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Abstract: Fabrication of ring-shaped deposits of microparticles on solid surfaces with the desired
length scales and morphology of particle arrangements is of great importance when developing
modern optical and electronic resonators, chemical sensors, touch screens, field-emission displays,
porous materials, and coatings with various functional properties. However, the controlled formation
of ring-shaped patterns scaling from a few millimeters up to centimeters with simultaneous control
of particle arrangement at the microscale is one of the most challenging problems in advanced
materials science and technology. Here, we report a fabrication approach for ring-shaped structures
of microparticles on a glass surface that relied on a local thermal impact produced by the subsurface
heater and heat sink. Thermocapillary convection in the liquid covering microparticles in combination
with evaporative lithography is responsible for the particle transport and the assembling into the ring-
shaped patterns. An advantageous feature of this approach is based on the control of thermocapillary
flow direction, achieved by changing the sign of the temperature gradient in the liquid, switching
between heating and cooling modes. That allows for changing the particle transfer direction to create
the ring-shaped deposits and dynamically tune their size and density distribution. We have studied
the influence of the power applied to the heat source/sink and the duration of the applied thermal
field on the rate of the ring fabrication, the sizes of the ring and the profile of the particle distribution
in the ring. The proposed method is flexible to control simultaneously the centimeter scale and
microscale processes of transfer and arrangements of particles and can be applied to the fabrication
of ring structures of particles of different nature and shape.

Keywords: spherical polystyrene microparticles; self-assembled materials; microparticle deposits;
thermocapillary flows; evaporative lithography; heat and mass transfer

1. Introduction

Multifunctional materials, solid surfaces and films with extraordinary properties
are of great importance in advanced material science, modern industry, and medical
diagnostics. One of the approaches to the design of such materials is based on the deposition
of 2D and 3D structures, and planar patterns, on the surfaces of interest using nano-
and microparticles of arbitrary shapes, having specific physical, chemical, and biological
properties. For the implementation of that approach, the technology referred to as the
evaporative-induced self-assembly is utilized [1]. This includes the interaction between
the physical mechanisms arising in the course of the spontaneous evaporation of droplets,
films and meniscus of colloidal solutions, upon various external (pre-defined) passive
factors, and external forces’ impacts on that system in combination with the evaporation
process. As an example, a spontaneous evaporation of a sessile colloidal droplet leads
to the accumulation of particles at the droplet edge and the formation of a ring-shaped
pattern. This effect is known as the coffee ring effect [2]. The intense evaporation at the
droplet edge induces in a bulk solution the radially outward-directed compensatory flow
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resulting in the ring-like deposit at the droplet periphery. If the substrate with the sessile
colloidal droplet is heated, then the ring-like pattern will be modified into an eye-like
pattern consisting of a large central stain and a thin ring [3]. In this case, the thermal
Marangoni flow (thermocapillary flow) arising from a temperature gradient between the
droplet edge and the top brings particles to the central area. The inward-directed radially
thermocapillary flow dominates the outward-directed compensatory flow preventing the
ring formation until the droplet becomes thin enough to decelerate thermocapillary flow
and allow a thin ring to be deposited. However, another way is that of applying a local
small jet of alcohol vapor to a free portion of the surface of the evaporative colloidal
droplet [4]. This causes the inward-directed radially Marangoni flow along the droplet
surface due to a concentration gradient between the apex and the edge of the droplet.
Similar to the previous case, Marangoni flow transfers particles to the center of the droplet
base and forms a local deposit in the center. Changes in the position of the small vapor jet
allow flexible control of the deposit shape and configuration.

A compact monolayer or a mountain-like deposit can be obtained on a solid surface
via spontaneous evaporation of a sessile droplet containing micron size particles [5,6].
In this case, the mechanism of particle transfer relies on an immersion capillary force,
which affects large particles at the liquid–air interface. Using a thermocapillary mechanism
caused by local heating of a thin evaporative liquid layer is another method to create
a circular shape monolayer or multilayer depositions of particles with sizes of tens of
microns [7]. Thus, the evaporation-induced self-assembling technology enables the creation
of materials for medical diagnostics [8–10], modern materials for photonics optoelectronics
and optics [11–16], transparent conductive coatings for flexible films [17,18], bioinspired
hierarchical materials and surfaces with various functional properties [19,20], as well as a
wide range of materials for other different purposes [21–26].

Despite significant advances in the production of coatings and materials with required
properties, there is still a challenge in creating patterns of a desired geometry on sub-
millimeter spatial scales when the dimensions of the structures are orders of magnitude
larger than the sizes of the particles. In particular, the fabrication of the ring-shaped
deposits is of great demand in such applications as optical and electronic resonators, touch
screens, displays, biochemical analysis, and many others [10,17,18,22].

Here we demonstrate an effective method for the creation of ring-shaped deposits
of microparticles on solid surfaces, which enables control of the ring dimensions on the
plane and the particle arrangement along the width of the ring. The method is based on
a combination of thermocapillary convective flow in the liquid, covering microparticles,
on the one hand, and evaporative lithography on the other hand [7]. A key feature of the
developed method is based on the control of the particles transfer direction through the
switching between heating and cooling modes.

2. Materials and Methods
2.1. Experimental Procedure

Polystyrene microspheres (mean diameter d = 50 µm, material density ρp = 1060 kg/m3)
were purchased from LenChrom (Saint Petersburg, Russia). Isopropanol (ρl

∼= 785 kg/m3,
surface tension γ = 21.74 mN/m, thermocapillary coefficient γ′T = 0.0789 mN/(m K)) were
purchased from Sigma-Aldrich (Moscow, Russia) and used as a carrier liquid. As a solid
substrate, a black welding glass (12DIN, in size of 44 × 35 × 3 mm3) was used. A copper
rod of 1.8 ± 0.1 mm in diameter was hermetically embedded and flush with the surface
of the glass substrate, through a hole drilled in the center of the substrate. The rod was
thermally glued to a Peltier module (TEC-30-32-127; 33.4 W; 30× 30× 3.2 mm3), which was
connected to an aluminum heat radiator (Figure 1). The copper rod served as a local heater
or cooler (heat sink) depending on the polarity of the voltage applied to the Peltier module,
which allowed to increase or decrease the temperature of the surface relative to the room
temperature, T0. To form a fluidic cell, a polymeric ring of R0 = 10 mm in radius was glued
to the welding glass substrate (Figure 1). Experiments were carried out under the following
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initial conditions: Thickness of the layer h ∼= 200 µm, and number of particles n ∼= 43 × 103.
The latter was roughly estimated using formula n = 6m/πd3ρp, where m = 3 mg is the
mass of particles weighed with a precision balance (Ohaus Adventurer AX124, resolution
0.0001 g). The particles were deposited onto the initially dry glass substrate. Then, the
required volume of isopropanol was added into the cell to set the layer thickness.
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Figure 1. Sketch of the experimental setup for studying the formation of the ring-shaped de-
posit: 1—glass substrate, 2—copper rod, 3—copper plate, 4—Peltier module, 5—aluminum radiator,
6—polymeric ring, wall of the fluidic cell, 7—polystyrene particles on the substrate covered with
a liquid layer.

Experiments on the ring-shaped deposit formation were carried out according to
the following protocol. In the beginning, the Peltier module was connected to the power
supply in opposite polarity, and as a result, the temperature of the rod was lowered for a
specified time span; then, the polarity of applied voltage was changed and the rod started
to serve as a heater, increasing the temperature. After the ring-shaped deposit was formed,
the system was left untouched until isopropanol was completely evaporated. Experiments
were performed with the cooling time spans, τ, varying from 5 to 50 s and with various
values of the cooling power of the Peltier module, ranging between 1.2 and 32 W (electrical
power). Experiments were repeated 5 times for each value of power and cooling time span.

The experiments were recorded using a microscope Axio Zoom V16 with the lens
Zeissapoz 1.5x/0.37 FWD 30 mm equipped with the CCD camera Zeiss Axiocam 506 color
(Carl Zeiss Microscopy GmbH, Jena, Germany). The captured images were analyzed using
the method proposed in our previous study [7]. In particular, the evolution of the area
cleared from particles Sin(t), which is the inner area of the ring-shaped deposit, and the
area of the final ring-shaped deposit, Sr, were measured, in dependence on the cooling time
spans and the cooling power of the Peltier module. The evolution and radial distributions
of temperature were measured with an IR camera (Flir A655sc, spectral range 7.5–14 µm,
±2 ◦C). The morphology of the particle arrangement (distribution) across the width of the
ring-shaped deposit was characterized using a scanning electron microscope (TESCAN
Mira 3 LMU, Brno-Kohoutovice, Czech Republic) with SE detector at 3 kV.

2.2. Calculation of Desired Areas

The deposit area and the area of substrate cleared from particles were measured
by counting the corresponding pixels. The boundary of the area covered by particles
was determined by the pixel intensity gradient in the sequence of images. The external
boundary of the deposit was defined as the transition from high to low level of intensity,
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and the cleared area boundary—from low to high intensity, respectively. Images were
processed using an in-house-developed computer program, which allowed calculating the
area of the particle deposit and the area cleared from particles. The program contains a
number of tools to exclude random and systematic errors in calculating the area. As an
example, the procedure for the calculation of the area cleared from particles (the inner
area) is schematically shown in Figure 2. Since the heater in images stands out against the
substrate background, to prevent it from counting in the calculation, its area is blocked by
a circle, Figure 2a. After the unknown area was calculated, the heater circle was taken into
account, to avoid underestimation of the final area. A reference point (shown by a yellow
cross sign) was set on the image center. Then, lines were drawn from this point (red arrows
in Figure 2a) in all directions with an angular separation of 0.25◦ to enable measuring the
boundary of the inner area in detail in images with a resolution of 1920 × 1200 pixels. The
length of each line was determined by the particle closest to the heater. The contour of
the inner area was interpolated using the array of boundary coordinates (Figure 2b, red
outline), and then the area enclosed by that boundary was calculated (Figure 2c, indicated
in green). The area bounded by the outer contour of the ring-shaped deposit, Sout, was
measured in a similar way. The resulting area of the ring-shaped deposit was calculated as
follows Sr = Sout − Sin.
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Figure 2. An illustration of the method for measuring the required area: (a) scheme of determining the boundary coordinates
of the required area; (b) the drawing of a continuous line (a contour in red) enclosing the area; (c) the calculation of the
desired area.

2.3. Error Estimation

The error in calculating the desired area is the sum of errors in counting the pixels
in the area and the random error over each series of experiments at fixed parameters.
The errors in calculating the area when processing images result from the inaccuracy in
determining the external boundary of the desired area. When, e.g., the radius of the area
covered by particles in images takes on a value of 2 ± 0.5 pixels, the error in determining
the boundary location can be estimated as 0.5 pixels. The area perimeter is calculated as the
number of pixels, n, at its boundary. Therefore, taking into account the error in determining
the border location, the error in determining the area will be ±n/2. The relative error
in measuring the desired area in time attains a maximum value of ±1.4%. The random
error was calculated over 5 measurements for each set of experimental parameters with an
acceptance probability of 95%. The final values of the error in measuring the area do not
exceed ±6%.
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3. Results and Discussion
3.1. Mechanism of the Ring-Shaped Deposit Formation

According to the experimental procedure, the fabrication of a ring-shaped deposit (or
a pattern) starts with the formation of its inner contour by applying the opposite polarity
voltage to the Peltier module. In this case, the temperature of the rod decreases and, as
a consequence, the liquid near the substrate flows from the rod to the wall. The basic
principle of the particle transport is the following. With a local decrease in temperature
of the liquid, the surface tension γ(T) locally increases according to the Guggenheim–
Katayama equation.

γ(T) = γ0

(
1− T

Tc

)n
, (1)

where γ0 is the surface tension at the reference temperature T0, Tc is the critical temperature
and n = 11/9 is the exponent for most organic liquids. This results in the shear stress
field on the free surface of the liquid layer, which is balanced by the viscous flow of the
bulk liquid

dγ(T)
dr

= µ
du
dz

(2)

where dγ(T)/dr = γ′T dT/dr is the thermocapillary equation, γ′T = −dγ/dT is the
thermal coefficient of surface tension, dT/dr is the radial temperature gradient, µ is the
viscosity of liquid, u is the horizontal component of the flow velocity, and du/dz is the
vertical gradient of the flow velocity. Due to the local cooling, the temperature gradient
is positive, dT/dr > 0, and that produces a negative surface tension gradient, dγ/dr < 0,
hence the radially-inward thermocapillary flow along the free surface layer arises. As a
result, the liquid elevates above the heat sink and forms a hill. The capillary pressure under
the surface of the hill increases and causes the liquid to flow near the substrate from the
heat sink. This flow is called an outward-directed bottom flow. Eventually both the flow
along the free surface and the bottom flow couple and form the toroidal thermocapillary
vortex in the layer. The particles sitting on the substrate exert the action of a drag force,
which is caused by the viscous friction of the liquid. Under the action of the Stokes force,
particles are transferred to the warm periphery and, as a result, the cooled surface becomes
free from particles (Figure 3a).

To demonstrate the formation of the inner contour of the ring-shaped deposit, Figure 4a
shows the evolutions of Sin(t) and ∆T(t) = T(t)− T0 obtained with an electrical power
P = 5 W applied to the Peltier module and a cooling time span τ = 10 s, and Figure 4b
shows the radial temperature gradients dT/dr corresponding to the moments in time t = 14,
17 and 24 s. As can be seen in Figure 4, the inner area grows not only at the cooling stage
but also during the first few seconds of heating. The reason for that effect is the following.
After the cooling stage is finished, the voltage polarity on the Peltier module is changed,
but due to the inertia of the heat transfer process the temperature of the rod continues
to decrease slightly for another 2–3 s and reaches the minimum value ∆T ≈ −7 ◦C for
the specified power P = 5 W (Figure 4a, the point A). At this moment, the temperature
gradient along the layer is positive, dT/dr > 0 (Figure 4b). This supports the negative
surface tension gradient, dγ/dr < 0 responsible for the transfer of the particles away from
the center and the growth of Sin (Figure 4a). Then, in the course of heating, the temperature
of the heater increases and reaches the value T0, i.e., ∆T = 0 at t = 17 s (Figure 4a, the point
B). As a result, the local temperature gradient, dT/dr < 0, is established in a zone extending
from the heater center to the distance of r ∼= 1.7 mm (Figure 4b, insert). In the heating zone,
the surface tension decreases according to Equation (1), resulting in a positive gradient
dγ/dr > 0, which leads to a change in the rotating direction of the thermocapillary vortex
and the formation of a thermocapillary concave deformation (Figure 3b). At the same
time, at the periphery, the positive gradient dT/dr > 0 still exists (Figure 4b); therefore,
the particles continue to move away from the center increasing the area Sin. For the case
depicted in Figure 4, the positive gradient dT/dr > 0 holds on near the wall of the cell for
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quite a long time until the temperature of the heater rises up to ∆T ≈ 15 ◦C. Such inertia
in the changing of the thermal gradient sign is attributed to the large thermal resistance
at the interface between the rod (kc = 400 W/(m × K)—thermal conductivity) and the
glass substrate (ks = 0.748 W/(m × K)), which delays the heat flow into the glass substrate.
Therefore, the heat transfer from the heater surface at the beginning of heating is supported
mainly by the convective heat transfer in the liquid. Moreover, the thermal diffusion in
the glass substrate is a very long process; the diffusive relaxation time td = R2

0/κ = 250 s,
where R0 = 10 mm and κ ≈ 4 × 10−7 m2/s is the thermal diffusivity of the glass.
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Figure 3. Schematic representation of the ring-shaped deposit formation. (a) Cooling mode (the heat
is pumped out through the copper rod)—the negative surface tension gradient transfers the liquid to
the center, the particles move from the center to the wall. (b) Heating mode—competition between
negative and positive surface tension gradients, which creates counter rotating thermocapillary
vortices. (c) Appearance of the dry spot at the central area of the cell due to thermocapillary
spreading and evaporation of liquid, and formation of the outer boundary of the ring deposit due to
the positive surface tension gradient.
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Thus, two opposite convective flows driven by surface tension gradients with opposite
signs exist in the layer (Figure 3b) until the temperature gradient reaches a negative value,
dT/dr < 0, in the entire liquid layer. In the case under consideration, this corresponds to
the time t = 24 s (Figure 4b). At this moment, the outward-directed flow of the liquid and,
therefore, the movement of the particles stops, and the inner area, Sin, reaches its maximum
value, Figure 4a (the point C). Further, only dγ/dr > 0 is developed in the entire layer,
and this leads to an inward-directed bottom flow, which transfers the particles toward
the heater. This process causes a decrease in the inner area, Sin (Figures 4a, 5b and 7b),
and in some cases, it destroys its contour (Figure 6a). At the same time in the inner area,
owing to simultaneous thermocapillary spreading and evaporation of the liquid, a dry spot
appears and expands (Figure 3c). This prevents the further inward-directed transport of
particles, due to a pinning of the contact liquid/solid line. As a result, the inner contour of
the ring-shaped deposit attains a constant value (Figures 4a, 5b and 7b).
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The formation of the outer boundary of the ring deposit occurs due to the action of
dγ/dr > 0, which generates a flow transferring the residual particles from the periphery
of the substrate to the deposit. After complete evaporation of isopropanol, the final dry
ring-shaped deposit on the glass substrate is created.

3.2. Effects of the Cooling Power and the Cooling Time Spans on the Ring Deposit Size

Figure 5a shows the ring-shaped deposit area, Sr, and the temperature drop on the
heat sink, ∆T = T(τ)− T0, as functions of the cooling time spans at the constant cooling
power P = 1.2 W. Figure 5b shows the evolution of the inner area, Sin, of the ring-shaped
deposit for several values of the cooling time spans at P = 1.2 W.

With an increase in the cooling time span, the area of the ring deposit, Sr(τ), decreases,
but its final inner area, Sin(τ), increases, which implies the formation of a multilayer struc-
ture of the particle deposition. However, a further increase in τ over 15 s (Figure 5a,b) turns
out to be ineffective: both Sr and Sin areas change insignificantly relative to the previous
values. This is related to the fact that the system is approaching thermal equilibrium, i.e.,
the increase in the cooling time at a given cooling power does not significantly reduce the
temperature on the rod, as it is shown in Figure 5a (the temperature data). Note that a slope
of the linear part of the dependency Sin(t) is the same for all values of τ (Figure 5b). Images
of the ring-shaped deposits illustrating the influence of the cooling process duration on the
geometrical parameters of the ring are shown in Figure 6.
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Figure 7a shows Sr and ∆T on the heat sink as a function of the cooling power at
τ = 10 s, and Figure 7b—the evolution of Sin for different P at τ = 10 s. In contrast to
the previous case, shown in Figure 5, the increase in the cooling power does not lead to
a decrease in Sr, instead the area varies within the range ∆Sr ≈ 10 mm2. Interestingly,
the increase in the cooling power of almost three times (from 12 to 32 W) allows for the
temperature to reduce by only 1.5 ◦C. Thus, the increase in the cooling power becomes
ineffective after a certain power is reached. At the same time, Sin and the growth rate
increase with P (Figure 7b). The latter is related to the contribution of the heating in the
beginning of this stage. At high powers, an extremely fast temperature rise on the rod
occurs. For example, we can consider the rate of temperature rise of the rod from the
minimal value reached at the cooling stage to the value at which the expansion of Sin stops
(this corresponds to the situation marked with the point C in Figure 4): it reaches 0.8 ◦C/s
for P = 1.2 W and 5.5 ◦C/s for P = 32 W. Such a temperature jump gives a jump of the
value and the sign of dγ/dr. As a result, the thermocapillary wave arises in the center
and advances over the layer surface, sweeping particles towards the wall of the cell and
increasing the inner area.

3.3. Morphology of the Particles Assembly in the Ring Deposit

Let us analyze the influence of the surface tension gradients, which are responsible for
the formation of the ring-shaped deposit, on the particle arrangement (the distribution)
over the ring width. To do this, we introduce the parameter w = w/Rin, which represents
the ratio of the ring-shaped deposit width, w, to its inner radius, Rin. Since the inner and
outer boundaries of the deposit are asymmetric, we estimate averaged values as follows:
Rin =

√
Sin/π, and w = 1√

π

(√
Sout −

√
Sin

)
using Sin and Sout data calculated by summing

the number of pixels (see methods in Section 2.2). Figure 8 represents the dependencies of
the parameter w = w/Rin on the cooling time span at P = 1.2 W (Figure 8a), and on the
cooling power at τ = 10 s (Figure 8b).
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When the temperature decrease on the copper rod is |∆T| < 5 ◦C (τ = 5 s, P = 1.2 W),
the ring width is larger than the radius of the inner contour, w > 1 (Figures 6a and 8a).
This fact means that the ring deposit is formed mainly by the inward-directed bottom flow
induced by the positive surface tension gradient dγ/dr > 0, i.e., most of the particles are
transferred into the deposit from the periphery. Moreover, this flow leads to the destruction
of the sharp inner boundary, which was created during the cooling stage, as it is seen
Figure 6a. It is obvious that the dominance of flow caused by dγ/dr > 0 dictates the
particles distribution profile along the width of the final ring-shaped deposit. Figure 9a
shows a SEM image of a part of the ring where w > 1. It can be seen that the outer boundary
is sharp and the inner one is gently-sloping and smeared. A high density of particles due
to their multilayer packing is observed to be closer to the outer boundary, while along the
inner boundary, particles are deposited as a monolayer.
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When increasing the cooling time and decreasing the heat sink temperature, the
ring width becomes smaller compared to the inner radius, w < 1 (Figures 6b,c and 8).
The outward-directed bottom flow due to dγ/dr < 0 (cooling stage) starts to markedly
contribute to the formation of the ring-shaped deposit, which leads to a shift of the high
density of the particle packing zone to the central part of the ring (Figure 9b).

For values of the cooling time spans τ > 15 s, or for values of the heat sink powers
P ≥ 12 W, the condition of w = const. is reached (Figure 8). In this case, the averaged
inner radius of the deposit attains a maximum value Rin ≈ R0/2. The ring deposit is
formed predominantly by transferring the particles from the center of the cell to the wall
by the outward-directed bottom flow induced by dγ/dr < 0 (cooling stage). To finalize the
outer boundary of the ring deposit, the particles gathered between the inner border and
the wall are transferred by the flow due to dγ/dr > 0 (heating process). In this case, the
particles distribute over the ring width more or less equally and the ring has both sharp
edges (Figure 9c). Thus, such parameters as the inner and outer diameter, the ring width
of the ring-shaped deposit as well as the particle arrangement over the ring width can be
adjusted by varying the cooling time or the power applied to the Peltier module.

4. Conclusions

In conclusion, we have studied the process of the millimeter scale ring-shaped deposit
fabrication on solid surfaces using polystyrene microparticles (microspheres) in the layer
of evaporative liquid. The driving mechanism is based on the action of thermocapillary
flow induced in the layer by a local thermal source/sink in the center of the surface. To
manipulate the particle movement, the direction of thermocapillary flow is controlled by
changing the sign of the temperature gradient in the liquid via the switching of the thermal
source between heating and cooling modes. Our results show that by controlling the power
applied to the heat source/sink and the duration of applied thermal flux, the rate of the
ring deposit fabrication, the ring size and the particle arrangement over the width of the
ring can be tuned. The proposed method enables the simultaneous control of the millimeter
scale and microscale processes of particle transfer and arrangements and can be used for
creating structures of nano- and microparticles on spatial mesoscales.

Author Contributions: Conceptualization, N.I., M.A.-M. and D.K.; methodology, N.I. and M.A.-M.;
investigation, M.A.-M. and D.K.; formal analysis, N.I. and M.A.-M.; writing—original draft prepara-
tion, N.I., M.A.-M. and D.K.; writing—review and editing, N.I.; supervision, N.I. All authors have
read and agreed to the published version of the manuscript.
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