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Abstract: In this study, two alternative synthesis routes for magnetic adsorbents were evaluated
to remove Pb(II) and Cd(II) in an aqueous solution. First, activated carbon was prepared from
argan shells (C). One portion was doped with magnetite (Fe3O4+C) and the other with cobalt ferrite
(CoFe2O4+C). Characterization studies showed that C has a high surface area (1635 m2 g−1) due to the
development of microporosity. For Fe3O4+C the magnetic particles were nano-sized and penetrated
the material’s texture, saturating the micropores. In contrast, CoFe2O4+C conserves the mesoporosity
developed because most of the cobalt ferrite particles adhered to the exposed surface of the material.
The adsorption capacity for Pb(II) was 389 mg g−1 (1.88 mmol g−1) and 249 mg g−1 (1.20 mmol g−1);
while for Cd(II) was 269 mg g−1 (2.39 mmol g−1) and 264 mg g−1 (2.35 mmol g−1) for the Fe3O4+C
and CoFe2O4+C, respectively. The predominant adsorption mechanism is the interaction between
-FeOH groups with the cations in the solution, which are the main reason these adsorption capacities
remain high in repeated adsorption cycles after regeneration with HNO3. The results obtained are
superior to studies previously reported in the literature, making these new materials a promising
alternative for large-scale wastewater treatment processes using batch-type reactors.

Keywords: magnetic adsorbents; argan shells; adsorption; wastewater treatment; metals removal

1. Introduction

Lead and cadmium are highly toxic metals evolved to the environment due to anthro-
pogenic activities such as metal finishing, electroplating, plastics, pigments, and mining
industries [1]. Exposure to these metals can cause severe damage to the human body
ranging from kidney damage, prostate damage, bone problems, and even neurological
disorders [2]. Various methods have been studied that allow Cd(II) and Pb(II) elimination
from bodies and water effluents. These methods range from precipitation, flocculation,
electrochemical treatment, ion exchange, and membrane filtration processes [3–5]. These
methods show very good results, but they are costly and, in most cases, not effective at low
concentrations of the metal. The use of these processes generates high volumes of sludge,
which is inefficient because they do not solve the environmental problem in its entirety. For
this reason, the adsorption process has been the most widely used method, as it avoids all
of the above problems [6].
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In this regard, different types of carbon materials have been studied as adsorbent
materials for the removal of Pb(II) and Cd(II), highlighting activated carbons [7–9], carbon
nanotubes [10–12], graphene [13,14], fullerenes [15] and magnetic graphene oxides [16].
Although carbon materials are the preferred adsorbent material, it has shown some dis-
advantages when used in large-scale processes. The biggest of them is that when scaling
up the process, packed fixed-bed columns must be used, which present mass transfer
limitations resulting in a drastic decrease in the adsorption capacity of the material. An
innovative strategy to solve this problem is the use of advanced carbon materials, such as
magnetic carbons, which due to their properties, would be feasible to use in batch reactors
to large-scale [17]. The mechanical agitation in these reactors favors the mass transfer
phenomena so that the adsorption capacity does not decline. Finally, using an external
magnet, it would be possible to separate the solid quickly and effectively.

At the moment, there are different methodologies reported to synthesize this type of
material [18–23]. Most of them have the disadvantage that the adsorbent material obtained
is not stable and is inefficient in repeated cycles of use, limiting its large-scale applications.
For this reason, the current challenge and the aim of this study consists of obtaining
magnetic carbons that retain their properties in repeated adsorption-desorption cycles, so
the present study shows a new alternative for preparing these materials. It is expected
that the incorporation of magnetic nanoparticles to an activated carbon will improve the
adsorption capacities of the carbon material, making it possible to use them in repeated
adsorption-desorption cycles. For this reason, in the first stage, activated carbon with a
high surface area was synthesized, for which argan shells were used as a precursor material.
In the second step, the dispersion of magnetite and cobalt ferrite particles on their surface
was studied. To obtain information of the materials, their physicochemical characterization
was carried out as well as adsorption studies of Pb(II) and Cd(II) to evaluate the adsorption
mechanism and project their use in large-scale wastewater treatment processes.

2. Materials and Methods
2.1. Preparation of Activated Carbon Impregnated with Magnetite and Cobalt Ferrite:
Magnetic Adsorbents

Magnetic activated carbons were prepared according to a co-impregnation method. Ac-
tivated carbon support (C) was prepared using the methodology proposed by Bejedim et al.
(2020) [24], and then the magnetite nanoparticles were prepared via the modified chemical
co-precipitation method [25]. Briefly, 1 g of FeCl2 and 2 g of FeCl3 (molar relation of
Fe(III)/Fe(II) ≈ 2:1; in solution) was dissolved in 200 mL of distilled water under N2 flow
with vigorous stirring at 30 ◦C; in the second step, 1 g of C was added, after that 10 mL
of ammonium hydroxide (25%) was put into the mixture producing a color change from
orange to dark brown. The solid was recuperated and washed with deionized water, and
ethanol and dried at 60 ◦C for 24 h. Finally, a heat treatment was carried out at 500 ◦C
under a nitrogen atmosphere for 2 h with a heating ramp of 2 ◦C min−1. This sample was
labeled Fe3O4+C.

The same procedure was carried out to prepare an activated carbon impregnated with
cobalt ferrite nanoparticles. In this case, 1 g of CoCl2 was used with 2 g of FeCl3 dissolved
in 100 mL of distilled water at 95 ◦C. After that, 80 mL of ammonium hydroxide (1 M)
were added. Finally, the solid was filtered, washed, dried, and heat-treated. The resulting
sample was labeled CoFe2O4+C.

2.2. Physicochemical Characterization of the Magnetic Adsorbents

The textural properties (specific surface areas, and size distribution of porosity) of
the magnetic adsorbents were studied by the physisorption of N2 at −196 ◦C, for which
an Autosorb1 from Quantachrome Inc (Anton Paar QuantaTec, Boynton Beach, FL, USA)
equipment was used.

The morphology of the magnetic adsorbents was studied through a scanning electron
microscopy (SEM-EDX), using a Zeiss Leo 1530 Gemini Field Emission scanning electron
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microscope (Zeiss, Jena, Germany), and transmission electron microscopy (TEM) using a
LIBRA 120 PLUS (Carl Zeiss SMT, Jena, Germany) microscope.

The thermal stability of the materials was evaluated in a thermogravimetric analyzer,
Mettler TA 400 (Mettler-Toledo International Inc, Greifensee, Switzerland) The experi-
mental conditions were as follows: air atmosphere, (100 mL min−1); initial mass, 100 mg;
temperature range, 25–900 ◦C; and a heating rate of 10 ◦C min−1.

The functional groups present in the synthesized materials were studied though
a Fourier transform infrared spectroscopy (4000–400 cm−1), using a Nicolet 6700 FTIR
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). To characterize the chemical
surface of the magnetic adsorbents, the X-ray photoemission spectroscopy (XPS) was used;
the equipment used was a Kratos Axis Ultra-DLD X-ray photoelectron spectrometer (Kratos
Analytical Ltd., Kyoto, Japan). The experimental conditions were a monochromatic X-ray
source Al Kα (1486.71 eV); maintained pressure condition of 6 × 10−10 Torr in the analytical
chamber; wide-scan spectra, 0–1100 eV; step energy, 80 eV; and step size, 1 eV. The high-
resolution scans were performed for the C1s, O1s, Fe2p and Co2p regions (experimental
conditions: step energy 40 eV, step size 0.05 eV).

The zeta Potential was measured by first dispersing Fe3O4+C and CoFe2O4+C in
1 mmol L−1 NaCl solution by sonication in order to obtain the supernatant with Zetasizer
Nano ZS (Malvern Panalytical, Malvern, England).

Finally, the magnetic properties of the materials were studied by a vibrating sam-
ple magnetometer (VSM) using the equipment, VersaLab, Quantum (Quantum Design,
San Diego, CA, USA), at room temperature.

2.3. Adsorption Studies of Metal Cations in Aqueous Solutions

The removal of lead and cadmium cations in aqueous solutions was studied using
C, Fe3O4+C and CoFe2O4+C materials. Pb(II) solutions were prepared using Pb(NO3)2 in
distilled water (200 to 3600 mg L−1). On the other hand, Cd(II) solutions were prepared
using Cd(NO3)2 in distilled water (100 to 1000 mg L−1). The experimental conditions
were: 0.1 g of adsorbent, 50 mL of the metal solution, agitation of 180 rpm at 25 ◦C for at
least 24 h (time required to reach equilibrium). The experiments were carried out using
a buffer solution with a constant pH (pH = 5) prepared from 0.1 M acetic acid to 0.2 M
sodium acetate.

The adsorbed amount of metal ions was calculated by Equation (1):

qe = (C0 − Ce)
V
W

(1)

where C0 (mg L−1) and Ce (mg L−1) are the initial and equilibrium concentrations, V (L) is
the volume of solution, and W (g) is the mass of material employed.

The concentration of metals in the solution was measured using a Varian atomic
absorption spectrophotometer (Varian AA240FS Varian Inc., Palo Alto, Santa Clara, CA,
USA) at 283.3 and 228.8 nm for Pb(II) and Cd(II) determination, respectively, using an
acetylene-air flame.

2.3.1. Adsorption Kinetics

The adsorption kinetic studies were conducted using an initial concentration of
500 mg L−1 at pH 5 using a buffered solution prepared with 0.1 mol L−1 of acetic acid and
0.2 mol L−1 of sodium acetate.

In order to obtain fundamental information that allows for describing the effect of
time on the adsorption of Pb(II) and Cd(II) on the magnetic adsorbents, the adjustment of
the experimental data to the mathematical models described in Table 1 was tested.
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Table 1. Mathematical models tested to describe the adsorption kinetics and equilibrium of Pb(II) and Cd(II) onto magnetic
adsorbents.

Model Equation Parameters Reference

Pseudo-first-order qt = qe

(
1 − e−k1t

) qe (mg g−1) and qt (mg g−1): the amounts of adsorbed
adsorbate at equilibrium and at time t.

k1 (min−1): rate constant of pseudo-first-order adsorption.
[26]

Pseudo-second-order qt =
1

1
k2qe2 +

t
qe

k2 (g mg−1 min−1): equilibrium rate constant of
pseudo-second-order adsorption.

[27]

Elovich qt =
2.3
α × log(1 + αβt)

α (mg g−1 min−1): sorption rate.
β (g mg−1): extent of surface coverage and activation

energy for chemisorption.
[28]

Intraparticular diffusion qt = kit1/2 ki (mg g−1 min−1/2): intraparticle diffusion rate constant. [28]

Langmuir qe =
qmaxKCe
1+KCe

qmax (mg g−1): adsorption capacity of the material.
K (L mg g−1): Langmuir constant.

[29]

Freundlich qe = K f Ce
1/n Kf: Freundlich constant.

1/n: heterogeneity factor. [30]

2.3.2. Adsorption Equilibrium

Once the experimental data of Ce vs. qe was obtained, its adjustment to the mathemat-
ical models proposed by Langmuir and Freundlich was tested (Table 1). Finally, the effect
of pH on adsorption capacity was studied in the pH range of 2 to 8. For this purpose, the
pH of aqueous solutions Pb(II) and Cd(II) was changed to the needed value by addition of
HCl or NaOH solutions.

2.3.3. Reuse of the Materials (Adsorption—Desorption Studies)

Desorption and reusability of adsorbent materials were studied employing HNO3
(0.05 M) as a desorbing solution. The experiments were carried out employing 0.1 g of
saturated adsorbent in 20 mL of HNO3, and were agitated at 180 rpm, at 25 ◦C. After
elution, the concentration of metals in the desorbing solution was analyzed by atomic
absorption, and the saturated adsorbent was washed with ethanol and dried at room
temperature. After that, the adsorbent was reused for cations adsorption in four successive
cycles at pH = 6.

2.4. Statistical Analysis

All the experiments were carried out in duplicate. The data presented in the figures
correspond to the average value. The analysis of variance (ANOVA) was performed for
the removal of Pb(II) and Cd(II) concentration as a function of contact time, initial metal
concentrations, pH regimes, and reuse cycles to determine significant differences using the
STATISTICA 10.0 software (StatSoft, Inc., Tulsa, OK, USA).

Mathematical models were applied and adjustments of the data to the nonlinear
equations were carried out using as an estimation method, the algorithm of Levenberg–
Marquardt in the STATISTICA software. The Levenberg–Marquardt Algorithm (nonlinear
least squares) is an efficient method for estimating the parameters of nonlinear regression
models, when using the least-squares loss function. The input data for the STATISTICA
software are the amount of adsorbate per unit amount adsorbent (q) vs. time (kinetic
models) and q vs. concentration of adsorbate at equilibrium (isotherms models). The
objective function used in correlating the data was

∣∣∣qexp − qpred

∣∣∣/qexp where superscripts
exp and pred represents the experimental and calculated/predicted values, respectively.
The correlating ability of the various models was compared in terms of the correlation
coefficient (R).
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3. Results and Discussion
3.1. Physicochemical Characterization of the Magnetic Adsorbents

Figure 1 shows the adsorption-desorption isotherms of N2 (Supplementary Materials,
Figure S1a) and the pore size distribution (Figure S1b) obtained for all materials. The
results obtained are shown in Table 2. For activated carbon used as a support (C), a value
of W0 0.612 cm3 g−1 is observed, evidencing the high degree of activation of the material.
This can be clearly seen in the BET surface area of the material (SBET), which is 1635 m2 g−1.
However, once the material is impregnated with magnetite and cobalt ferrite particles,
there are significant changes in the material’s texture. First, the BET area decreases to
394 and 359 m2 g−1, respectively. Although the decrease was to be expected, in the pore
size distribution there are significant differences between both magnetic carbons. For
the Fe3O4+C material, the pore size distribution is in a range of 10 to 100 nm, while for
CoFe2O4+C, the range is less than 10 nm, indicating that the precursor used to add magnetic
properties to the material directly influences the texture of the final material.
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Figure 1. SEM images. Samples: (a) C, (b) Fe3O4+C, and (c) CoFe2O4+C.

Table 2. Physicochemical characterization of materials.

Material
SBET L0 W0 V0.95 Vmeso

pHpzc
(m2 g−1) (nm) (cm3 g−1) (cm3 g−1) (cm3 g−1)

C 1635 1.00 0.612 0.715 0.103 8.0
Fe3O4+C 394 1.04 0.158 0.209 0.051 3.5

CoFe2O4+C 359 1.22 0.144 0.239 0.095 3.4

This information can be corroborated with the morphology studies of the materials.
Figure 1 shows the SEM images for each of the materials. For the C sample (Figure 1a) the
channels developed due to activation with KOH are clearly appreciated. However, for
the Fe3O4+C material (Figure 1b) these channels become narrower due to impregnation
with magnetite nanoparticles. The modification studied provides particle sizes in the order
of nanometers, so that these can penetrate the texture of the carbon material saturating
the microporosity. This was shown in the pore size distribution. On the other hand, in
the CoFe2O4+C material (Figure 1c) it can be seen that modifications grant larger cobalt
ferrite particles. Most of them are anchored on the outermost surface of the material,
for this reason, it preserves the initial and contracts the more exposed channels. The
images obtained are shown in Figure 1, which confirms that the nanoparticles were able
to impregnate the entire internal texture of activated carbon, while cobalt ferrite particles
remain less dispersed, mainly concentrating on the surface of the material.

Figure S2 shows the TEM images of each of the materials obtained; it can be observed
that for the case of the Fe3O4+C sample, nanometric particles were obtained with an average
size of 36 nm. On the other hand, for the material CoFe2O4+C, the size was 14 nm. This
can be attributed to the fact that during the synthesis of the materials, agglomerates of
magnetite nanoparticles are generated, increasing the volume and size of the nanoparticles;
otherwise, the cobalt ferrite nanoparticles disperse correctly on the carbon material.

The magnetite and cobalt ferrite contents in the magnetic carbons were evaluated
through thermogravimetric analysis. The TG curves are presented in Figure S3, from which
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the magnetite and cobalt ferrite contents supported on C were determined to be 56.6 and
51.8 wt%, respectively. Considering that the compounds present in the magnetite are
mostly Fe3O4, the Fe content is calculated to be 40.9 wt%. On the other hand, for cobalt
ferrite, the predominant species is CoFe2O4, so that the Fe and Co contents are 28.5 and
15.0%, respectively.

The results of the XP spectroscopy studies are presented in Figure 2 and Table 3.
The deconvolution of the C1s spectrum, for magnetic carbon samples, shows five peaks
(Figure 2a), which correspond to bonds: C=C (peak at 284.6 eV), C-O (peak at 285.8 eV), C=O
(peak at 287.0 eV), O=C-OR (peak at 288.5 eV) and CO3 species (peak at 290.0 eV) [24,31].
For metal oxides the C1s spectrum is shifted to a higher binding energy (BE), C=C (peak at
284.8 eV) which corresponds to adventitious carbon [32].
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Figure 2. Deconvolution of the high-resolution XP spectra into the main species: (a) C1s; (b) O1s; (c) Fe2p and (d) Co2p.
Samples: Fe3O4 and Fe3O4+C (down), and CoFe2O4 and CoFe2O4+C (up).

This analysis agrees with the deconvolution of the O1s spectra, as shown in Figure 2b,
which shows three peaks for magnetic carbon samples. The first of them, 530.1 eV, corre-
sponds to oxygen bonded to +2 and +3 cations [33]. The peak centered 531.6 eV corresponds
to the C=O bond and the finally the peak at 533.0 eV is related to the C-O bond [24,34–36].
In the case of metal oxides, only two peaks are detected in O bonded to metal cations and
C=O is present in adventitious carbon.

The XP spectra for the Fe2p region are shown in Figure 2c. The mathematical decon-
volution of the spectra shows the typical doublet of iron, consisting of two signals (712
and 725 eV); these correspond to the 2p3/2 and 2p1/2 contributions, respectively [37]. The
position and energy gap coincide to those observed for the FeO(OH) phases [38]. Never-
theless, the deconvolution of the spectrum was performed in three double peaks being
the Fe2p3/2 BE at 709.9 ± 0.2, 711.2 ± 0.3 and 713.2 ± 0.2 eV attributed to Fe2+ placed in
octahedral holes (Fe1), Fe3+ placed in octahedral holes (Fe2), and Fe3+ placed in tetrahedral
holes (Fe3), respectively. Therefore iron atoms are taking part of the chemical species type
M2+

x M3+
1−x[Fe2+

y Fe3+
1−y]O4 [39] being M = Co or simply magnetite.
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Table 3. Binding energies (eV) of C1s, O1s, Fe2p, and Co2p, regions of the carbon materials prepared from argan seed shell.

Sample C1s FWHM * Peak O1s Peak O Sample Fe2p Fe Co2p Peak Co %Fe(II) %Fe(III) %Fe(III) %Fe(III)

eV eV % eV % %
(Mass)

%
(Atomic) eV %

(Mass)
%

(Atomic) eV % %
(Mass)

%
(Atomic) Octa Tetra Octa Tetra

Fe3O4 284.8 1.86 77 530.2 85 31.8 49.8 Fe3O4 709.9 38.0 56.18 25.2 0.0 38.0 62.0 61.5 38.5
286.7 8 531.6 15 711.4 38.1
288.8 15 713.3 23.8

718.6
723.2
724.6
726.7
731.9

Fe3O4+C 284.6 1.18 72 530.3 59 16.4 15.9 Fe3O4+C 709.9 34.1 23.42 6.5 0.0 34.1 65.9 57.7 42.3
285.8 14 531.6 27 711.2 38.1
287.0 7 533.0 13 713.3 27.9
288.5 4 718.4
290.0 3 722.9

724.5
727.1
732.4

CoFe2O4 284.8 1.89 72 530.1 68 30.7 46.6 CoFe2O4 709.9 35.3 33.26 14.5 779.6 44.7 21.03 8.7 35.3 64.7 56.3 43.7
286.4 11 531.7 32 711.6 36.4 781.6 55.3
288.4 16 713.7 28.3 785.4

718.4 788.4
723.0 795.4
724.6 797.2
726.8 801.6
732.5 803.9

CoFe2O4+C 284.6 1.21 69 530.3 44 16.2 14.8 CoFe2O4+C 709.9 34.6 10.76 2.8 779.6 47.8 7.34 1.8 34.6 65.4 55.1 44.9
285.7 16 531.6 31 711.5 36.1 781.5 52.2
286.9 7 532.9 25 713.7 29.3 785.2
288.5 5 718.4 788.3
289.9 3 723.0 795.2

724.7 796.8
727.0 801.5
732.6 804.2

* FWHM: full width at half maximum.
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Finally, Figure 2d shows the deconvoluted spectra of Co2p for the CoFe2O4+C sample.
The spectrum was deconvoluted into four peaks centered at 779.5 ± 0.2, 781.6 ± 0.2,
785.4 ± 0.2 and 788.4 ± 0.2 eV. The peaks at 779.5 ± 0.1 are associated with Co2+ placed
in tetrahedral holes, and the peaks at 781.6 ± 0.2 are associated with Co2+ placed in
octahedral holes [39]. This means that metals situated on the surface of the samples are
taking part of chemical species type (Co2+

x Fe3+
y )[Fe2+

z Fe3+
1−yCo2+

1−x]O4, where cations in
parenthesis are situated in tetrahedral positions while cations in brackets are situated in
octahedral positions. The peaks around 785.4 ± 0.2 and 788.4 ± 0.2 eV correspond to 2p3/2
satellite signals.

Therefore, the XPS study clearly indicates the presence of magnetic phases, not ruling
out the coexistence of surface complexes of the Fe-OH type.

Figure 3 shows the magnetization curves of magnetic carbons. The corresponding
magnetization saturation values for Fe3O4+C and CoFe2O4+C were 5.19 and 0.54 emu g−1,
respectively. This property of the materials is advantageous to carry out wastewater
treatment processes in batch mode. A significant disadvantage that adsorption processes
present today is related to their industrial scalability. A strategy to achieve this is to
use fixed-bed columns; however, it was shown that this mode of operation drastically
decreases the adsorption capacity of the materials due to mass transfer limitations. The
magnetic condition of these new materials opens the possibility of studying adsorption
processes in batch mode on a large scale; this condition allows for preserving the adsorption
capacity of the materials since the condition of agitation can be preserved and favor the
surface phenomenon, and later efficiently separate the material using an outer magnet. As
evidenced by the image in the box within Figure 3.
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material being attracted by an outer magnet.

Figure S4 and Table 2 show the zeta potentials of the materials. The isoelectric point
of the C material was pH 8.02, the basic condition of the material is attributable to the
type of activating agent used (KOH). Once the impregnation is carried out, the isoelectric
point of the material changes to pH = 3.5 and pH = 3.4 for the Fe3O4+C and CoFe2O4+C
materials, respectively. It confirms that the modifications were carried out successfully
since the acidic properties of the material due to the oxides and metallic species that are
now present on the surface of the C support are evident.
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3.2. Adsorption Studies

The results obtained from the adsorption kinetics are shown in Figure 4a,b. The
adsorption of the metals increases significantly (p < 0.01) with the increment of the contact
time. It is observed that for all the materials tested, the adsorption process is slow, reaching
97% of the adsorption after 240 min (4 h) this time was sufficient to achieve the equilibrium
state and the additional increment of the contact time did not change significantly (p > 0.05).
The C sample shows the highest adsorbed amount for both metals (at used conditions),
439 mg g−1 (2.12 mmol g−1) for Pb(II) and 178 mg g−1 (1.58 mmol g−1) for Cd(II); this
effect can be described due to the adsorption mechanism involved. To obtain information
in this regard, the kinetic models of the pseudo-first-order, pseudo-second-order, Elovich,
and intraparticle diffusion were evaluated. The kinetic constants obtained are shown
in Table 4. Among them, the first two models were the ones that best represented the
experimental data. When comparing the kinetic constants k1 and k2 of the materials, it
is evident that the adsorption in C is faster, probably because the active sites are more
available. Additionally, the adsorption kinetics of C is better represented by the pseudo-
first-order model (R = 0.99), contrary to the Fe3O4+C and CoFe2O4+C materials whose
experimental data can be described by the pseudo-second-order model (R = 0.99). Based
on this information, it is proposed that a physisorption phenomenon is involved for the
C material, while for magnetic carbons, the limiting step in adsorption is a chemical
interaction between adsorbent and adsorbate.
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Table 4. Kinetic constants of the models tested for Pb(II) and Cd(II) adsorption onto magnetic adsorbents.

qe,exp
Pseudo First Order Pseudo Second Order Elovich Intraparticle Diffusion

k1 qe, calc R k2 qe, calc R α β R ki R

(mg g−1) (min−1) (mg g−1) (g mg−1 min−1) (mg g−1) (mg g−1 min−1/2)

C Pb(II) 439.0 ± 22.0 0.0314 429.5 0.997 0.00179 445.8 0.988 0.105 61 × 105 0.997 17.14 0.000
Fe3O4+C Pb(II) 280.0 ± 14.0 0.0185 272.4 0.997 0.00113 290.6 0.999 0.084 393.09 0.991 10.57 0.294

CoFe2O4+C Pb(II) 272.0 ± 13.0 0.0174 267.4 0.997 0.00109 281.7 0.999 0.081 194.07 0.994 9.54 0.508
C Cd(II) 177.9 ± 9.0 0.0196 178.0 0.996 0.00229 182.8 0.987 0.204 23 × 103 0.972 4.57 0.000

Fe3O4+C Cd(II) 85.3 ± 4.0 0.0154 86.5 0.994 0.00276 91.6 0.983 0.227 25.59 0.966 3.02 0.523
CoFe2O4+C Cd(II) 77.3 ± 3.8 0.0143 78.1 0.997 0.00273 83.1 0.988 0.233 13.27 0.970 2.71 0.573
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The adsorption isotherms for Pb(II) and Cd(II) are shown in Figure 4c,d. The ad-
sorption of the metals increased significantly (p < 0.01) with the increase of the initial
concentration. The fit of the experimental data to the Langmuir and Freundlich isotherm
models was tested. The constants obtained are shown in Table 5. For the case of the C
material, an adsorption capacity of 989 mg g−1 (4.77 mmol g−1) for Pb(II) and 165 mg g−1

(1.47 mmol g−1) for Cd(II) was obtained. For all cases, the Langmuir isotherm model is the
one that best represents the experimental data, indicating that the adsorption process is
due to the formation of a monolayer of the adsorbate on the adsorbent surface, which is
more evident in the C sample. Since the asymptotic value of the model is clearly marked,
this can be described because the adsorption mechanism is a cation-π interaction between
the graphitic planes of the material and the cation in solution [40], The aromatic carbon on
the surfaces of the materials produces electron-rich π-systems that may donate π-electrons
to interact with cations, which may act as π-acceptors because of electron deficiencies [41];
in such a way the larger the area surface of the material, the greater its adsorption capacity.

Table 5. Langmuir and Freundlich models parameters obtained for adsorption of Pb(II) and Cd(II) onto magnetic adsorbents.

Adsorbent Adsorbate
qmax exp

Langmuir Model Freundlich Model

qmax K
R

Kf n
R

(mg g−1) (mg g−1) (L mg g−1)

C Pb(II) 988.59 ± 49.52 1202.41 0.003207 0.9934 2.6726 1.6974 0.9880
Fe3O4+C Pb(II) 201.06 ± 12.01 317.60 0.001028 0.9897 54.480 2.4689 0.9669

CoFe2O4+C Pb(II) 106.09 ± 8.05 122.47 0.002911 0.9869 7.647 2.8496 0.9759
C Cd(II) 165.06 ± 6.60 272.77 0.002468 0.9971 4.7957 1.8078 0.9918

Fe3O4+C Cd(II) 120.79 ± 6.03 239.88 0.001550 0.9963 1.6506 1.5021 0.9938
CoFe2O4+C Cd(II) 115.02 ± 6.90 296.06 0.009360 0.9997 0.9266 1.3482 0.9997

In the case of magnetic carbons, adsorption capacities are lower than those achieved
by C. If the adsorption process on these materials were identical to that discussed above,
the decrease in adsorption capacity should be in the same order that the specific surface
area of the materials decreases due to the formation of the monolayer due to cation-π
interactions, but it is clear that this does not happen. While this process may exist for
Fe3O4+C and CoFe2O4+C materials, it is not the phenomenon that governs adsorption. Due
to this, it is proposed that there is a second mechanism, similar to what has been previously
reported [42–45].

In order to obtain more information on the adsorption mechanism, adsorption tests
were carried out in a pH range between 2 and 8. The effect of pH significantly affected
(p < 0.01) the adsorption of Pb(II) and Cd(II). The results obtained are shown in Figure 5.
For the C material, it is observed that the adsorption capacity increases slightly with
increasing pH; however, for basic pH ranges, the adsorption drops drastically. This effect
can be explained due to the pHpzc (8.02) of the material, which at a pH = 8.0 results in a
neutral charge on the surface of the material, decreasing the charge density in the π-system,
weakening the interaction with the cation in solution. On the other hand, a drastic increase
is observed for magnetic carbons when pH increases in the solution; this effect can be
explained similarly. Due to the impregnation of magnetite and cobalt ferrite, the pHpzc of
the original material was modified, decreasing to a value of 3.5; this modification allows
the materials to be useful in a wide pH range, since only when the pH of the solution is
less than 3.5, it restricts the adsorption of cations as a result of a repulsive force due to the
positive surface charge of the materials. An important detail to highlight is that for pH
values above 8 the cations begin to precipitate from the solution, so the optimal range for
the adsorption process can be defined between 3.5 and 8.
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CoFe2O4+C.

Consequently, the second adsorption mechanism present in magnetic carbons is
consistent with the presence of -FeOH groups and its interaction with the metal ions
in solution. It is very probable that the adsorption mechanism is associated with the
interaction of metal ions with deprotonated -FeOH groups (at pH > pHpzc), which would
provoke a negative charge on the surface of the materials attracting by electrostatic forces
the cations in solution. This mechanism is detailed in Figure 6.
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Figure 6. Adsorption and regeneration mechanism proposed for Cd(II) and Pb(II) onto magnetic carbons.

Although the C material has an extraordinary adsorption capacity in the first cycle, it
begins to decline drastically in the following cycles (p > 0.05), losing 81% of its capacity for
Pb(II) and 41% for Cd(II) in the fourth cycle. This effect can be attributed to the fact that
there are adsorption sites that are available in the first cycles, which cannot be regenerated
because they are inside the pores of the material, and due to the shape of the pore and size
of the adsorbed cations, an obstruction phenomenon preventing its desorption occurs.

When analyzing the adsorption-desorption cycles in magnetic carbons (Figure 7), it
is observed that the adsorption capacity does not decline in the same way after the first
cycle (p < 0.01). In the case of Pb(II) adsorption at the fourth cycle, the capacity of the
material drops by 58% for Fe3O4+C and 35% for CoFe2O4+C. This can be attributed to
the adsorption mechanism discussed above. In the first adsorption cycle, the cations are
adsorbed by two adsorption mechanisms: the interaction between -FeOH groups with
the cation (principally) and by a cation-π interaction; due to the second mechanism, in
the regeneration process, some cations are trapped in the texture of the material due to
the clogging phenomena already discussed. Because of this, the drastic decrease in the
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capacity of the materials in the second adsorption cycle occurs (51% for Fe3O4+C and 28%
for CoFe2O4+C). Once these sites are disabled for subsequent cycles, adsorption remains
unchanged because adsorption is now only governed by the interactions with -FeOH
groups. The regeneration of the adsorbent is possible through the incorporation of HNO3,
which exchanges a proton with the cation adsorbed in the material, putting it back to its
original state to be used in repeated adsorption-desorption cycles (Figure 6). A similar
effect is observed for Cd(II) adsorption studies. In this case, the reduction in C capacity in
the repeated cycles is clear. However, for magnetic carbons, it remains constant, showing
that from the first cycle the predominant adsorption phenomenon is cation exchange.
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Table 6 shows a comparison of the results obtained against studies recently published
in the literature in which magnetic carbons prepared from agro-industrial waste are used.
This highlights the materials prepared in this study, which have high adsorption capacities,
showing their effectiveness in repeated adsorption cycles. This condition demonstrates the
suitability of the materials for large-scale wastewater treatment processes, since the cost of
regeneration is low, and may even not be necessary in continuous cycles due to their high
adsorption capacities.

Table 6. Comparison of adsorption capacities of Pb(II) and Cd(II) on magnetic adsorbents at pH 6.

Precursor

qmax (mg g−1)

ReferencePb(II)
1st Cycle

Cd(II)
1st Cycle

Pb(II)
Last Cycle

Cd(II)
Last Cycle

Argan shells (Fe3O4+C) 389.5 269.0 161.6 252.0 Present study
Argan shells (CoFe2O4+C) 248.6 264.4 159.7 155.4 Present study

Oil-tea and camellia 225.0 — 211.0 — [46]
Fresh paulownia tree litter sludge 263.6 — — — [47]

Sludge 206.5 — 165.2 — [48]
Palm fiber — 197.96 — 161.6 [49]
Rice straw — 10.7 — — [50]
Palm fiber 188.18 — 150.5 — [51]

Cane 51.7 – – – [52]
Rice husk 367.6 — — — [53]

Agricultural wastes 229.9 [1]

4. Conclusions

Magnetic carbons were prepared from argan shells and supporting magnetite and
cobalt ferrite particles. The carbons impregnated with cobalt ferrite preserved the meso-
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porous texture of the support because the particles were mainly dispersed on the outermost
surface of the material. The opposite was found for magnetite particles, which were in-
troduced into the texture of the material. The adsorption of metals increased significantly
(p < 0.01) with the increment of the contact time. The equilibrium state was achieved after
240 min and the increment of the contact time did not affect (p > 0.05) the adsorption
capacity significantly. The adsorption of Pb(II) and Cd(II) increased significantly (p < 0.01)
with the increase of the initial concentration. The effect of pH in the adsorption process was
strongly affected (p < 0.01) because the predominant mechanism is due to the interaction
between the -FeOH groups with the cation in the solution. Finally, the adsorption capacity
of magnetic adsorbents does not decline significantly after the first cycle (p < 0.01). The
results obtained are superior to the studies previously reported in the literature, making
these materials a promising alternative for large-scale wastewater treatment processes
using batch type reactors with mechanical stirring.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14206134/s1. Figure S1: (a) Nitrogen isotherms at −196 ◦C, adsorption-open symbols;
desorption-closed symbols. (b) BJH pore size distribution obtained from N2 desorption isotherms.
Samples: � Fe3O4+C, and N CoFe2O4+C. Figure S2: TEM images. Samples: (a) Fe3O4+C, and (b)
CoFe2O4+C. Figure S3: TGA curves in air. Samples: � Fe3O4+C, and N CoFe2O4+C. Figure S4:
Zeta potentials of � Fe3O4+C, and N CoFe2O4+C as a function of pH. Table S1: Analysis of variance
(ANOVA). Factor: Contact time. Table S2: Analysis of variance (ANOVA). Factor: Initial concentration
of metal. Table S3: Analysis of variance (ANOVA). Factor: pH. Table S4: Analysis of variance
(ANOVA). Factor: reuse cycle.
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