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Abstract: Nanoporous dialysis membranes made of regenerated cellulose are used as molecular
weight cutoff standards in bioseparations. In this study, mesoporous standards with Stokes’ radii
(50 kDa/2.7 nm, 100 kDa/3.4 nm and 1000 kDa/7.3 nm) and overlapping skewed distributions were
characterized using AFM, with the specific aim of generating pore size classifiers for biomimetic mem-
branes using supervised learning. Gamma transformation was used prior to conducting discriminant
analysis in terms of the area under the receiver operating curve (AUC) and classification accuracy
(Acc). Monte Carlo simulations were run to generate datasets (n = 10) on which logistic regression was
conducted using a constant ratio of 80:20 (measurement:algorithm training), followed by algorithm
validation by WEKA. The proposed algorithm can classify the 1000 kDa vs. 100 kDa (AUC > 0.8)
correctly, but discrimination is weak for the 100 kDa vs. 50 kDa (AUC < 0.7), the latter being attributed
to the instrument accuracy errors below 5 nm. As indicated by the results of the cross-validation
study, a test size equivalent to 70% (AUCtapping = 0.8341 ± 0.0519, Acctapping = 76.8% ± 5.9%) and
80% (AUCfluid = 0.7614 ± 0.0314, Acctfluid = 76.2% ± 1.0%) of the training sets for the tapping and
fluid modes are needed for correct classification, resulting in predicted reduction of scan times.

Keywords: supervised learning; atomic force microscopy; regenerated cellulose

1. Introduction

Cellulose is the most abundant biopolymer, with the common formula (C6H10O5)n,
consisting of a linear chain of β-1,4-glycosidic bonds with varying degrees of polymer-
ization. Cellulose-based biomaterials are used in sustainability research [1,2], nanofiber
research [3,4] and tissue engineering [5–7], amongst other applications. Regenerated cellu-
lose (RC) membranes are hydrophilic, solvent resistant and non-woven, with multi-scale
pore sizes ranging from nm to µm. Across multiple reported porosities associated with
bioseparation applications, the nanoscale pore size is used in hemodialysis [8] and bio-
processing [9,10]. Using cryopycnometry, it was shown that cyclic drying and rewetting
generated a narrow skewed unimodal pore size pattern, with average pore sizes ranging
from 5 to 10 nm over a range of modulated crystallinities [11]. Using scanning electron
microscopy (SEM), it has been shown that RC membranes exhibited a homogenous macro-
and micro-porous structure on the surface, and the inner membrane ranged from 312 to
523 nm for the surface and from 187 to 320 nm for the cross-section [12]. RC membranes
characterized by a molecular weight cutoff (MWCO) of 20 kDa were used as standards for
measuring the pore sizes of cross-linked alginate membranes using atomic force microscopy
(AFM) [13].

Machine learning models that automatically generate descriptors that capture a com-
plex representation of a material’s morphology and structure have been developed for
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porous material characterization [14–17]. Specifically, a random forest-based machine learn-
ing model was generated based on AFM-based roughness characterization of crosslinked
nanocellulose films’ surfaces [18]. A major application of machine learning with AFM is for
the correction and cleaning of AFM data [19–21]. Force-distance (F-D) data can be obtained
from AFM scans, but indentation, baseline tilt, offset at contact point and other deviations
result in rough curves. Using support vector machines and decision trees, these issues
can be corrected for, resulting in smoother curves that are easier to analyze [1]. Similarly,
neural networks have demonstrated the ability to increase the resolution and clarity of
AFM images, allowing for easier analysis and presentation [20,21]. Algorithms have also
shown an ability to remove simulated artifacts from AFM images [22]. Some convolutional
neural networks are even capable of generating AFM images from scratch [21]. Using F-D
curves generated by an AFM and a neural network, researchers were able to distinguish
between glioblastoma and multiple myeloma cells from healthy cells [23]. Similarly, us-
ing AFM data and random forests, researchers could distinguish between cancerous and
noncancerous cells found in urine with 90% accuracy [24]. The other major application
of machine learning and AFM is for classification of the material being scanned by the
AFM [22–27].

As captured in Table 1, over the breadth of biological samples, a critical aspect of
the data used in these analyses is the resolution of the AFM. In cases where the image
processing software, instrument calibration and sample fabrication are ruled out as sources
of error, analysis of artifacts may be limited to spatial heterogeneity and probe aspect ratio.

Table 1. Materials characterized using AFM and machine learning.

Material Machine Learning
Method(s) Study

Zebrafish spinal cord Support vector machines
Decision trees Müller, et al. [19]

Glioblastoma and multiple myeloma cells Neural network Minelli, et al. [23]

Cells found in urine Random forests, extremely randomized forests, gradient
boosting trees Sokolov, et al. [24]

Ferritic electric materials and
electrochemical systems Support vector machines Huang, et al. [25]

Ionic liquid layers on top of graphite and
melem on boron nitride

Fast-Fourier Transform (FFT), primary component analysis
(PCA), cross-correlation (CC) and stationary wavelet

decomposition
Borodinov, et al. [26]

DNA fragments Linear regression Sundstrom, et al. [27]

Human leukemia cells
AFM images with simulated artifacts Support vector machines and linear discriminant analysis Mencattini, et al. [22]

Low-resolution AFM images Convolutional Neural Network (CNN) Liu, et al. [20]

Simulated AFM images Convolutional Neural Network (CNN) Oinonen [21]

The first step in biomimetic membrane design is theoretical flux calculations subject
to unquantified effects, namely biofouling, concentration polarization hydrophobic in-
teractions and electrostatic interactions. The second step is the choice of bio-fabrication
method and associated materials’ interaction, often resulting in non-ideal networks, uneven
shrinkage with sub-optimal pore sizes and surface pores instead of through pores, amongst
other post-processing artifacts. The last step is the choice of scanning probe microscopy
method resolution with regards to the sample’s intensive properties. Use of commercial
RC membranes circumvents the last two challenges. Thus, the research objectives of this
study are three-fold: (1) To establish a computational framework for generating pore size
classifications for RC-based dialysis membranes as a model system based on discriminant
analysis, as evaluated by the receiver operating characteristics curve (ROC), namely the
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area under the curve (AUC) and classification accuracy (Acc). (2) To assess the effect of
sample size reduction for a reduction of scan time on classification quality based on a
constant 80:20 training to test ratio, for the bootstrapped datasets evaluated using the
holdout sub-sampling technique [28]. (3) To detect instrument accuracy errors using the
above-mentioned supervised learning methodology. On the basis of this proposed al-
gorithm, pore size calibration using certified MWCO within the range of the theoretical
Stokes’ radii can be achieved. In further steps, images of synthesized membranes can be
superimposed to the calibration images for discriminant analysis, with a predicted pore
size range characterized by a given classification accuracy as output.

2. Results
2.1. Baseline Diffusion Measurements

Shown in Table 2 are the equilibrium absorbance differentials (A-A0) across MWCOs.
All values exceed zero, thus confirming the hypothesis of outward diffusion of the marker
from the membrane and the presence of through pores.

Table 2. Diffusion results evaluated by spectrophotometry.

Marker/Membrane MWCO (A-A0)

4 kDa/50 kDa 0.37

4 kDa/100 kDa 0.61

4 kDa/1000 kDa 1.13

2.2. Atomic Force Microscopy

The accuracy error for the calibration standard in tapping mode was 1.4 nm (refer
to Supplementary Figure S1). AFM imaging was performed on single ply dialysis tubing
either hydrated in saline prior to or submerged throughout imaging for the tapping and
fluid modes, respectively.

Shown in Figure 1a–d are representative 2D views with corresponding insets for
multiple scan areas, displaying skewness across all samples examined.

For the 1000 kDa, switching from tapping (Figure 1a) to fluid mode (Figure 1b) enabled
capture of additional data points due to membrane hydration and improved resolution in
order to focus into the deepest areas representing the smallest opening of the pores. For
the 100 kDa fluid mode, hydration capture was equally beneficial, however for the 50 kDa
sample, 4 µm2 scan areas produced blurry images (tapping mode images are not shown).
These results provide a benchmark for the instrument capabilities in an attempt to correlate
these findings with the classification analyses that follow.

Random sampling of pore radii across the single ply dialysis membrane resulted in
12 pores/section and 76 pores/section for the tapping and fluid modes. Combined results
of the examination of instrument drift, environmental changes and statistical analysis
of pore size measurements are presented in Table 3. As reflected in the absolute values
of the adjusted coefficient of determination

(
R2

adj

)
deviating from unity for the filtered

and unfiltered data, the effect of block variables, namely instrument drift due the spatial
distribution, is negligible. The hypothetical changes in environmental conditions comprised
of pore shrinkage as a result of evaporation for the tapping mode and continuous swelling
for the fluid mode can also be ruled out based on the non-statistically significant p-values
exceeding 0.05 for the Kruskal–Wallis test. The raw data for this analysis is presented in
Supplementary Figure S2A.

For both imaging modes, wide measurement ranges could account for skewed or
multimodal pore size distributions, as demonstrated in the frequency charts presented in
Supplementary Figure S2B. Relative errors of accuracy increase with decreasing pore sizes,
indicative of a lower limit of detection resolution. Notably, for the fluid mode, the average
size of the 50 kDa membrane (11.1 nm) is larger than the 100 kDa membrane (8.1 nm). For
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the 1000 kDa sample characterized by the lowest relative accuracy measurement errors,
the average size captured is 62% higher for the fluid than the one for the tapping mode.
Although numerical results could show that the triangular cantilever geometry used in this
study is preferable for AFM measurements in fluid due to lower drag forces [29], resonance
challenges in fluid mode enhanced by the possible effect of sample tip contamination
remain a source of bias between the two imaging modes.
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Figure 1. AFM images of RC membranes from top to bottom: (a) 1000 kDa in tapping mode scan
area 6 µm2, 2 µm2 section magnified, (b) 1000 kDa in fluid mode, scan area 8 µm2, 2 µm2 section
magnified, (c) 100 kDa in fluid mode scan area 8 µm2, 2 µm2 section magnified, and (d) 50 kDa in
fluid mode scan area 8 µm2, 4 µm2 section magnified. Scale bar represents 1 µm.
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Table 3. Pore size measurements and associated errors of measurement accuracy.

Statistic Mode n 1000 kDa 100 kDa 50 kDa

Theoretical Stokes’ radius (nm) N/A N/A 7.3 3.4 2.7

Average (nm) Tapping 60 9.45 7.34 5.65

Measured range (nm) Tapping 60 23 41 19

% relative error of accuracy Tapping 60 29.4 116 109

absolute error of accuracy (nm) Tapping 60 2 4 3

R2
adj Fourier fit raw data Tapping 60 0.430 0.091 0.200

R2
adj Fourier fit filtered data Tapping N/A 0.290 0.212 0.380

Kruskal–Wallis test p-value Tapping 60 0.5384 0.9569 0.924

Average (nm) Fluid 304 15.3 8.34 11.1

Measured range (nm) Fluid 304 138 44 72

% relative error of accuracy Fluid 304 110 145 312

absolute error of accuracy (nm) Fluid 304 8 5 8

R2
adj Fourier fit raw data Fluid 304 0.057 0.036 0.02

R2
adj Fourier fit filtered data Fluid N/A 0.398 0.371 0.450

Kruskal–Wallis test p-value Fluid 304 0.1534 0.681 0.681

2.3. Classifier Model Development
2.3.1. Normality Assessment and Hypothesis Testing for Inter-MWCO Discrimination

As presented in Table 4, all datasets failed the normality test according to the Jarque
and Bera metric (JB) as the parameter value exceeds the critical value at the significance level
of 0.05. Hence, no statistical significance test was conducted using parametric methods.

Table 4. Summary of normality assessment conducted on raw datasets.

RC Type Gaussian
Moments Tapping (n = 60) JB * Normality

Assessment Fluid (n = 304) JB ** Normality
Assessment

50 kDa Skewness 2.069 113 Fail 2.307 733 Fail
Kurtosis 8.201 9.048

100 kDa Skewness 2.599 371 Fail 2.833 1545 Fail
Kurtosis 9.338 12.482

1000 kDa Skewness 2.314 117 Fail 4.776 17,919 Fail
Kurtosis 8.017 39.379

* JBcritical = 5.1; ** JBcritical = 5.7.

Results of the subsequent Kruskal–Wallis test summarized in Table 5 indicate that
the AFM cannot resolve the difference between the 50 kDa vs. 100 kDa membranes for
either imaging mode, as reflected by the p-values (p > 0.05). However, there is clear
discrimination between 50 kDa vs. 1000 kDa (2.7 vs. 7.3 nm) and 100 kDa vs. 1000 kDa
(3.4 nm vs. 7.3 nm), as well as the corresponding theoretical Stokes’ radii (p < 0.05).

In the following sections, logistic regression will be conducted post non-parametric
analysis for predictive modeling of pore size and the associated goal of scan reduction time.
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Table 5. Hypothesis testing results for the Kruskal–Wallis test at the 95% confidence interval.

Mode Comparison p-Value

Tapping 100 vs. 1000 kDa 0.000
Tapping 50 vs. 1000 kDa 0.000
Tapping 50 vs. 100 kDa 0.275

Fluid 100 vs. 1000 kDa 0.000
Fluid 50 vs. 1000 kDa 0.000
Fluid 50 vs. 100 kDa 0.083

2.3.2. Algorithm Validation

Shown in Table 6 is a comparison of AUCs by membrane/imaging mode pair based
on logistic regression parameters, as well as corresponding WEKA outputs for the Gamma-
transformed datasets (refer to Supplementary Figure S2C). There is agreement between the
results of the proposed methodology and the open-source software for all six combinations
examined. The maximum calculated error of accuracy is 8% for 50 kDa vs. 100 kDa in
tapping mode below the 10% threshold of rejection. Due the convergence of the results,
the proposed algorithm has been validated against WEKA. For the 100 kDa vs. 1000 kDa
combination, an acceptable AUC was obtained for both imaging modes. For the 50 kDa vs.
1000 kDa combination, discrimination was stronger for the tapping vs. fluid mode. As for
the 50 kDa vs. 100 kDa discrimination, it is not possible using either imaging mode.

Table 6. Comparison of algorithm-generated AUCs and WEKA outputs by imaging mode for a split
ratio of 80:20 (training: test).

Mode Comparison Weka AUC (80%) Algorithm AUC (80%)

Tapping 100 vs. 1000 kDa 0.931 0.852 ± 0.0335
Tapping 50 vs. 1000 kDa 0.785 0.722 ± 0.0424
Tapping 50 vs. 100 kDa 0.590 0.604 ± 0.0437

Fluid 100 vs. 1000 kDa 0.753 0.762 ± 0.0104
Fluid 50 vs. 1000 kDa 0.663 0.661 ± 0.0184
Fluid 50 vs. 100 kDa 0.576 0.579 ± 0.0172

In conjunction with increasing measurement accuracy errors associated with smaller
pore sizes previously elaborated upon based on the data presented in Table 3, cross-
validation will be confined to 100 kDa vs. 1000 kDa comparisons.

2.3.3. Cross-Validation and Minimum Sample Size Determination

The AUC for the datasets as well as the logistic distribution parameters obtained at
the optimal Youden indices for the datasets at 100% sampling and optimal sample testing
percentage, denoted by the subscript “opt”, are presented in Table 7.

Table 7. Comparison of classifier strength at 70% for tapping mode and 80% for fluid mode.

Method Comparison AUC at 100% AUCopt
Youden at

100% Youdenopt β0opt β1opt

Tapping 100 vs. 1000 kDa 0.8521 ± 0.0335 0.8341 ± 0.0519 0.442 ± 0.0496 0.463 ± 0.0582 −4.1233 ± 0.9533 0.5998 ± 0.1316
Fluid 100 vs. 1000 kDa 0.7622 ± 0.0104 0.7614 ± 0.0314 0.287 ± 0.0209 0.294 ± 0.0438 −1.7784 ± 0.2600 0.1561 ± 0.0256

The effect of testing data size on AUC and accuracy is presented in Figure 2a,b. For
both imaging modes, the standard deviation of AUC decreases with increased bootstrapped
data size. Based on the optimization criteria applied to the average AUC, a test size equiva-
lent to 70% and 80% of the training sets for the tapping and fluid modes are recommended,
respectively. Retrofitting these percentages to our experimental results in terms of sample
size, the test to training ratios are 34:8 and 243:61.



Materials 2021, 14, 6724 7 of 16

Materials 2021, 14, x FOR PEER REVIEW  7  of  16 
 

 

Method  Comparison  AUC at 100%  AUCopt    Youden at 100%  Youdenopt    β0opt    β1opt   

Tapping 100 vs. 1000 kDa  0.8521 ± 0.0335  0.8341 ± 0.0519  0.442 ± 0.0496  0.463 ± 0.0582  −4.1233 ± 0.9533  0.5998 ± 0.1316 

Fluid  100 vs. 1000 kDa  0.7622 ± 0.0104  0.7614 ± 0.0314  0.287 ± 0.0209  0.294 ± 0.0438  −1.7784 ± 0.2600  0.1561 ± 0.0256 

The effect of testing data size on AUC and accuracy is presented in Figure 2a,b. For 

both  imaging modes,  the  standard  deviation  of AUC  decreases with  increased  boot‐

strapped data size. Based on the optimization criteria applied to the average AUC, a test 

size equivalent to 70% and 80% of the training sets for the tapping and fluid modes are 

recommended, respectively. Retrofitting these percentages to our experimental results in 

terms of sample size, the test to training ratios are 34:8 and 243:61. 

 

 

Figure 2. Cross‐validation results for the 100 vs. 1000 kDa combinations in tapping and fluid modes 

in terms of the AUC ((a) top) and classification accuracy ((b) bottom). 

Furthermore,  the standard deviations are an order of magnitude smaller  than  the 

average value (AUCtapping = 0.8341 ± 0.0519 and AUCfluid = 0.7614 ± 0.0314) for the 10 ran‐

domly generated datasets, suggesting the absence of overfitting. Corresponding accura‐

cies are 76.8% ± 5.9% and 76.2% ± 1.0%, respectively. 

Under  these recommended settings, assuming a strong  linear correlation between 

test size and scan time, the predicted AFM usage time is reduced by 30% and 20% for the 

tapping and fluid modes accordingly. 

Figure 2. Cross-validation results for the 100 vs. 1000 kDa combinations in tapping and fluid modes
in terms of the AUC ((a) top) and classification accuracy ((b) bottom).

Furthermore, the standard deviations are an order of magnitude smaller than the
average value (AUCtapping = 0.8341 ± 0.0519 and AUCfluid = 0.7614 ± 0.0314) for the
10 randomly generated datasets, suggesting the absence of overfitting. Corresponding
accuracies are 76.8% ± 5.9% and 76.2% ± 1.0%, respectively.

Under these recommended settings, assuming a strong linear correlation between
test size and scan time, the predicted AFM usage time is reduced by 30% and 20% for the
tapping and fluid modes accordingly.

ROC curves resulting from 10 bootstrapped datasets generated using the optimal
parameters in Table 7 as well the ones for the other comparisons for the same optimal
settings (70% for tapping and 80% for fluid) are presented in Figure 3a–e. Under this
reduced sampling plan, visual inspection of the curves further confirms that discriminant
analysis should be confined to the 1000 kDa vs. 100 kDa.
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(a,c) are presented in Table 7.

ROC curves for the raw datasets are presented in Supplementary Figure S3.

3. Discussion

Given the multifactorial aspect of the study encompassing environmental factors, tip
contamination, instrument capabilities and non-gaussian data, the following assumptions
will be made based on the results before delving into the contribution of each factor.

The pore size of the RC membrane has been assumed to be the Stokes’ radius (rp)
calculated based on the MW of the manufacturer. Since the measurements have been
conducted by the same individual, the magnitude of the reproducibility errors has been
assumed to be negligible. As for instrument errors, periodic stage drifts have been ruled
out due to poor adjusted coefficients of determination (R2

adj << 1) of Fourier fits applied to
the raw datasets (Supplementary Figure S2A). The null hypotheses of chronological and
spatial environmental shifts, specifically membrane drying for tapping and continuous
membrane swelling, have been accepted for all membrane/marker combinations based on
the results of the Kruskal–Wallis test (p > 0.05).

Across expanding scanning probe characterization studies of cellulose nanomaterials
using silicon nitride tips, encompassing contact resonance spectroscopy, chemical force
spectroscopy (CFS) and atomic force microscope-based infrared spectroscopy (AFM-IR),
tip contamination has been reported [30–33]. Root causes of contamination can be nar-
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rowed down to silicon residue from the PDMS storage container [34], surface adhesion of
functionalized tips [30] and wear. Regarding the latter, associated root causes are chipping
of metal-coated tips in Nano-IR [31,32] and tip contamination due to sample wear [33]. In
the current study, precautions were taken to change the tip before each scan in order to
minimize sample wear residue, however the tips were not cleaned prior to usage. Possible
sources of contamination are silicon oil residue and dialysis membrane wear, resulting
in decreased resolution for both imaging modes. For the tapping mode, the interaction
volume between the probe and the surface is made larger by the contamination layer,
while for the fluid mode, the balance of hydrodynamic forces may be disturbed by micelle
formation or random residue deposits.

In the absence of statistically significant spatial and temporal shifts throughout the scan
(Supplementary Figure S2A) along the use of non-functionalized and uncoated tips, it has
been assumed that the unquantified effect of contamination is a source of systematic error.

Cellulose-based hydrogels are susceptible to swelling [35], with a reported swelling
ratio (SR) ranging from 50% to 3000% for regenerated cellulose [36,37]. A range of
SR = 50–200% has been adapted to calculate the theoretical pore radius in order to in-
terpret the departures from the manufactured values. The objective is to find an initial
swelling ratio range based on a common direction of change for all three standards for mea-
surement error minimization, assuming that the swelling rate is the same at all MWCOs.
Shown in Figure 4 are the absolute errors of measurement accuracy adjusted to swelling
ratios (SR) calculated based on the theoretical Stokes’ radii. Between the ratios of 50–100%,
accuracy errors are decreasing in the same direction for all RC membranes. Specifically,
for the 1000 and 100 kDa membranes, the error is within ±1.5 nm for SR = 75–100%, in
contrast to the 50 kDa membrane with approximately double the error range (6–7 nm).
For the latter, accuracy is inversely proportional to the swelling ratio, and an optimum
of 3 nm is reached at SR = 200%. At this maximal projected swollen state, the 1000 kDa
measurement error is maximal, contradicting how the measured relative errors of accuracy
increase with decreasing pore sizes for the fluid mode. Thus, initial hydrogel swelling
state cannot account for the poor instrument resolution between the 100 and 50 kDa RC
membranes.
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Figure 4. Absolute measurement accuracy error as a function of the hypothetical swelling ratio.

A critical aspect of the data used in these analyses is the spatial resolution of the AFM,
in this study estimated to be ±1.5 nm using the calibration step in tapping mode (refer
to Supplementary Figure S1). Uncertainties in these measurements can have a significant
impact on the discriminant analysis, especially when the smallest features are considered.
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In this study, the smallest error of accuracy of 2 nm is within the uncertainty range of the
calibration step measured in tapping mode for the 1000 kDa RC membrane. Results of
another study conducted in tapping mode on the same membrane feature—extracted at
0.25 µm2 instead of 1 µm2—resulted in pore diameters ranging from 13 to 18 nm with no
specified sample size, as compared to a range of 5–28 nm [38]. Theoretically, a decrease in
scan area allows the ability to zoom into the deepest areas of the image, which represents
the smallest opening of the pores assuming that the resolution of the scanner is adequate.

In order to determine the lateral resolution of an AFM, Moiseev et al. calculated the
contribution to the van der Waals forces for various tip radii and tip-to-sample distances
under ambient conditions. They found that for a tip radius of curvature of 5 nm, lateral
resolution could approach 2 nm if the tip was held very close (0.5 nm) to the surface [39].
A more detailed analysis by Gan concludes that even larger working distances can be
impractical due to attractive forces pulling the tip to the surface. The main conclusion
regarding lateral resolution is that the theoretical limit is strongly determined by the tip
geometry [40]. Furthermore, given the instrument- and environment-dependent nature
of AFM measurements, it is perhaps more fruitful to consider resolution results from
experimental studies for tips with a radius of curvature of 10 nm, typical of the NanoWorld
PNP-TR tips utilized in this work [13,41], for which the best lateral resolution ranged
between about 3 and 5 nm. The most accurate result has been obtained for an RC membrane
with a MWCO of 20 kDa (rp = 2.02 nm). Using the tapping mode, an average pore diameter
of 4.9 nm was measured corresponding to an accuracy error of 143%, consistent with the
obtained results for Stokes’ radii below 5 nm, as presented in Table 3 [13]. In another study,
a direct resolution comparison was performed experimentally with double-wall carbon
nanotubes (DWNTs) and a conventional 8 nm radius of curvature Si tips. The results
indicated lateral resolutions of 5–6 nm for the DWNTs and 32–35 nm with the Si tips [42].
These results further support that the observations of the AFM instrument used in this
work could not reliably resolve features below 5 nm. AFM imaging in fluids using tapping
mode is subject to resonance challenges. In water, the relatively low Q-factor (20–30) of
the cantilever results in a degradation of spatial resolution [43]. A method for overcoming
this challenge is frequency modulated AFM (FM-AFM) conducted in fluid and tapping
modes [44]. Tip treatments can also improve the interaction of the tip with the sample, and
atomic resolution is possible. Comparisons between untreated and treated tips show a
dramatic resolution enhancement, with untreated tips producing lower quality images [42].

In this study, a sample size imbalance occurred between the two imaging modes,
where 60 points vs. 304 points were sampled for the tapping and fluid modes, respectively.
The lower sample size for the former was to prevent sample shrinkage at lower scan rates,
while the higher sample sizes were designed to increase the power of the test, the latter
being susceptible to resonance challenges [43]. Nevertheless, each dataset contained a
minimum of 30 samples, maximizing the chances of the Central Limit Theorem to hold in
the absence of skew.

Regardless of the fabrication and characterization method, the pore size distribution
of RC membranes has been reported to be skewed, in agreement with the results of this
study [10,19,37]. As shown in Table 8, there is agreement between AUCs generated from
the raw datasets (refer to Supplementary Figure S3) and the those obtained from proposed
logistic regression models at 100% sampling, except for the combination F2. In future
studies with enhanced instrumentation capability, outlier analysis will be conducted to
further examine the extent of the inherent sample skewness incorporated into algorithm
development.
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Table 8. Comparison of classifier agreement between raw datasets and the proposed algorithm.

Combination Comparison Raw Data
AUC

Algorithm
AUC (100%) Agreement

T1 100 kDa vs. 1000 kDa 0.894 0.8521 ± 0.0335 Yes
T2 50 kDa vs. 1000 kDa 0.749 0.7216 ± 0.0425 Yes
T3 50 kDa vs. 100 kDa 0.620 0.6035 ± 0.04366 Yes
F1 100 kDa vs. 1000 kDa 0.794 0.7622 ± 0.0104 Yes
F2 50 kDa vs. 1000 kDa 0.708 0.6613 ± 0.0184 No
F3 50 kDa vs. 100 kDa 0.541 0.5821 ± 0.0385 Yes

4. Materials and Methods
4.1. Materials

Spectrum™ Labs Regenerated Cellulose (RC) dialysis membranes with molecular
weight cutoffs (MWCO)s of 50 kDa (08-700-128), 100 kDa (08-700-132) and 1000 kDa (08-
801-255) were purchased from Fisher Scientific (Waltham, MA, USA). The tri-angular Pyrex-
Nitride AFM probes (PNP-TR-20) were purchased from NanoWorld (Neuchâtel, Switzer-
land). The AFM Calibration block (TGZ1) characterized by a step height of 20 ± 1.5 nm
was purchased from Ted Pella Inc. (Redding, CA, USA). Fluorescein isothiocyanate dextran
MW markers, 4 kDa (FD), as well reagent grade salts were purchased from Sigma Aldrich
(Saint Louis, MO, USA).

4.2. Methods
4.2.1. Baseline Diffusion Measurements

Baseline diffusion measurements were carried out to ensure porosity of the synthetic
membranes prior to AFM measurements. Calibration stock solutions of 5 mg/mL for each
FITC-Dextran MW standard (4 kDa or Stokes’ radii of 1.4 nm) dissolved in 0.9% (w/v)
NaCl were prepared. In dilute solutions, there is a linear relationship between absorbance
and the concentration of the marker under observation, thus diffusion measurements were
carried out at this nominal concentration. Dialysis tubing of various MW cutoffs were filled
with 2 mL of MW marker solutions and subsequently incubated and stirred at 120 rpm in
a 10 mL beaker filled with 0.9% (w/v) NaCl. The supernatant absorbance was measured
prior to (A0) and post-mixing at 350 nm using a Genesis 10 S UV-Vis spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The absorbance value at 8 h (A) was taken
to be the equilibrium value.

The molecular weight cutoff (MWCO) of the membrane expressed in terms of Stokes’
radius (rp) was given by Equation (1) [45]. This equation assumes that the solute of
molecular weight (MW) is a sphere with a density (ρ = 1 g·cm−3) equal to that of the solute
in solid phase.

rp =

(
3Mw

4ρπNA

)1/3
(1)

4.2.2. Atomic Force Microscopy

Imaging was performed via a 3100 Dimension atomic force microscopy machine
(DAFM-XYZ, Bruker Instruments, Billerica, MA, USA). The atomic force microscopy (AFM)
scan was conducted in tapping and fluid modes using a Pyrex-Nitride probe (PNP-TR-20,
NanoWorld, Neuchâtel, Switzerland) with a triangular cantilever (resonant frequency
17 kHz, force constant 0.08 N/m, thickness 500 nm, length 200 µm, tip radius 7–10 nm).
A total of 6 tips were used, corresponding to the respective MW marker/imaging mode
outlined in Table 6. Nanoscope v6.13 (Bruker Instruments, Billerica, MA, USA) and
Gwyddion v2.3 (Czech Metrology Institute, Brno, Czechoslovakia) were used as image
analysis software, respectively.

Scan speed was established by setting a ratio of 512 pixels/line for a range of frequency
of 0.1–0.2 Hz. The scan area ranged from 1 to 8.0 µm2. The pore sizes were feature-extracted
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at a constant scan area of 1 µm2. Images were obtained at 5 different locations for the
tapping and 4 different locations for the fluid modes respectively, across the sample.

The dialysis tubing, stored in sodium azide to avoid biofouling, was cut in order
to produce a 1 cm2 single ply sheath. For the tapping mode, samples were washed and
allowed to equilibrate in filtered saline (0.9% w/v NaCl) for 30 min. For the fluid mode, the
sample remained submerged in the saline throughout the scan.

4.2.3. Detection of Instrument and Environmental Drifts

Feature-extracted pore size measurements were fitted to Fourier transforms by using
the nonlinear least-squares formulation of Matlab2020a with and without robust weighing
options. The resultant output in terms of the adjusted coefficient of determination (R2

adj)
was used to detect periodicity in data caused by hypothetical instrument drifts during
imaging for the sections under observation.

Changes in environmental conditions by sample scan location were assessed by the
non-parametric Kruskal–Wallis test, equivalent to a one-way analysis of variance (ANOVA)
for non-normally distributed data using the Matlab2020a kruskalwallis function at the 95%
confidence interval (CI) [46].

4.2.4. Classifier Model Development
Normality Assessment and Hypothesis Testing for Inter MWCO Discrimination

Normality was quantitatively assessed using the Jarque-Bera test [47] combining the
central distribution moments given by Equation (2):

JB = n

((√
b1
)2

6
+

(b2 − 3)2

24

)
(2)

where b1 and b2 are the sample skewness and sample excess kurtosis, n is the sample
size and JB is the Jarque-Bera metric, respectively. The JB test statistic is approximately
Chi-squared (χ2)-distributed, under the assumption that the null hypothesis is true. It is
equal to zero when the distribution has zero skewness and kurtosis is 3.

Hypothesis testing using parametric and non-parametric methods was carried out to
assess whether the RC membranes may be distinguished based on mean/median values
at the 95% CI. If the data were normally distributed, hypothesis testing was used, using a
two-sample t-test with the Matlab2020a ttest2 function. Homoscedasticity was conducted
using the Levene test (Matlab2020a vartestn) function prior to conducting the two-way
comparisons at the 95% CI to compare the mean pore size distributions [46]. If the data
were not normally distributed, the Kruskal–Wallis test was used at the 95% CI.

Data Transformation

Pending negative normality, the data were fitted to the Gamma distribution using the
Matlab2020a gamfit function, in order to address the skewness of the raw data. Random
variable X has a Gamma distribution if its probability distribution function is given by
Equation (3), where a and b (a > 0 and b > 0) are respectively the shape parameter and scale
parameter [46]:

f (x) =
1

baΓ(a)
xa−1e−

x
b , x ≥ 0 (3)

Logistic Regression and Receiver Operating Characteristic Curves

Following distribution parameter determination for the Gamma distribution, a Monte
Carlo simulation was used to generate 10 datasets for each membrane type/imaging mode
pair. Logistic regression (Equation (4)) was conducted on the datasets using a constant
80% of the data for training and 20% for testing, for the randomly generated datasets. The
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binomial link function is provided between the probability, p, and the covariate, x, for a
binomially distributed variable:

logit(pi) = log
pi

1− pi
= β0 + β1xi, i = 1, . . . , k,

k

∑
i=1

ni = n (4)

ROC curves were generated using the logistic link function. Discrimination strength in
terms of the area under the curve (AUC) was evaluated qualitatively using the categorical
scale presented in Table 9.

Table 9. Categorical scale for AUC.

Strength AUC

high 0.8–1

medium 0.7–0.8

low <0.7

A validation step was conducted by comparing the output of the software WEKA
(Waikato Environment for Knowledge Analysis, University of Waikato, New Zealand) in
terms of relative error of AUCs with an acceptable limit of 10% and below.

Cross-Validation and Optimal Testing Sample Size Determination

Following algorithm validation, the size of the bootstrapped training set was sub-
sequently varied from 10% to 100% according to the sample hold-out method in order
to assess the effect of sample size reduction on AUC. The two-fold optimization criteria
for the size are a minimal rate of change for the average value and an AUC > 0.7 after
subtracting the standard deviation from the mean value.

The logistic regression parameters evaluated at the optimal Youden’s index (Yi) and
the corresponding classification accuracy values are reported. The Youden’s index was
calculated using Equation (5), where (Sei) and (Spi) are the sensitivity and specificity at
each cutoff, respectively [46]:

Yi = max
(

Sei + Spi − 1√
2

)
(5)

Classification accuracy (Acc), given by Equation (6), is defined as the rate of correct
classification, where (TP) and (TN) are the true positives and true negatives respectively,
and (N) is total number of classified samples.

Acc =

(
TP + TN

N

)
(6)

5. Conclusions

Using supervised learning, the specific aims of pore size classification and reduction
of scanning time by predictive modeling have been met. Use of RC membrane standards
enabled detection of instrument accuracy errors associated with the AFM spatial resolution,
thus enhancing the classification quality. Higher measurement accuracies are achieved
in tapping mode. Resonance challenges created by pure hydrodynamic forces need to
be decoupled from those added from sample tip contamination in order to quantify the
bias between the average pore sizes reported for each method. Results of non-parametric
analyses and logistic regression models coupled to projected hydrogel swelling analysis
point to a loss of instrument resolution below 5 nm. With a hypothesized strong correlation
of test size to scan time, in the future, researchers may shorten the experiment time for the
fluid and tapping modes accordingly, and dedicate the saved time to replication. Future
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efforts will explore the use of FM-AFM capabilities, tip treatment and a dew point controller
in order to improve the lower limit of detection, followed by the subsequent validation
using the proposed classifier algorithms. Of particular interest is to establish a framework
for the predictive analysis of pore sizes obtained using scanning probe microscopy from
biomimetic anisotropic materials [48,49]. Under enhanced capture methods for improving
spatial resolution, parallel supervised learning techniques namely support vector machines
will be run in parallel and cross-validated to compare the extent of overfitting as well as
examining the nature of the outliers contributing to non-Gaussian data [28].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14216724/s1, Figure S1: AFM scan corresponding to the calibration block. The step
height for the calibration standard was measured to be 21.4 ± 1.5 nm and a period (pitch) of
3 ± 0.01 µm. Figure S2A: Raw data for AFM pore size captured (T1–T3 tapping mode; F1–F3 fluid
mode) chronologically across the examined sections (5 sections for tapping mode, 4 sections for fluid
mode), showing random spikes across all 3 examined RC membranes. The data were subjected to
the Fourier analysis for the detection of periodic instrument and environmental drifts ruled out
due to poor adjusted coefficients of determination (R2

adj << 1). Results are summarized in Table 3.
Figure S2B: Pore size frequency distribution (T4–T6 tapping mode; F4–F6 fluid mode) indicative of
lack of normality. Figure S2C: Raw datasets fitted to Gamma distributions (Figure S2, T7 tapping
mode; Figure S2, F7 fluid mode). Figure S3: Receiver operating curves applied to the raw datasets.
Top and bottom rows correspond to tapping and fluid modes, respectively: (a,d) 100 kDa vs. 1000 kDa
in tapping and fluid modes, (b,e) 50 kDa vs. 1000 kDa in tapping and fluid modes, (c,f) 50 kDa vs.
100 kDa in tapping and fluid modes. Corresponding AUCs are presented in Table 8.
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