operating
at temperatures characteristic for glass transition of the PVB polymer bonding layer. The
additional factors influencing temperature reduction and non-uniform heating of the
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windscreen include: the derivative of vehicle speed and resistance to motion, the effect of
wind, precipitation. Figure 1 shows the consequences of blowing warm air (heating) on the
windscreen of a vehicle at negative environment temperature.
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Figure 1. Windscreen heating.

The windscreen shown in Figure 1 is heated from the inside, at the bottom. Blowing
of warm air onto the windscreen creates the distribution of thermal zones. For a given
moment in time, we can determine the equilibrium state of the heated and unheated zones.
The heated zone forms a characteristic area with an edge shaped like four segments of a
circle. The phenomenon of heat wave propagation is symmetrical with respect to the plane
of symmetry of the vehicle.

2.1. Pedestrian Head Impact Model

To investigate the phenomena described in Section 2, the pedestrian head impactor
test [2] was used. During the test, a head impactor of a mass of 4.8 kg strikes the rigid
windscreen at a speed of 35 km/h (Figure 2). The windscreen model was constructed upon
the basis of a 3D scan of the real car windscreen conducted by the Automotive Industry
Institute in Warsaw. The adult head impactor used was certified and is described in the
publication [18]. The velocity vector of the impactor was perpendicular to the windscreen
at the point of impact. The glass was restrained at the edges, where three displacement
degrees of freedom were removed. The case of an impact at the central point of the
laminated windscreen was taken for analysis. The whole of the model was simplified using
symmetry of boundary condition, shape, and loading to speed up the analysis. Contact
between the Impactor was modelled used *Surface_to_surface contact with SOFT = 2,
SOBT = 3 and Depth = 5. The static and dynamic friction was defined (µs = 0.3, µd = 0.25).
The analysis was done in LS-DYNA solver.

The windscreen model consists of two layers of glass 2.1 mm thick and a PVB layer
0.76 mm thick. Based on the results of works [17,19], the polymer–ceramic structure
was described by solid elements: tetrahedral for the case of glass (four nodes with one
integration point), pentahedral for the case of PVB. Average size of windshield element
was 1 mm. The impactor foam was meshed by 10 mm elements and impactor core element
size was 10 mm as well.
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Figure 2. Strike of head impactor on the laminated windscreen—symmetrical model.

2.1.1. Glass Material Model

The glass material model represented the Johnson–Holmquist material model. That
model has a failure criterion based upon the Hugoniot condition. It describes the behaviour
of a solid during the sudden action of an external forcing. The Johnson–Holmquist model
is described by the following equations.

Stress equation:
σij = −p(εkk)δij + 2µεij (1)

where: p(εkk)—state equation, δij—Kronecker delta, εij—strain, µ—shear modulus,
εkk—shear coefficient.

State equation:

p(εkk) = p
(

ρ

ρo
− 1
)

(2)

where: ρ—current density, ρo—initial density.
The Hugoniot limit stresses are expressed by the equation:

σh = pHEL(ρ) +
2
3

σHEL(ρ, µ) (3)

where: pHEL—Hugoniot elastic limit pressure, σHEL—Hugoniot elastic limit stress.
The stresses before failure are described by the following equation:

σ∗intact = A(p∗ + T∗)n
[

1 + Cln
(

dεp

dt

)]
(4)

where: A, C, n—material constants, t—time, εp —inelastic strain, σ∗ = σ
σHEL

; p∗ = p
pHEL

;

T∗ = T
σHEL

—normalized stress, pressure, and tensile strength.
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The uniaxial stresses of complete fracture are represented by equation:

σ∗f racture = B(p∗)m
[

1 + Cln
(

dεp

dt

)]
(5)

where: B, C, m—material constants.
The current stresses are calculated according to the following equation:

σ∗ = σ∗ initial − D
(

σ∗ initial − σ∗ f racture

)
(6)

where: D—damage accumulation factor.
The evolution of failure is described by the equation:

dD
dt

=
1

ε f

dεp

dt
(7)

and the deformation of failure is described by the formula:

ε f = D1(p∗ + T∗)D2 (8)

where: D1, D2—material constants.
Characteristics of experimental laminated glass works described in articles [3,20,21].

The application of presented model in Finite Element Method simulations required using
the material data which were adopted from [22] and based upon the results of the PVB
polymer own work described in Section 2.1.2.

2.1.2. PVB Material Model

The characteristics of the polyvinyl butyral resin are described in [23–27]. Due to
the non-unequivocal replication of PVB features required to perform structural identi-
fication physical and mechanical properties of PVB material, the experimental testing
of the polymer has been carried out in accordance with PN-EN ISO 527:1988 standard
“Plastics—Determination of mechanical properties at static tension—Test conditions for
films and plates” [28] for the temperature range: −30 ◦C to +20 ◦C and a strain rate in the
range of 0.065 to 0.013 [1/s]. The specimen was staying at the specified temperature 20 min.
before loading. Figure 3 shows the stress–strain curves developed upon the results for the
analysed temperatures and strain rate of 0.013 [1/s].

The tensile tests have been performed in a virtual environment for an analogous
polymer operation range. A Marlow material model has been used to describe the operation
of polyvinyl butyral. The engineering stress–strain curve obtained from the simulation
was compared with the curve obtained from material tests. The result of the analyses
performed using the Finite Element Method (FEM) is presented in Figure 4. Figure 5
shows a comparison of the stress–strain relationship obtained in the tensile test for PVB at
t = −30 ◦C: actual and simulation.

It has been proven that the PVB behaviour changes with the temperature change. The
stress–strain relationship for the temperature of +20 ◦C was described by a polynomial of
the second order, for the temperature range of +10 to −30 ◦C by a polynomial of the third
order, while the influence of the first extremum increased with decreasing temperature.

A very good level of convergence of the solution has been obtained. The Marlow
model has been proven to be adequate to describe the material behaviour with such unique
course as the revealed one. Used Marlow model allowed to achieve a convergence despite
the non-linearity of the curve over the entire range of analysed temperatures.
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3. Simulation of Head Impact on the Laminated Windscreen in Varied Temperature Range

The simulations of head impact on the laminated windscreen have been performed for
operation temperatures of +20 to −30 ◦C without taking the influence of the additional en-
ergy stream coming from the heating system into account. The numerical description of the
modelling process was based on the information contained in the publications [10,29–32].
Sequentially for the temperature range of 30–0 ◦C the course of phenomena occurring
during the impact has been analysed, taking into account the influence of local changes in
the polymer structure under the influence of air blow coming from the windscreen heating
system. The influence of fatigue loads affecting the operational character of the laminated
windscreen from torsional deformations of the car body has been considered. It has been
assumed that the properties of glass do not change with temperature which was discussed
in detail in the articles [33–37]. The temperature-dependent behaviour of PVB was taken
into account.

The criterion for assessing the pedestrian safety is the Head Injury Criterion (HIC)
described by the relation (9):

HIC = max{

 1
t2 − t1

t2∫
t1

adt

2.5

(t2 − t1)} (9)

where: a—head impactor acceleration, t2, t1—measurements start and end moments
in time.

It is desirable that the levels of HIC values are as small as possible. The measurable
consequences of the analysed solution are: reduction of head injuries and increase of VRU
safety. During calculation of the maximum HIC value the time intervals t2 − t1 below
15 ms are omitted. The lower the maximum HIC value, the smaller the head injury and
better VRU safety.

Figure 6 shows the results of the pedestrian head impactor simulation for temperature
of −30 ◦C.
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= −30 ◦C (t = 21 ms).

It has been found that the maximum displacement of the laminated windscreen at the
impactor impact point in the Z-axis direction was x = 34.0 mm for t = 8 ms. The results are
shown in Figure 7. The nature of changes in displacement over time for the case analysed
is shown in Figure 8.
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A summary of the results of the maximum windscreen displacement in the Z-axis
direction resulting from the head impactor impact, for the temperatures analysed, is shown
in Figure 9.
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Figure 9. The maximum displacement of laminated windscreen due to head impactor impact as a function of temperature.

After analysis of verified cases it has been proven that the susceptibility of laminated
windscreen with a PVB membrane decreases with decreasing temperature which is in line
with [38]. The windscreen displacement resulting from the head impactor impact was:
41.8 mm for temp. of +20 ◦C, 33.4 mm for temp. of −20 ◦C. For temperature of −30 ◦C the
maximum displacement was 34.0 mm. The displacement value is slightly higher than for
−20 ◦C. It is a derivative of changes found in the PVB tension process for the temperature
range of −20 to −30 ◦C, which was reflected in the locally varying glass cracking process.

Figure 10 shows the nature of HIC changes obtained from the numerical simulations
for the temperature ranges considered.

The maximum HIC values for the temperature ranges considered are shown in Table 1.

Table 1. Maximum HIC value depending on temperature.

Temperature [◦C] HIC

+20 345.8
+10 497.7

0 553.0
−10 573.4
−20 634.7
−30 596.3

The maximum value for the head injury criterion (HIC) has been obtained for temper-
ature of −20 ◦C. For all analysed cases of HIC change over time, excluding the temperature
of −30 ◦C, a single extremum was found. For the temperature of −30 ◦C two extrema
have been determined. The phenomenon is related to the nature of changes in the polymer
structure, resulting from the transition of PVB to the vitreous—brittle state, which was
confirmed by the results of the differential scanning calorimetry (DSC) tests performed by
the authors. Figure 11 and Table 2 show the character of the structural changes of the PVB
bonding shell as a function of temperature.
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Table 2. Figure 11 curves output values.

Glass Transition Unit Black Curve Red Curve

Onset ◦C 9.16 8.24
Midpoint ◦C 28.44 22.22
Inflect. Pt. ◦C 11.23 15.73
Endpoint mW ◦C−1 24.34 25.28

Infect. Slp. Jg−1 K−1 −39.83−3 −39.81−3

Delta Cp ◦C 0.37 0.41
Left Limit ◦C −1.99 0.20

Right Limit ◦C·min−1 37.81 35.30
Heating Rate ◦C·min−1 10.00 10.00

Result mode sample temp - - -
Midpoint DIN ◦C 16.64 16.65

Midpoint ASTM, IEC ◦C 16.75 16.76
Midpoint Richardson ◦C 22.36 19.99

Delta cp DIN Jg−1 K−1 0.39 0.42
Delta cp ASTM, IEC Jg−1 K−1 0.15 0.19
Delta cp Richardson Jg−1 K−1 79.22 × 10−3 0.15

The representation of the phenomena in the test samples was very high stress value
for the first maximum, as shown in Figure 5. An increase in stress level was observed up to
33.6 [MPa]. Based on analyses, it has been proven that the most serious pedestrian head
injuries are to be expected following an accident that would occur in the temperature range
of −20 ◦C and −30 ◦C.

Comparing the HIC values at +20 ◦C—the reference level for which vehicle tests
related to pedestrian safety are performed—with the results obtained for tests in range
of −30 ◦C < t < 20 ◦C, a very large increase in the HIC values was observed for +10 ◦C.
Moreover, as temperatures drop throughout the year, there is an increase in conditions that
adversely affect the course of accidents, i.e., reduced visibility, rain, snow, and fog. There
are also pedestrian visibility restrictions. The above-mentioned factors increase the number
of accidents involving VRU.

4. Thermo-Mechanical Fatigue Loads of Laminated Windscreen versus the HIC Criterion
4.1. Heating of the Windscreen

The analyses of phenomena occurring during the impact of a pedestrian’s head on
laminated windscreen in the temperature range of <−30 ◦C, 0 ◦C> have been carried out,
taking into account the blow heating of the windscreen. The phenomena occurring in the
structure of laminated windscreen at negative temperatures, subjected to the influence of
a stream of warm air, have been analysed. Based on the heat wave propagation diagram
shown in Figure 1, a thermal load model of a laminated windscreen shown in Figure 12 has
been prepared. The experiments described in Section 2.1 for the construction of numerical
structure of PVB in the laminated windscreen were used to prepare the model and as well
the information from the references [39,40].

The amount of heat applied from the heating system to the windscreen (zone A marked
in Figure 12) was assumed to be constant which is in line with the recommendations made
in the articles [41,42]. The temperature gradient arising between the inner glass layer and
the PVB layer was calculated from relation (10).

Qconst = λ
S∆Tconstt

d
(10)

where: Qconst—amount of heat flowing through the body, λ—thermal conductivity coeffi-
cient, S—cross-sectional area through which heat flows, t—flow time, ∆Tconst—temperature
difference in direction of heat conduction, d—thickness of the body through which heat flows.
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A gradient value of 20 ◦C was assumed for the purpose of the calculations. The
PVB polymer properties for each zone were defined upon the basis of the tests discussed
in Section 2.1.2. As in point 3, no effect of temperature on the mechanical properties of
the glass was assumed. Simulations of the head impactor hitting the central point of the
windscreen were performed for a set of temperatures as in Table 3.

Table 3. Division of windscreen zones in relation to temperature.

Temperature of Zone B Temperature of Zone A

−30 ◦C −10 ◦C
−20 ◦C 0 ◦C
−10 ◦C +10 ◦C

0 ◦C +20 ◦C

The character of the HIC curve as a function of temperature was found to be different
for the cases of unheated and heated windscreen. In the first case, there is a non-linear
relationship between HIC and temperature. The consequence of heating the windscreen
was a change to a near linear relationship. The HIC values for the heated windscreen
were lower compared to the corresponding temperature levels for the case of unheated
windscreen. The value of HIC−30◦C−10◦C = 665 was the highest HIC value for the analysed
range of temperatures: −30 to 0 ◦C.

Figures 13 and 14 show the nature of failure of laminated windscreen for the case of
unheated and heated windscreen. The obtained results are consistent with the conclusions
of the work [43–45]. Figure 12 shows the fracture results of laminated windscreen for four
temperature cases: 0 ◦C, −10 ◦C, −20 ◦C, and −30 ◦C. At −20 ◦C, the rupture of the PVB
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layer was observed over a small section at the point of pedestrian head impact. For other
temperatures there was no rupture of the PVB layer. Looking at the cracking process, we
can see a different character for each of the temperatures analysed. The general trend is
increase of total length of crack lines with increasing temperature. As the temperature
increases, the PVB becomes more susceptible, which implies that the displacement of the
glass at the point of impact of the pedestrian head impactor rises—more of the impact
energy is transformed into fracturing the glass layers. The exception is the shorter crack
line length at−20 ◦C compared to−30 ◦C. This is due to the break in the laminate structure
(PVB backing layer) at −20 ◦C.
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Figure 13. Laminate damage—no heating.

Figure 13 shows the laminate behaviour for the case of heating the windscreen from
the inside for all temperatures analysed. For none of the cases did the PVB layer break. Con-
vergent results were obtained in the analysis of theoretical clusters laminated plates [46,47].
The lowest density of crack lines is at −20 ◦C, followed by −10 ◦C. The nature of cracking
is different for each temperature, but the differences are no longer as distinct as for cases
without heating of the windscreen.

4.2. Heating and Fatigue of the Windscreen

The effect of fatigue in laminated windscreen has been determined. The assessment
of the effect of fatigue of laminated glass panel has been analysed on the example of a
car windscreen, considering loads from torsion of the car body during its operation [48]
and consequences of structural changes in the structure of polyvinyl butyral under the
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influence of external and internal temperature changes (glass heating). The multi-criteria
analysis of the pedestrian head impact on the laminated windscreen has been carried out,
for which the cases that might occur during the operation of the unit have been taken into
account. The functional model of heated laminated windscreen described in Section 4.1.
was used for the calculations. Upon the basis of the results of research published in [48],
the change in the stiffness of laminated windscreen following the long-term torsional and
flexural effects from the operation of the car body has been estimated. The reduction in
glass stiffness was estimated at 20% of the original value and related to the glass material
data in Table 1. The calculations were based on Maximum tensile strength T = 120 [MPa]
and Maximum normalised fractured strength SFmax = 40 [MPa].
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The analyses of the head impactor hitting the central point of the windscreen were
performed for the same sets of temperatures as described in Section 4.1.

Comparing the HIC values for the cases of windscreen heating and windscreen heating
with fatigue, it was found that over the entire temperature range analysed, the safety of
VRU would be higher for the glass subjected to operational fatigue. The curve describing
the temperature dependence of HIC with fatigue is of a different course and nature to that
determined for laminated windscreen with no fatigue loads history. It is a second order
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curve. The maximum HIC value for the case of heating and fatigue has been obtained for
external temperature of −20 ◦C, i.e., HIC−20 ◦C+0 ◦C+ f atigue = 461.7, the minimum value
for external temperature of 0 ◦C, i.e., HIC0 ◦C+20 ◦C+ f atigue = 439.

Figure 15 shows the results of laminated windscreen failure for the case of windscreen
heating together with the inclusion of fatigue in the glass layer. Comparing the results for
all the temperatures analysed, it was found that the shortest (longest) crack line formed for
the component operating at −20 ◦C, 0 ◦C, respectively. For none of the cases did the PVB
layer break. Comparing the obtained results of fracture of laminated windscreen for the
cases of unheated windscreen, heated windscreen, and heated windscreen with fatigue,
it was found that the windscreens subjected to fatigue loads originating from torsion of
the car body during operation are characterised by the longest glass fracture lines, which
is identical as greater energy absorption by the system. The greater energy absorption by
laminated windscreen means greater safety of VRU during a vehicle collision.
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5. Conclusions

The studies of VRU safety in the case of a pedestrian head collision with a laminated
windscreen of a passenger car, taking into account the effects of thermo-mechanical loads,
allowed for the formulation of conclusions and observations which have not been known
and published so far. Starting with the case of an impact in the absence of windscreen
heating and comparing the HIC values for all temperatures analysed, it was proven that
pedestrian safety significantly decreases with decreasing temperature. Starting at +10 ◦C,
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an increase of 43.9% in the HIC maximum was recorded, and at −20 ◦C the HIC value was
183.5%, compared to the value obtained at the reference temperature of +20 ◦C.

Analysing the case of VRU head impact on the laminated windscreen at tempera-
tures below the PVB glass transition temperature, taking into account the heating of the
windscreen from the inside by the vehicle heating system, a different character of HIC
changes was found than the one observed in the analyses without windscreen heating.
HIC for windscreen heating increased as the temperature decreased. Figure 16 shows a
comparison of the HIC maxima for the cases: unheated windscreen (blue curve) and heated
windscreen (red).
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The nature of changes in HIC parameter is linear. HIC−30 to 10 ◦C was by 11.5% higher
than HIC−30 ◦C = 596, i.e., estimated for the external temperature of −30 ◦C without
windscreen heating. For the external temperature of 0 ◦C the windscreen heating causes
HIC value drop by 9.8%.

The effect of the decrease in stiffness of the glass layers following the fatigue loads of
the ceramic material on the stiffness of the laminated windscreen and the implications of
this on the safety of VRU were determined. Figure 17 shows a comparison of HIC maxima
for the case of unheated windscreen, heated windscreen, and heated windscreen with
fatigue of the glass layers. It has been proven that the safety of VRU is significantly higher
for windscreen subjected to operational fatigue over the entire operating temperature range
of the unit.
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