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Abstract: The article deals with experimental and numerical research of the layered reinforced
concrete slab with plastic inserts. The investigated layered reinforced concrete slab is made of
prefabricated and monolithic reinforced concrete layers. Voids were formed in the plate with spherical
plastic inserts. With reference to the built-up bars theory, the paper proposes an analytical method
for calculating the deflection of the layered reinforced concrete structures in non-linear stage, when
bond between layers is partially rigid. The article also focuses on the numerical simulation of the
layered slab, compares the estimated theoretical values of deflection with the experimental values and
assesses the shear stiffness of the bond of prefabricated and monolithic concrete layers for calculating
the deflection of the reinforced concrete slab. Paper presents the parametric analysis of deflection
dependence on shear stiffness and the width of the contact zone of the layers. It was established that
proposed analytical method and numerical analysis properly characterise the behaviour of the slab.
Calculation results were close to experimental data. Moreover, it was determined that performance
of this type of slab is highly influenced by shear stiffness of the bond between the concrete layers.
Analysis confirmed that slab fails when bond is damaged, and layers slip in the support zone.

Keywords: analytical calculation; layered slab; numerical model; plastic insert; shear stiffness
modulus; stiffness analysis

1. Introduction

In construction practice, prefabricated monolithic reinforced concrete slabs are used
for the installation of overlays in multi-storey buildings. A prefabricated monolithic overlay
slab is a layered reinforced concrete structure consisting of prefabricated components and
a layer of monolithic concrete. Filigree/Omnia prefabricated monolithic overlay slab
is produced from residual reinforced concrete formwork and a layer of concrete cast in
situ [1,2]. Such types of overlay slabs allow creating large hollows in the overlay. They
are suitable for monolithic, prefabricated reinforced concrete, steel-framed and masonry
structural systems. Such layered slabs are also easy and reliable for implementing various
architectural solutions (e.g., connecting cantilever balconies to the overlay) and do not
require additional formwork, which accelerates the overlay installation process. Slabs can
be supported in one and both directions.

Thickness of the residual formwork (prefabricated part of the slab) ranges from 40
to 100 mm. Slab is reinforced with a reinforcing mesh that withstands tensile stress and
has an anchored three-dimensional steel truss incorporated into the slab structure. Truss
increases the stiffness of the residual reinforced concrete formwork and improves the bond
between the prefabricated reinforced concrete slab and the monolithic concrete layer. Truss
bars at the bottom act as tensile reinforcement [1,2].

To reduce the self-weight of the overlay structure, the monolithic layer of the overlay
may include hollows. In this case, hollows are suggested to be formed by using plastic
inserts [3,4], as shown in Figure 1. Installing hollows in the overlay slab decreases the
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consumption of concrete by up to 20–30%. A drop in the amount of concrete used for pro-
ducing reinforced concrete overlays also diminishes the consumption of cement. 1 tonne of
cement is known to emit up to 500 kg of CO2 into the environment [5], which demonstrates
that the rational solutions of reinforced concrete structures significantly reduce energy
and raw material costs and environmental pollution. Plastic inserts used for creating slab
hollows can be made from household plastic waste, which grants the environmentally
friendly management of plastic waste [3,4].
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Figure 1. General view of residual formwork with plastic inserts [6].

A number of sources [1,4,7–9] provide that at the initial service stage of loads affecting
the above introduced structures, both layers work and deform together until loads reach
50% of bearing capacity. Conventional structural analysis applies to the previously men-
tioned slabs because the slab has the same load-bearing capacity as a monolithic reinforced
concrete slab of the solid cross-section [3,4,10,11]. Structural analysis is possible by using
conventional FEA software packages referring to the same design standards applied for
the monolithic reinforced concrete slabs of the solid cross-section.

Structural performance of many different layered structures highly depends on the
condition and properties of the bond between the layers [9,12–23]. It is caused by the shear
deformations that may occur in the layer bond at the support zone of the Filigree/Omnia
slab. The stiffness of the bond between two concrete layers must be considered when
calculating the slabs at this particular stage of loading. At high shear stress, the rigid bond
of the layers may become partially rigid, and therefore slab layers slip relatively to each
other [4,24], this occurrence is shown in Figure 2. Such type of failure mode is described in
studies by H. Ji and C. Liu, 2020 [25], K.M.A. Hossain et al., 2020 [26] and G. Marčiukaitis
et al., 2007 [27]. In this case, the stiffness of the structure decreases and the deflection of the
slab increases.
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A. M. Ibrahim et al., 2019 [4] and J. Valivonis and G. Marčiukaitis 2007 [28] researched
the layered reinforced concrete slabs and found that it was useful to assess the partial
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stiffness of the bond between concrete layers. This helps to obtain more accurate results of
structural analysis and provides a possibility of assessing structural behaviour at different
stages of service evaluating the partial stiffness of the bond. Furthermore, the installation of
plastic hollows decreases the moment of inertia of the cross section, which in result reduces
flexural stiffness of the structure. For this reason, concrete slabs with hollows usually
demonstrate a larger deflection than solid slabs of same external dimensions [10,11,29–31].

Reinforced concrete slab with plastic inserts is a structurally, economically and eco-
logically advanced structural member, which is increasingly used in modern construction.
Studies have been carried out on concrete slabs with plastic void formers. However, most
of studies have not analysed the behaviour of semi-precast concrete slabs, which has sig-
nificant advantages over a typical voided concrete slabs. This article provides findings on
structural properties, concrete layer bond behaviour of layered concrete slab with plastic
inserts. In addition, this paper proposes an analytical method for calculating deflection
during a non-linear loading stage, when bond between layers is partially rigid.

2. The Analytical Method for Calculating Deflection

The deflection of the layered structures is greatly influenced by the stiffness of the
bond between the layers. Thus, for calculating the deflection of flexural layered reinforced
concrete structures, three loading stages are identified: At stage 1, the structure works
elastically and the bond between the layers is rigid; stage 2 involves plastic deformations
of concrete when the member is cracked but the bond between the layers is rigid; stage 3
assumes a partially rigid bond between the layers. All stages are shown Figure 3.
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At stages 1 and 2, the deflection of the layered reinforced concrete slabs is determined
by applying the known methods for calculating flexural reinforced concrete structures
(e.g., Eurocode 2 [32]). In this case, the two sections of reinforced concrete components are
considered:

• Uncracked section, where reinforcement and concrete deform together, and full section
area of concrete is considered;

• Cracked section, where the tensile zone of concrete section area is ignored.
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Deflection is calculated with reference to the formula:

w = k·le f f
2·
(

1
r

)
m

(1)

where k is the factor that assumes distribution of bending moments in the member; le f f —

the effective length (length from one support to another) of the flexural member;
(

1
r

)
m

—
average curvature.

The average curvature of the flexural slab is calculated as follows:(
1
r

)
m
=

(
1
r

)
u
·(1− ξ) +

(
1
r

)
cr
·ξ (2)

where ξ—distribution coefficient;
(

1
r

)
u
—curvature of the uncracked cross-section;

(
1
r

)
cr

—
curvature of the cracked cross-section.

The distribution coefficient can be obtained by using the following formula:

ξ = 1− β·
(

Mcr

M

)2
(3)

where Mcr—cracking moment; M—applied bending moment; β—the coefficient which
evaluates the effect of load duration and type. Under short-term load, β = 1.0; under
long-term load, β = 0.5. The research shows that the shear deformations in the layer bond
of the prefabricated monolithic slab occur at the service stage when the total load acting on
the structure is approximately 50% of the maximum load-bearing load. At higher shear
stress, slab layers slip relatively to each other, and therefore change the stiffness of the bond
between the layers. This phenomenon affects the overall flexural stiffness of the layered
structure and consequently the deflection of the slab. A slip between the layers increases
the deflection of the slab. Thus, for calculating prefabricated monolithic slabs at stage 3,
partial rigidity between the layers must be considered. This allows determining more
accurate flexural stiffness and deflection of the layered slab. The built-up bars theory [33]
can be applied for estimating the deflection of the layered slab. Based on this theory, the
proposed method evaluates the flexural stiffness of individual layers and the shear stiffness
of the bond between the layers.

By evaluating the partial stiffness of the bond between the layers, the deflection of the
two-layer prefabricated monolithic reinforced concrete slab is calculated as follows:

w = M·

( l2
e f f

8·Ee f f ·Ie f f

)
+

1
D

cosh
(

0.5·λ·le f f

)
− 1

λ2· cosh
(

0.5·λ·le f f

)
 (4)

where M—the bending moment; le f f —span length; Ee f f ·Ie f f —stiffness of the layered slab;
λ—factor assessing the shear stiffness of the bond between the layers; 1

D —ratio describing
the flexural stiffness of the layered slab.

The ratio describing the flexural stiffness of the layered slab is calculated as follows:

1
D

=
1

Ec,e f f ·Ie f f ,1,cr + Ec,e f f ·Ie f f ,2,cr
− 1

Ee f f ·Ie f f
(5)

where Ec,e f f —the effective modulus of elasticity of concrete of top and bottom layers
depending on creep deformations; Ie f f ,1,cr—effective moment of inertia of cracked section
of the top layer; Ie f f ,2,cr—effective moment of inertia of cracked section of the bottom layer.

The factor assessing the shear stiffness of the bond between the layers:

λ =
√

α·γ (6)
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where α—the factor defining shear stiffness; γ—the factor describing the flexural stiffness
of the flexural layered slab.

The overall stiffness of the two-layer prefabricated monolithic reinforced concrete slab:

Ee f f ·Ie f f = Ec,e f f ·Ie f f ,1,cr + Ec,e f f ·Ie f f ,2,cr +
E2

c,e f f ·Ae f f ,1,cr·Ae f f ,2,cr·ze f f
2

Ec,e f f ·Ae f f ,1,cr + Ec,e f f ·Ae f f ,2,cr
(7)

where Ae f f ,1,cr—effective area of cracked section of the top layer; Ae f f ,2,cr—effective area
of cracked section of the bottom layer; ze f f —the distance between the weight centres of
the layers.

The factor describing the stiffness of the flexural layered slab:

γ =
1

Ec,e f f ·Ae f f ,1,cr
+

1
Ec,e f f ·Are f f ,2,cr

+
ze f f

2

Ec,e f f ·Ie f f ,1,cr + Ec,e f f ·Ie f f ,2,cr
(8)

The factor assessing shear stiffness of the bond between the layers:

α =
b·Ge f f

ze f f
(9)

where b—section width; Ge f f —shear stiffness coefficient.
The effective cross-sectional area of the cracked layer:

Ae f f ,i,cr = b·xi,cr (10)

where b—section width; xi,cr—the height of the compressive zone of the cross-section of
the cracked layer; i = 1, 2—these numbers represent individual layers of layered slab.

The moment of inertia of the cross-section of cracked layer:

Ie f f ,i,cr =
b·xi,cr

3
+

Es

Ec,e f f
·As,i·(di − xi,cr)

2 (11)

where Es—the modulus of elasticity of reinforcement steel; As,i—the cross-sectional area of
layer reinforcement; di—the effective depth of the layer.

The height of the compressive zone of the cross-section of the cracked layer is calcu-
lated from first moment of area equilibrium equation. First moment of area is calculated
with respect to the top of layer cross-section:

Ae f f ,i,cr·xcr = Se f f ,i,cr → xcr (12)

where Se f f ,i,cr—first moment of area of the cross-section of the cracked layer.
In this article analytical calculations were done by transforming the cross-section

with spherical voids into an I-beam type of cross-section. Both cross-sections (actual cross
section, which is shown in Figure 4a, and transformed cross-section, which is shown in
Figure 4b) have equal values of moment of inertia.

Usually, the effective cross section of layered slab is acquired by calculating a ratio
of modulus of elasticity of individual layers. In this study this is not needed because the
moduli of elasticity of both layers are equal.
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3. Modelling of the Layered Slab

To analyse the layered prefabricated monolithic reinforced concrete slab, a numer-
ical model was created by using the software package of finite element analysis DI-
ANA FEA. Numerical model can be seen in Figure 5. The geometry (which is shown
in Figures 4a and 6) and properties of the slab were selected with reference to the arti-
cle written by A. M. Ibrahim et al., 2019 [4]. This experimental slab does not contain
three-dimensional steel truss. Plastic void formers were partially embedded into bottom
reinforced concrete layer at the time of its production.
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To apply loads and supports, steel plates were simulated. Concrete in the model
is treated as an elastic-plastic material. Concrete modulus of elasticity Ec = 32.575 GPa;
Poisson’s ratio ν = 0.2; concrete density—2400 kg/m3; stress–strain relationship curve of
compressed concrete—Thorenfeldt. Curve is shown in Figure 7a; concrete compressive
strength fcm = 37 MPa; stress–strain relationship curve of tensile concrete—brittle. Curve
can be seen in Figure 7b; tensile strength of concrete ft = 2.832 MPa; reinforcement is
treated as elastic material. Steel reinforcement modulus of elasticity Es = 199 GPa; model
for steel behaviour—Von Mises plasticity, elastic stress fy = 470 MPa; reinforcement has
no strengthening.
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Figure 7. Concrete stress–strain curves: (a) The stress–strain relationship of compressive concrete
(Thorenfeldt) [34]; (b) the stress–strain relationship of tensile concrete (brittle) [35].

An interface for bond evaluation is provided between concrete layers. Interface type
—3D surface interface, as shown in Figure 8. Two types of interface stiffness modulus are
provided. Normal stiffness modulus is equal to concrete modulus of elasticity E = 33 GPa.
Shear stiffness modulus is equal to G = 13 GPa during stage 1. At the start of stage 3,
when bond between layers becomes partially rigid and layers begin to slip, shear stiffness
modulus is equal to G = 2 GPa.
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Figure 8. The interface surface (bond) between concrete layers. Figure 8. The interface surface (bond) between concrete layers.

The finite elements of the slab are 0.02× 0.02 m in size. The structure was calculated
by performing nonlinear analysis and using the arch length control method [36].

4. The Analysis of Stress Distribution in the Numerical Model

In order to assess the behaviour of the interface zone (bond) in the layered reinforced
concrete slab, the analysis of stress distribution at the characteristic points of the cross-
section was performed. The analysis was carried out at six loading levels, which are
presented in Figure 9. Stress distribution in the normal section and the distribution of
tangential stress in the bond between concrete layers were evaluated.
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Figure 9. The levels of slab loading.

Normal stress distribution was proposed at levels B, C, D, E, F and shear stress—at
levels A, C, D, E, F of an acting load. Load levels can be seen in Figure 9. Up to level A slab
behaves elastically; level B and level C is at stage 2 when slab behaves plastically; at level
D a slip between the layers occurs—this is the start of stage 3; at level E the layers continue
to slip; at level F slab failure occurs.

Normal stress is determined in three sections (SYY1, SYY2, SYY3 and over slab length
at the top of section SYY3), and shear stress—in the bond between layers τSY. The positions
of the sections are shown in Figure 10.
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Under acting load A (when bond between concrete layers is not damaged), shear
stress at the end of the slab is equal to τ = 0.095 MPa. At a distance of 300 mm from the end
of the slab, shear stress increases and reaches the value equal to τ = 0.202 MPa, as shown
in Figure 11. Under load C, the bond between concrete layers is still not damaged. The
trend of shear stress distribution is similar to that obtained under load A. At the edge of the
slab, τ = 0.206 MPa, and at a distance of 300 mm, shear stress is equal to τ = 0.324 MPa.
Under load D, the slip between the layers occurs and a sudden rise in stress takes place at a
distance of 0.225 m from the edge of the slab. τ = 0.270 MPa is observed at the edge of the
slab, whereas τ = 0.346 MPa is determined at a distance of 300 mm from the end of the slab,
as shown in Figure 11. Under load E, shear stress is distributed more evenly, and therefore
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spike in stress decreases. At the end of the slab, τ = 0.314 MPa, whereas at a distance of
300 mm, shear stress τ = 0.360 MPa. Under an increasing load (F), the layers continue
to slip between each other, which can be seen in Figure 11. Shear stress distribution is
similar to that under load E. At the end of the slab, shear stress τ = 0.420 MPa, whereas
at a distance of 300 mm, it is equal to τ = 0.461 MPa. The analysis of shear distribution
shows that under the acting load D (25 kN), the bond between the concrete layers of the
slab becomes partially rigid, as shown in Figure 11.
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Figure 11. Shear stress τSY in the bond between the layers.

The analysis of normal stress distribution in section SYY1, which can be seen in
Figure 12, shows that under load B stress is proportional to the depth of the cross-section,
and in this section the layered slab behaves similarly to the solid one. Under load C, a
spike is observed in the normal stress diagram at the bond of the layers. Under load D, the
spike increases. Under load E, the bottom layer of the slab starts cracking. Under load F,
a crack in the bottom layer further widens and compressive stress in the top layer of the
slab increases.
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The analysis of stress in section SYY2, which can be seen in Figure 13, demonstrates
that normal stress distributes proportionally over the depth of cross-section in the middle
of the slab span. Yet under load B, the bottom layer and a part of the top layer of the slab
crack. An increasing load causes crack development towards the top of the cross-section.
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In normal section SYY3 load B causes cracks in the bottom layer of concrete. The top
layer takes over all compressive stress. Tensile stress is distributed linearly, and compressive
stress distribution takes the form of a parabola. Stress distribution is provided in Figure 14.
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Figure 14. Normal stress distribution in section SYY3 (negative stress values = compression).

The numerical analysis has disclosed that normal cracks in the slab appear near the
voids in the sections. Calculations have shown that higher stresses are concentrated near
the voids and are significantly lower in concrete webs. The maximum compressive stress
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was observed in the areas of plastic inserts next to the load application points. Stress
distribution along the length of the slab is shown in Figure 15.
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5. The Comparison between the Analytical Calculation of Deflection and Numerical
Simulation Results

The results of analytical calculations and numerical simulation are compared with the
findings of experimental tests published by Ibrahim et al. [4].

The research of Ibrahim et al. determined that slab failed under load of 35 kN. Under a
force of 25 kN, shear deformations in the bond of the layers are observed. An experimental
slab load-deflection diagram is shown in Figure 9.

A comparison between the calculated deflections and the experimental deflection
values was performed in order to validate the chosen analytical calculation method and nu-
merical simulation results. Deflection diagrams can be seen in Figure 16. At stages 1 and 2
of the loaded structure, the calculation method given in Eurocode 2 [32] was used, and
at stage 3 the method suggested by Valivonis and Marčiukaitis [28] was employed. At
stages 1 and 2 of the loaded structure, analytically and numerically determined deflection
values were found to be very close to experimental ones. At stage 1, in Figure 16, a linear
relationship between the load and deflection values could be observed. Concrete behaves
elastically and carries all the load. This type of load-deflection relationship is prevalent
among all the curves in Figure 16. At stage 2, concrete starts to crack and non-linearity
becomes apparent in the curves. As determined by stress distribution analysis, the bottom
(precast) reinforced concrete layer is the first one to crack. Reinforcement and uncracked
concrete in bottom layer carries all the load. At the stage of layer slipping (stage 3), the
deflection values start to deviate from the experimental ones. When the load reaches the
value of 25 kN, shear stress at supports damages the bond between the layers. Concrete
layers start slipping relatively to each other. Analytical calculations determined a large
increment in deflection at 25 kN load. This is because a different analytical method [28] is
employed from this loading point. At this stage, the analytical deflection value is greater by
33% compared to the experimental one. From 25 kN load to the maximum load of 35 kN,
concrete layers further slip. However, as deflection increases—the load increases too. This
phenomenon might be caused by friction between separated layers at support zones. At
the maximum load of 35 kN slab fails. Analytically obtained deflection value is greater
than experimental value by 8%. Results are provided in Figure 16. The deflection values
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obtained by numerical analysis are close to the experimental ones at the start of layer slip.
This shows that numerical model adequately assesses the properties of concrete layer bond.
At 25 kN, the value is greater by 8%, whereas at the maximum load of 35 kN—by 12%.
Results are presented in Figure 16.

The deflection was also calculated using the Eurocode 2 methodology. In this case it is
assumed that the bond between the layers is completely rigid at all stages of loading. Load-
deflection curve is linear throughout stage 1. Here concrete does not crack and behaves
elastically. At stage 2, the concrete cracks. Since this methodology does not consider
partial rigidity of the bond, at stage 3 the structure behaves the same as in stage 2. At the
maximum load of 35 kN, the deflection value compared to the experimental one is lower
by 42%, which can be seen in Figure 16.
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monolithic slab.

6. The Parametric Analysis of Slab Deflection

Parametric analysis was carried out by varying shear stiffness modulus Ge f f . Deflec-
tion was estimated by applying DIANA FEA program and analytical methods. Deflections
were calculated at P = 30 kN load. When the layers of the layered structure are perfectly
bonded, shear stiffness is Ge f f = 0.4·Ec = 0.4·32.575 = 13 GPa. It was found that approxi-
mately from 13 GPa to 4 GPa variations in the stiffness modulus did not have a significant
effect on deflection, whereas at 4 GPa and lower, deflection started rising significantly, as
shown in Figure 17.

The influence of contact zone width on the deflection was also analysed. Deflection
was calculated by employing the analytical method. The obtained results showed that
considering the total width of the slab (approximately 0.46 m), fluctuations in the contact
zone width of 0.15 m did not have a significant effect on deflection. However, starting from
0.15 m, the deflection started increasing rapidly, which can be seen in Figure 18.
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7. Discussion

Stiffness of layered concrete slab with plastic inserts is analysed in this article. This
type of concrete slab has a number of structural, economic and ecological advantages.
Despite all of its positives, layered concrete slab with plastic inserts has its weaknesses.
By using plastic inserts moment of inertia of the reinforced concrete slab cross section
is diminished and therefore flexural stiffness of the slab is reduced. Moreover, when
analysing this type of layered concrete slab, bond behaviour of two concrete layers has to
be taken into consideration. Bond between concrete layers can be damaged when high
shear stress near the supports occurs.

To properly assess the behaviour of layered concrete slab with plastic inserts, 3 stages
of loading have been proposed. At stage 1 slab deforms elastically. Here, conventional
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methods for calculating flexural reinforced concrete members could be employed. At
stage 2, concrete starts to crack and slab starts to behave plastically. At this stage structural
member can also be analysed using typical methods for flexural reinforced concrete mem-
bers. At stage 3, due to high shear stress at the support zone, the significant deformations
between the layers occur, layers slip relatively to each other and thus the assessment of the
partial stiffness of the bond is needed.

Layered reinforced concrete slab stiffness analysis has been conducted by employ-
ing analytical methods and numerical simulation. Acquired results were compared to
experimental data from another study.

Theoretical method based on built-up bars theory was employed for analysis of
layered structures. At stages 1 and 2 of the loaded structure, analytically determined
deflection values were found to be very close to the experimental ones. At the stage of
layer slipping (stage 3), deflection values start to differ slightly from experimental ones.
Theoretical method based on built-up bars theory can be considered to be suitable for
stiffness analysis of the slab.

Numerical model of layered concrete slab with plastic inserts has been built in FEA
software DIANA. At stages 1 and 2, deflection results of numerical simulation were
particularly close to experimental deflection values. At stage 3 numerical values start to
differ slightly from ones determined in experimental study. By comparing the results, it can
be stated that numerical simulation is an eligible method for stiffness analysis of layered
reinforced concrete slabs with plastic inserts.

Numerical stress distribution analysis shows that when shear stress value exceeds the
strength of the layer bond in the support zone, layers slip relatively to each other. When
analysing normal stress distribution, it becomes apparent that bottom reinforced concrete
layer is the first one to crack. Calculations have shown that higher stresses are concentrated
near the voids and the loading points and are lower in concrete webs.

Parametric analysis of the slab has shown that shear stiffness modulus and the width
of contact zone between the layers have non-linear influence on the deflection of layered
flexural members.

Relatively small amount of available experimental data might be a limitation of this
study. More experimental tests of layered concrete slabs with plastic inserts and tests of
layer bond stiffness should be performed in order to completely validate the proposed
analytical method.
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Nomenclature

w Slab deflection Ie f f ,1,cr
Effective moment of inertia of
cracked section of the top layer

k
Factor, which assumes distribution

Ie f f ,2,cr
Effective moment of inertia of

of bending moments cracked section of the bottom layer

le f f Effective length α Factor defining shear stiffness(
1
r

)
m

Average curvature γ Factor describing the flexural stiffness

ξ Distribution coefficient Ae f f ,1,cr
Effective area of cracked section of
the top layer(

1
r

)
u

Curvature of the uncracked cross-section Ae f f ,2,cr
Effective area of cracked section of
the bottom layer(

1
r

)
cr

Curvature of the cracked cross-section ze f f
Distance between the weight centres
of the layers

Mcr Cracking moment b Section width

M Applied bending moment Ge f f Shear stiffness coefficient

β
Coefficient, which evaluates the effect

xi,cr
Height of the compressive zone of

of load duration and type the cross-section of the cracked layer

Ee f f ·Ie f f Stiffness of the layered slab Es Modulus of elasticity of reinforcement steel

λ Factor assessing the shear stiffness of the bond As,i Cross-sectional area of layer reinforcement

1
D

Ratio describing the flexural stiffness of
di Effective depth of the layer

the layered slab

Ec,e f f Effective modulus of elasticity of concrete Se f f ,i,cr
First moment of area of the cross-section of
the cracked layer

References
1. Newell, S.; Goggins, J. Experimental study of hybrid precast concrete lattice girder floor at construction stage. Structures 2019, 20,

866–885. [CrossRef]
2. Stehle, J.; Karihallo, B.L.; Kenellopoulos, A. Performance of joints in reinforced concrete slabs for two-way spanning action. ICE

Proc. Struct. Build. 2011, 164, 197–209. [CrossRef]
3. Sagadevan, R.; Rao, B.N. Effect of Void Former Shapes on One-way Flexural Behaviour of Biaxial Hollow Slabs. Int. J. Adv. Struct.

Eng. IJASE 2019, 11, 297–307. [CrossRef]
4. Ibrahim, A.M.; Ismael, M.A.; Hussein, H.A.A. Effect of construction type on structural behaviour of R.C bubbled one-way slab. J.

Eng. Sci. 2019, 12, 73–79. [CrossRef]
5. Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [CrossRef]
6. Findorff. BubbleDeck: Replacing Concrete with Air. Available online: https://findorff.com/bubbledeck-replacing-concrete-air/

(accessed on 7 September 2021).
7. Mohamed, M.I.S.; Thamboo, J.A.; Jeyakaran, T. Experimental and numerical assessment of the flexural behaviour of semi-precast

reinforced concrete slabs. Adv. Struct. Eng. 2020, 23, 1865–1879. [CrossRef]
8. Hegger, J.; Will, N.; Bulte, S. Prestressed Filigree Floors for Domestic Construction; Aachen University: Aachen, Germany, 2003.
9. Jurkiewiez, B.; Meaud, C.; Michel, L. Non linear behaviour of steel–concrete epoxy bonded composite beams. J. Constr. Steel Res.

2011, 67, 389–397. [CrossRef]
10. Chung, J.H.; Jung, H.S.; Bae, B.; Choi, C.S.; Choi, H.K. Two-Way Flexural Behavior of Donut-Type Voided Slabs. Int. J. Concr.

Struct. Mater. 2018, 12, 26. [CrossRef]
11. Ibrahim, A.M.; Oukaili, N.Z.A.; Salman, W.D. Flexural behavior and sustainable analysis of polymer bubbuled reinforced

concrete slabs. In Proceedings of the Fourth Asia-Pacific Conference on FRP in Structures (APFIS) 2013, Melbourne, Australia,
11–13 December 2013; International Institute for FRP in Construction: Kingston, ON, Canada, 2013.

12. Naresh, K.; Cantwell, W.J.; Khan, K.A.; Umer, R. Single and multi-layer core designs for Pseudo-Ductile failure in honeycomb
sandwich structures. Compos. Struct. 2021, 256, 113059. [CrossRef]
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27. Marčiukaitis, G.; Valivonis, J.; Bareišis, J. An analysis of the joint operation of a CFRP concrete in flexural elements. Mech. Compos.

Mater. 2007, 43, 467–478. [CrossRef]
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