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Abstract: With the widespread use of lithium-ion batteries, the cumulative amount of used lithium-
ion batteries is also increasing year by year. Since waste lithium-ion batteries contain a large amount of
valuable metals, the recovery of valuable metals has become one of the current research hotspots. The
research uses electrometallurgical technology, and the main methods used are cyclic voltammetry,
square wave voltammetry, chronoamperometry and open circuit potential. The electrochemical
reduction behavior of Ni3+ in NaCl-CaCl2 molten salt was studied, and the electrochemical reduction
behavior was further verified by using a Mo cavity electrode. It is determined that the reduction
process of Ni3+ in LiNiO2 is mainly divided into two steps: LiNiO2 → NiO → Ni. Through the
analysis of electrolysis products under different conditions, when the current value of LiNiO2 is not
less than 0.03 A, the electrolysis product after 10 h is metallic Ni. When the current reaches 0.07 A, the
current efficiency is 77.9%, while the Li+ in LiNiO2 is enriched in NaCl-CaCl2 molten salt. The method
realizes the separation and extraction of the valuable metal Ni in the waste lithium-ion battery.

Keywords: used lithium-ion batteries; recycling nickel; electrochemical reduction; constant cur-
rent electrolysis

1. Introduction

China’s primary metal resources are gradually diminishing [1,2]. The recovery of
valuable metals in waste lithium-ion batteries has major significance for the comprehensive
utilization of waste resources [3,4].

Previous studies mainly adopted hydrometallurgical technology [5–11], which real-
ized the recovery and utilization of Ni and other valuable metals through leaching, roasting
and other processes. Although the method has a higher metal recovery and lower energy
consumption, the entire process requires excessive acid-base solution and produces too
much waste. Based on wet technology, the biological leaching method [12,13] has prob-
lems such as a long cycle and harsh microbial culture conditions. At present, molten salt
electrolysis technology continues to develop, mainly through electro-chemical methods to
control the reduction process to prepare metals or alloys.

Chen et al. [14–18] used CaCl2 melt to directly reduce TiO2, NiO, TiO, ZrO, Tb4O7,
Fe2O3, etc., using a solid oxide or a mixture of two solid oxides as raw materials. The
corresponding Ti metal, Cr metal, TiNi alloy, TiZr alloy and TbFe2 alloy were prepared,
and the solid Cr2O3 electrolysis process was optimized in CaCl2 and NaCl-CaCl2 molten
salt [19]. The feasibility of the melt’s electrolysis process in the preparation of metals or
alloys has been confirmed in the above studies. For the extraction of valuable metals from
waste lithium ions, Yin Huayi et al. [20] used Na2CO3-K2CO3 molten salt to successfully
prepare Li and Co through the electrolysis of LiCoO2. Compared with hydrometallurgy,
the molten salt electrolysis process does not use a strong acid solution, so it will not
produce too much waste. At the same time, compared with large-scale and large-emission
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pyrometallurgy, molten salt electrolysis does not use reducing agents, so the cost is lower,
the exhaust gas emissions are small, and it is environmentally friendly [20,21].

The NaCl-CaCl2 molten salt was selected to study the electrolysis behavior of LiNiO2.
Using electrochemical testing methods of cyclic voltammetry, square wave voltammetry,
chronoamperometry and open circuit potential, the reduction mechanism of LiNiO2 in the
electrolysis process was analyzed, and metal Ni was successfully prepared by constant
current electrolysis. The products at different stages in the reduction process were analyzed
and the optimal reduction conditions were determined. The recycling process is simple,
easy to operate, high in efficiency and does not introduce other impurities, and provides a
new idea for the recycling of precious metals in waste lithium ion batteries.

2. Experimental Method

The electrochemical test was carried out using a three-electrode system. The platinum
wire placed in the alumina tube (Φ = 4 mm) was used as the reference electrode, the
Mo cavity hole electrode (2 mm × 1 mm × 30 mm) was used as the working electrode
and the high-purity graphite sheet (99.99%, 20 mm × 5 mm × 100 mm) as the auxiliary
electrode. First, the pure salt (NaCl, CaCl2) was placed in a DZF-6020 vacuum drying
oven (Boxun, Shanghai, China), dried at a constant temperature of 220 ◦C for 600 min and
weighed 150 g with a molar ratio of nNaCl:nCaCl2 = 1:1; it was then crushed and mixed
evenly, and put into the corundum crucible. Then, the mixed salt was put in a vacuum
drying oven and removed after drying at 250 ◦C for 12 h. The dried mixed salt was placed
in a resistance heating furnace (Yunjie, Baotou, China) heated at 5 ◦C/min to 750 ◦C, then
kept at a constant temperature for 120 min, and argon gas was passed through the entire
process for protection. Next, the electrodes were inserted into the molten salt to test the
electrochemical behavior of the Mo working electrode and the Mo cavity electrode. Then,
2 g of the LiNiO2 and Mo cavity electrode filled with LiNiO2 were respectively added to the
melts, kept at a constant temperature for 240 min, and the three-electrode electrochemical
test was performed again.

The electrolysis experiment was carried out with a two-electrode system. The 0.7 g
sintered LiNiO2 flakes (about 15 mm in diameter and about 1 mm in thickness) were
tightly wrapped with stainless steel mesh, and then fixed on a stainless steel rod as a
cathode. High-purity graphite flakes (99.99%, 20 mm × 5 mm × 100 mm) were fixed on
another stainless steel rod as an auxiliary electrode. The two electrodes were placed in the
NaCl-CaCl2 molten salt at 750 ◦C; the electrolysis current range was 0.01–0.15 A and the
electrolysis time was 0–10 h. After the electrolysis, the product was quenched and cleaned,
and the sample was tested after drying.

The electrochemical test used Chenhua CHI660E (Chenhua, Shanghai, China) elec-
trochemical workstation, and the Noran7X-ray diffractometer (Rigaku, Tokyo, Japan) was
used to analyze the product.

3. Experimental Results and Discussion

3.1. The Electrochemical Behavior of Ni3+ on Mo Electrode
3.1.1. Cyclic Voltammetry

Figure 1 shows the cyclic voltammetry test results of NaCl-CaCl2 molten salt and
NaCl-CaCl2-LiNiO2 molten salt when the scanning speed is 0.25 V/s. The dotted line in
the figure is the cyclic voltammetry curve of NaCl-CaCl2 molten salt. It can be seen that
there are only the reduction peaks of Ca2+ and Na+ and the oxidation peaks of Ca and
Na, indicating that the NaCl-CaCl2 molten salt system is between −1.68 V and 0.37 V. No
oxidation–reduction reaction occurs, and this range can be used as the scanning range after
adding LiNiO2 to the NaCl-CaCl2 molten salt.
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Figure 1. Cyclic voltammogram of Mo electrode before and after adding LiNiO2 to NaCl-CaCl2 mol-

ten salt (scanning speed: 0.25 V/s, T = 750 °C, reference electrode: Pt electrode). 
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Figure 1. Cyclic voltammogram of Mo electrode before and after adding LiNiO2 to NaCl-CaCl2
molten salt (scanning speed: 0.25 V/s, T = 750 ◦C, reference electrode: Pt electrode).

The theoretical decomposition voltages of NaCl and CaCl2 at 1023 K are calculated
from the data obtained from HSC Chemistry6.0 thermodynamic calculation software
(Outokumpu, Finland). The theoretical decomposition voltages are −3.238 V and −3.325 V,
respectively. Since the theoretical decomposition voltage difference between the two is
relatively small, peak D and peak D′ are the overlapping reduction peak and oxidation
peak of Na and Ca, respectively. Since Na is volatile, the peak D′ is smaller than the
reduced peak D. Since CaCl2 also has a certain degree of water absorption in molten salt,
the formation of CaO causes the peak F to be relatively gentle. The formation of the peak
F′ is mainly due to the oxidation of the elemental Ca [22]. Peak E′ corresponds to the
oxidation of Cl−. The generation of Cl2 changes the ion concentration around the molten
salt and increases the reduction rate. The increase in the reduction rate increases the current
to form peak E. The cyclic voltammetry curve shown by the solid line in the figure has
multiple peaks, indicating that the electrochemical process of Ni3+ on the Mo electrode is a
multi-step reduction process.

Konishi et al. [23] studied the process of preparing Fe-Dy alloy thin films by the
molten salt electrochemical method. In this process, iron and dysprosium can form alloys.
It can be seen from the electrochemical cyclic voltammetry curve that the reduction peak
potential during the reaction is more positive than the deposition potential of dysprosium
metal, so this peak is considered as an alloy peak. Kubota et al. [24] studied the formation
mechanism of Co-Gd alloy films by regulating the electrochemical reaction process of
molten salt. Since cobalt and gadolinium can form an alloy, it is judged that the peak
corresponding to the reduction current in the cyclic voltammetry curve is the alloy peak.
The objects of this study, Ni and Mo, will also form an alloy. When using a Mo electrode,
there are three reduction peaks in the cyclic voltammetry curve of Ni. The peak potential
of peak A is more positive than the deposition potential of Ni3+. It is judged that peak A
is an alloy peak based on literature; there is no electron transfer and metal ion reduction
in the process. Therefore, the reduction process of Ni3+ when using a Mo electrode is a
two-step reduction.

The cyclic voltammetry curve results of the Mo electrode measured at different sweep
speeds in the NaCl-CaCl2-LiNiO2 system at 750 ◦C are shown in Figure 2. Under certain
sweep speed conditions, when the potential reverse scanning process reaches the first
chemical reaction reduction potential, the current gradually increases with the change in
the potential. With the continuous negative shift of the scanning potential, Ni3+ is gradually
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enriched at the cathode. In this process, the charge transfer speed is slow, which causes the
current to not continue to increase, and finally forms the limiting current.
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Figure 2. Cyclic voltammogram on Mo electrode in NaCl-CaCl2-LiNiO2 system (Scan speed:
0.3–0.5 V/s, T = 750 ◦C, reference electrode: Pt electrode).

As the electrochemical reaction progresses, the reduction products at the cathode
diffuse into the molten salt slowly, occupying the reduction sites at the cathode. The
lower concentration of reactive ions reduces the number of charge transfers and reduces
the current, eventually forming peak C. The electrolysis process is mainly controlled by
diffusion. When the reduction potential of the second chemical reaction is reached, the
reduction process changes from the charge transfer process to the diffusion process, and
peak B is formed. During the forward sweep of the potential, the Ni elemental substance
is re-oxidized to form the peak B′. It can be seen from Figure 2 that the peak potentials
Epc and Epa of peaks B and B′ are affected by the scanning speed v. The increase in the
scanning speed makes the electrochemical reaction speed faster, promotes the rapid transfer
of electric charge and increases the limiting current.

The Ni2+ in the molten salt is transported to the surface of the cathode through
liquid phase mass transfer, and electrons are obtained between the two-phase interface of
the cathode and the molten salt and, finally, metallic Ni is formed on the surface of the
cathode. In the above process, the formation speed of metal Ni is faster, and the speed of
mass transfer and electron transfer is slow, which leads to the phenomenon of electrode
polarization. This phenomenon causes the electrode potential to move in a direction
deviating from the equilibrium potential, which is manifested in that the peak potential
of peak B moves in the negative direction, and the peak potential of peak B′ moves in the
positive direction. According to the characteristics of the cyclic voltammetry curve of peak
B, it is judged that peak B corresponds to a quasi-reversible reaction. The peak current
of peak C increases with the increase in the scanning speed, there is no corresponding
oxidation peak and the electrode reaction is judged to be an irreversible reaction.

In order to judge the control steps of the electrochemical reaction process, the ipc-v1/2

and Epc-v1/2 curves of peak C and peak B are drawn according to Figure 2, as shown in
Figure 3. The current density value ipc of peak C has a linear relationship with the square
root of the scan rate v1/2, and this process is mainly controlled by diffusion transfer. The
current density value ipc and peak potential of peak B are linearly related to the square root
of the scan rate v1/2, and the process is jointly controlled by diffusion and electron transfer.
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3.1.2. Square Wave Voltammetry

In order to study the electrochemical reduction behavior of Ni3+ in the NaCl-CaCl2-
LiNiO2 molten salt system, the square wave voltammetry with higher resolution and
sensitivity was used to measure at different frequencies. This method can effectively
suppress the capacitive background current that often occurs in cyclic voltammetry at
relatively high scanning speeds. The selected test temperature is 750 ◦C, and the frequency
is 10–30 Hz. The curve is shown in Figure 4.
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T = 750 ◦C, reference electrode: Pt electrode, area = 0.08046 cm2).

There are three peaks A, C and B in the square wave voltammetry curve, and peak A
is the alloy peak. The presence of peaks B and C indicates that Ni3+ forms a Ni elementary
substance through a two-step electrochemical reduction process, which is consistent with
the results of the cyclic voltammetry test.

In the square wave volt–ampere curve, the relationship between the half-width W1/2
and the number of transferred electrons n is expressed by Formula (1).

W1/2 = 3.52× RT
nF

(1)
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In the formula: R—molar gas constant (8.3145 J/mol/K), T—temperature (K), n—electron
transfer number, F—Faraday’s constant (96,485 C/mol).

Generally speaking, this method is only effective for reversible reactions, and the
reversibility can be judged by the linear relationship between the square root of frequency
and the peak current density. Draw the relationship between the peak current density and
the square root of frequency according to the square wave volt-ampere data in Figure 4,
as shown in Figure 5. It can be seen from the figure that for peak B, ipc, Epc and f 1/2 are
linear, but for peak C, Epc and f 1/2 are not linear. At the same time, it is judged that the
electrochemical reduction process corresponding to this peak is irreversible, so the number
of transferred electrons can be calculated for peak B by Formula (1).
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Figure 5. Curves of reduced peaks ipc-f 1/2 and Epc-f 1/2 (a) peak C (b) peak B.

Peak B was fitted according to the square wave voltammetry, as shown in Figure 6.
The half-width of peak B is W1/2 = 0.15, and the number of electrons transferred from peak
B is n = 2.06, calculated from Formula (1), which is about equal to n = 2, and the number of
electrons transferred from peak C is judged to be 1. Therefore, the reaction of Ni3+ on the
Mo electrode is shown in Equations (2) and (3):

Peak A: Ni3+ + e− = Ni2+ (2)

Peak B: Ni2+ + e− = Ni (3)
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It can be seen from the above analysis that the electrochemical reduction process of
Ni3+ on the Mo electrode is divided into two steps, which is consistent with the results of
the cyclic voltammetry curve test.

3.1.3. Chronoamperometry

Figure 7 shows the I-t curve of the Mo electrode in the molten salt system of NaCl-
CaCl2-LiNiO2 at 750 ◦C under different potential tests. Due to the electric double layer
charging behavior between the electrode and the electrolyte, the initial current value in
the figure is relatively large. Under different potential conditions, the initial current is
proportional to the potential.
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Figure 7. Cyclic voltammetry curve of Mo electrode in NaCl-CaCl2-LiNiO2 molten salt system
(scanning speed: −0.6–−1.0 V/s, T = 750 ◦C, reference electrode: Pt electrode).

In the potential range of −0.6–−0.7 V, no obvious potential transition occurs. The
current step A at −0.8 V indicates that Ni3+ has electrochemical reduction behavior in the
potential range of −0.7–−0.8 V, corresponding to the reduction step of Ni3+ → Ni2+. With
the change in potential, the current step B at −1.0 V indicates that Ni2+ has electrochemical
reduction behavior in the range of −0.9–−1.0 V, corresponding to the reduction step of
Ni2+ → Ni.

3.1.4. Open Circuit Chronopotentiometry

In order to further study the electrochemical reduction behavior of Ni3+ on the Mo
electrode in the NaCl-CaCl2-LiNiO2 molten salt system, the open-circuit chronopotentiom-
etry was used for determination. This method records the potential difference between
the working electrode and the reference electrode after the electrode is charged for a short
period of time, and the result is shown in Figure 8.
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Figure 8. Open circuit chronopotential curve of Mo electrode in NaCl-CaCl2-LiNiO2 molten salt
system (a) Slope graph at different times (T = 750 ◦C, reference electrode: Pt electrode).

According to the chronocurrent curve shown in Figure 7, the potential corresponding
to the two-step oxidation process of nickel can be roughly judged. In the chronopotential
curve shown in Figure 8, the plateau corresponding to −0.9 V is more obvious. For differ-
entiation, consider part of the data in the figure. The result is shown in Figure 8a. When
t = 16.5, the slope is the smallest, indicating that the curve has reached the smoothest stage,
and the corresponding potential is −0.76 V. This process is consistent with the appearance
mechanism of peak A in the cyclic voltammetry curve. The plateau near −0.90 V exists
for a short time, indicating that as the potential increases negatively, the reduction rate
increases, and the Ni2+ concentration in the molten salt decreases with the rapid progress
of the reaction. This process is consistent with the appearance mechanism of peak B in
the cyclic voltammetry curve. According to the above analysis, in the NaCl-CaCl2-LiNiO2
molten salt system, the electrochemical reduction process of Ni2+ on the Mo electrode is
Ni3+ → Ni2+ → Ni.

3.2. The Electrochemical Behavior of LiNO2 in the Solid Electrode on the Mo Cavity Electrode
Cyclic Voltammetry

At a scanning speed of 0.2 V/s, a cyclic voltammetry test was carried out on the
Mo cavity electrode filled with or without LiNiO2 in the NaCl-CaCl2 molten salt system,
and the results are shown in Figure 9. In the NaCl-CaCl2 molten salt system, there is no
oxidation–reduction reaction in the 1.69–0.57 V potential range, which can be used as the
potential scanning range of the Mo cavity electrode filled with LiNiO2. There are three
peaks, A, B and C, in the curve, shown by the solid line. From the previous analysis,
it is known that peak C is the alloy peak formed by Ni and Mo, so there is a two-step
electrochemical reduction process for Ni3+ on the Mo electrode.
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Figure 9. Cyclic voltammetry diagram of Mo cavity electrode filled with or without LiNiO2 in
NaCl-CaCl2 molten salt (scanning speed: 0.2 V/s, T = 750 ◦C, reference electrode: Pt electrode).

At 750 ◦C, cyclic voltammetry was performed on the Mo cavity electrode filled with
LiNiO2 at different sweep speeds in the NaCl-CaCl2 molten salt system. The results are
shown in Figure 10.
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Figure 10. CV diagram of Mo-hole electrode in NaCl-CaCl2 molten salt system after filling LiNiO2

(scanning speed: 0.07–0.25 V/s, T = 750 ◦C, reference electrode: Pt electrode).

LiNiO2 belongs to an ionic lattice structure, and the ions on each node in the powder
crystal vibrate around their respective equilibrium positions. At 750 ◦C, as the applied
potential increases, the ion vibration that obtains energy increases. When the potential
reaches a certain condition, O2− obtains the activation energy required for displacement,
overcomes the binding of surrounding ions, and diffuses to the anode through the molten
salt [25]. The exposed Ni3+ maintains the equilibrium of the valence state through an
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electrochemical reduction reaction. When the reduction potential of Ni3+→Ni2+ is reached,
the current increases with the increase of the potential, and the process is mainly controlled
by the interface charge transfer step. With the negative shift in the scanning potential,
O2− continuously ionizes from LiNiO2 and concentrates near the cathode interface. When
the applied potential reaches the peak potential, the concentration of the reactant on the
surface of the cathode is maximized to form a concentration polarization phenomenon,
which causes the peak potential to shift. The diffusion process cannot be maintained
in a stable state so that the electro-chemical reduction rate is not equal to the diffusion
rate of O2−, the thickness of the diffusion layer increases and the concentration gradient
decreases. Therefore, the diffusion current gradually decreases, and finally peak A is
formed. When the next reduction potential is reached, the formation of the reduction peak
B still complies with the above theoretical analysis. When scanning in the forward direction,
the Ni elemental substance formed during the reduction process is oxidized again, and each
reduction process corresponds to peak A′ and peak B′ in Figure 10. Under faster scanning
speed, the electro-chemical reduction time is shorter, and O2− ionized from the LiNiO2
matrix accumulates at the cathode interface, forming a thinner transient diffusion layer
and a larger concentration gradient. The above phenomenon leads to an increase in current
and polarization. Under slower sweep conditions, the long electrochemical reduction
time allows O2− to fully transport at the electrode/molten salt interface to form a thicker
transient diffusion layer and a smaller concentration gradient. The above electrochemical
behavior leads to the reduction in the oxidation peak and the reduction peak.

In addition, with the increase in the scan rate, the peak potentials of peaks A and
B continue to move in the negative direction, and there is no obvious oxidation peak
corresponding to peak A in the figure. This phenomenon shows that the reduction is
gradually turning in an irreversible direction. According to the above analysis, it is judged
that peak A corresponds to an irreversible reduction process, and peak B corresponds to a
quasi-reversible reduction process.

The curves of logv-Epc and logv-Epa of peak B are plotted respectively according to
Figure 10, as shown in Figure 11. The binary primary equations of diffusion coefficient
and the number of transferred electrons are listed according to the slope, and the deduced
Equations (4) and (5) combined with the primary binary equations are used to calculate the
number of transferred electrons at peak B.

Epa = E◦ (RT/αnF) ln(RTk◦/αnF) + (RT/αnF) lnv (4)

Epc = E◦ (RT/αnF) ln(RTk◦/(1 − α)nF) + (RT/(1 − α)nF) lnv (5)
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According to Figure 11, the linear equation of Epc and logv can be obtained as Equation
(6), and the linear equation of Epa and logv is Equation (7).

y = −1.2424x - 1.11372 (6)

y = 0.12379x - 0.21614 (7)

In the formula: R—molar gas constant (8.3145 J/mol/K), T—temperature (K), n—electron
transfer number, F—Faraday’s constant (96,485 C/mol).

The solution shows that n = 1.8, which is approximately equal to 2. Therefore, the
number of electrons transferred in the electrochemical reduction reaction corresponding to
peak B should be 2. In summary, Ni3+ reduction is divided into two steps, namely Ni3+

+ e− = Ni2+, Ni2+ + 2e− = Ni. The ipc-Epc-v1/2 curves of peaks A and B were respectively
drawn according to Figure 10, as shown in Figure 12. It can be seen from the figure that
the ipc and v1/2 of the two have a linear relationship. It can be judged that the reduction in
Ni3+ to Ni2+ is controlled by the electron transfer step, and the reduction in Ni2+ to Ni is
controlled by the electron transfer step and the diffusion process.
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3.3. Preparation of Nickel by Electrolysis of LiNiO2 with Molten Salt Constant Current

Constant current electrolysis is used to study the reduction process of Ni, and its
intermediate products, combined with the reaction process, the interface diffusion and
transfer of Ni3+ reduction, are analyzed, and the reduction mechanism of Ni electrolysis is
explored. The electrolysis mechanism diagram is shown in Figure 13. I have confirmed.
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Under the condition of 750 ◦C and 10 h of electric deoxidation time, this study selects
different currents to recover and prepare metallic nickel. The products of 10 h deoxygena-
tion at different currents are shown in Figure 14a. Under the conditions of 0.01 A and 10 h,
Ni and NiO were mainly formed on the surface of the product. Although Ni and NiO also
existed inside the product, there was more NiO than the surface. The above phenomenon
shows that under this current condition, the electrochemical reaction continuously extends
from the outside to the inside along the three-phase interface (3 PIs), and this behavior
causes part of the NiO inside the product to fail to continue to be reduced.
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In addition, the presence of NiO also proves again that there is a two-step electro-
chemical reduction behavior of Ni3+ in LiNiO2. When the current is greater than or equal
to 0.03 A, the products after 10 h are all Ni elemental. It can be seen that under the same
deoxygenation time condition, a larger current can promote the reduction reaction, so that
NiO can continue to be reduced to a Ni elementary substance. It can be seen that under the
same deoxygenation time condition, a larger current can promote the reduction reaction,
so that NiO can continue to be reduced to a Ni elementary substance. It can be seen from
Figure 14b that different currents cause differences in the degree of electron accumulation at
the electrodes, resulting in different starting positions of the curve. In addition, comparing
the time range corresponding to each reaction platform on the three curves in the figure, the
first platform in the U-t curve measured under the condition of 0.07 A current corresponds
to about 4 h, while the second platform corresponds to the duration of “shorter”. The above
phenomenon shows that in the first electrochemical reduction process, more NiO and a
small amount of Ni element are mainly formed. Therefore, in the second reduction process,
the Ni elementary substance is formed faster. The current condition of 0.15 A promotes
the progress of electrochemical reduction, so that the reduction reaction is concentrated in
the second step of the reaction process. Under the condition of 0.13 A, the whole reaction
process is relatively stable, and there is a good transition time. Under the conditions of an
electrolysis time of 10 h and currents of 0.07 A, 0.13 A and 0.15 A, this study calculates
the actual charge and the theoretical charge according to Equations (8) and (9), and finally
calculates the current efficiency of the three, as shown in the Table 1 shown.

Q = It (8)

Q = nzF (9)
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Table 1. 10 h electrolysis efficiency at 750 ◦C at 0.07–0.15 A.

Electrolysis Conditions LiNiO2/g Current Efficiency/%

0.07 A, 10 h 0.665 77.9
0.13 A, 10 h 0.670 42.2
0.15 A, 10 h 0.668 36.5

In the formula, n is the amount of substance in the product under theoretical condi-
tions, z is the number of transferred electrons, t is time (s), and F is Faraday’s constant
(96,485 C/mol).

It can be seen from the table that as the current increases, the current efficiency
decreases. This situation is because the increase in current causes the actual charge to
increase, while the theoretical charge has a relatively small change, which eventually leads
to a gradual decrease in current efficiency. At 0.13 A and 750 ◦C, 0.7 g lithium nickelate
was subjected to constant current deoxygenation studies for 0.5 h, 4 h and 6 h, respectively.
Further study on the influence of time on the electrochemical reduction process through
product analysis is needed. The result is shown in Figure 15.
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The U-t curve is shown in Figure 15a. In the reduction process of Ni3+, different
reduction stages correspond to different potential platforms. According to the XRD pattern
of the 0.5 h product shown in Figure 15b, it can be seen that the inside of the particles is
mainly Ni and NiO, and most of the intermediate products Li0.28Ni0.72O, which is only
caused by the slow extension of the three-phase interface during the reduction process.
At this time, the black product inside the product is NiO and Li0.28Ni0.72O, and the steel
gray product appears at the three-phase interface, which is metallic Ni. As the reaction
progresses, O2− continuously ionizes from the LiNiO2 matrix and concentrates near the
cathode. At the same time, the produced Ni element adheres to the surface of the substrate
as a conductor and further hinders the ionization of O2− and the transfer of electrons. The
above phenomena cause electrons to accumulate in the electric double layer, and eventually
lead to a negative increase in potential. When the second step reduction potential is reached,
a second platform corresponding to 4 h is formed in the figure. Combined with the XRD
test results, it can be seen that the surface of the 4 h product is mainly Ni, and the internal
components are mainly Ni and NiO. The black substance inside the product gradually
decreases, indicating that, as time goes by, O2− in Li0.28Ni0.72O is continuously removed
and, finally, NiO is formed. This phenomenon also further confirms that Ni3+ conducts
electricity from the outside to the inside of the electrode surface along the three-phase
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interface. When the time was increased to 6 h, the NiO inside the product was completely
deoxidized, and Ni2+ was reduced to elemental Ni. As time continues to extend, there
are no other oxidation–reduction reactions in the molten salt, and the potential ultimately
remains in a relatively stable state. The atomic structure diagram is shown in Figure 16.
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Figure 17 is the SEM, EDS and surface scan detection spectrum of the 10 h electrolysis
product under different multiple conditions. It can be seen that the metallic nickel has a
honeycomb skeleton structure, and its content reaches 96.39%. The electrolytic metallic
nickel is silver-white with metallic luster and magnetic.
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XPS detection was performed on the electrolysis products after 4 h and 10 h, and the
results are shown in Figures 18 and 19, respectively. It can be seen from the XPS spectrum
that elemental nickel appears in the product of electrolysis at 4 h. As the electrolysis time
increases, more Ni2+ is reduced to elemental Ni, and the peaks corresponding to elemental
Ni in the XPS spectrum increase. Compared with the XPS spectrum after 4 h of electrolysis,
the 2p peak of Ni after 10 h of electrolysis is weaker and wider, while the 2p peak of part of
Ni2+ is strengthened. This phenomenon is caused by the increase in oxides on the surface
of the sample [26].
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3.4. The Behavior of Lithium under Constant Current Conditions

LiNiO2 belongs to the trigonal crystal system. The oxygen atoms at position 6c are
closely packed in cubic form to form a crystal framework, which occupy positions 3a and
3b, respectively. Li atoms and Ni atoms are located in alternate octahedral positions in
the framework, with obvious layered structure, and the space group is R/3m. Due to the
special electronic arrangement of Ni2+, part of Ni2+ existing in LiNiO2 will occupy the
position of Ni3+. In order to maintain charge balance and the similar atomic radii of Ni2+

and Li+, the position of Li+ will also be occupied by Ni2+, and at the same time, during the
electrolysis process, Ni2+ will transform to Ni3+ with a smaller radius, causing the structure
to change, and the position of Li+ will further lose the ability to insert lithium [27,28]. In
addition, under the layered structure, van der Waals force and ionic bonds are used to
maintain the interlayer and the inner layer, respectively. Because the van der Waals force
is weak, the Li+ in the layer is required to maintain the stability of the structure through
electrostatic action. However, there is a big difference between the Li+(1s2) energy level
and the O2− energy level, while the Ni3+(3d7) and O2−(2p6) energy levels are relatively
similar, which makes the electron cloud overlap between Li-O more than that between
Ni–O. If it was smaller, the Li-O bond energy would eventually be weaker. Therefore, the
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Li–O bond will be preferentially broken during the electrolysis process, and Li+ will escape
from the Ni-O layer [29].

In order to further study the electrochemical behavior of Li+ in molten salt or Li+ in
cathode reduction particles, thermodynamic calculations of related reactions are carried
out. Equation (10) shows that the Gibbs free energy of the reaction is negative. Therefore,
the reduction in Li+ will proceed with more difficulty. During the electrochemical scanning
process, the redox peak of Li did not appear, which is consistent with the analysis of the
cyclic voltammogram.

4Li + O2 = 2Li2O ∆GΘ = −923.712 kJ/mol (10)

In this study, 0.7 g of LiNiO2 powder was made into the cathode and smooth graphite
flakes were used as the anode, and they were put into NaCl-CaCl2 molten salt and elec-
trolyzed at 750 ◦C with a constant current of 0.18 A for 10 h. After the electrolysis, XRD
analysis was performed on the molten salt and the product near the cathode, and the
result is shown in Figure 20. It can be seen from Figure 20 that the product is elemental Ni
after electrolysis for 10 h under the condition of 0.18 A current. After electrolysis, there is
LiCl in the XRD of the molten salt near the cathode. The above phenomenon shows that
Li+ in LiNiO2 finally enters the molten salt. The constant cell voltage electrolysis in the
two-electrode system further supports the conclusions obtained by cyclic voltammetry,
square wave voltammetry, open circuit potential and chronoamperometry.
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Figure 20. (a) XRD pattern of the product after 10 h of 0.18 A constant current electrolysis (b) XRD 
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Figure 20. (a) XRD pattern of the product after 10 h of 0.18 A constant current electrolysis (b) XRD
pattern of molten salt near cathode after electrolysis (T = 750 ◦C) (c) XRD analysis of LiNiO2 in
molten salt.

4. Conclusions

The electrochemical reduction behavior of LiNiO2 in NaCl-CaCl2 molten salt (molar
ratio: 1:1) and on the Mo cavity electrode was investigated by cyclic voltammetry, square
wave voltammetry, chronoamperometry and open-circuit potential at 750 ◦C. Through the
method of constant current electrolysis, the process of preparing metal nickel by reduction
of lithium nickelate was analyzed, and the following conclusions drawn:

(1) The electrochemical reduction process of Ni3+ in the two research systems is an
irreversible–quasi-reversible reaction process, and the electro-chemical reduction
process is divided into two steps. There are alloy peaks formed by Ni and Mo in the
cyclic voltammetry curves of the two systems.

(2) Under 10 h, 0.01–0.15 A current conditions, the material reduction process is LiNiO2
→ NiO→ Ni. When the current is 0.01 A, the product is elemental Ni and a small
amount of NiO. When the current is not less than 0.03 A, the product is mainly metallic
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Ni. In the whole process, under the conditions of 0.07 A and 10 h of electrolysis, the
highest current efficiency is 77.9%.

(3) At 0.13 A and 0.5 h after electrolysis, the intermediate product Li0.28Ni0.72O, produced
in a short time, is chemically dissolved in the molten salt, and finally deoxidized to
produce NiO. After the electrolysis time was extended to 6 h, the product was metallic
Ni. The presence of LiCl in the molten salt near the cathode after electrolysis indicates
that Li+ has not been reduced during the entire reaction, but entered the molten salt
in the form of ions.

Author Contributions: Conceptualization, H.L., J.L., C.L.; methodology, H.Y., Y.F., Z.C.; validation,
C.L., H.Y., J.W.; investigation, H.L., J.L., J.W.; resources, Z.C., Y.F. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 51774143).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, Z.Q.; Zhuang, X.N.; Song, X.L.; Li, F.; Li, Y.S.; Gu, W.H.; Bai, J.F. Research progress on recovery of the cathode material from

spent lithium-ion batteries by pyrometallurgy. Environ. Eng. 2021, 39, 115–122, 146. [CrossRef]
2. Hao, T.; Zhang, Y.J.; Dong, P.; Liang, F.; Duan, J.G.; Meng, Q.; Xu, B. Review on recycling cathode materials of spent ternary

power lithium-ion batteries. Bull. Chin. Ceram. Soc. 2018, 37, 2451–2456. [CrossRef]
3. Linda, G. The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustain. Mater. Technol. 2014, 1–2,

2–7. [CrossRef]
4. Chen, X.P.; Ma, H.R.; Luo, C.B.; Zhou, T. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries

using mild phosphoric acid. J. Hazard. Mater. 2017, 326, 77–86. [CrossRef]
5. Cou, H.P.; Pei, Z.Y.; Zhou, G.Z.; Liu, C.; Lv, D.; Chen, X.G.; Yu, Y.; Li, M.C. Study on recycle of the spent ternary Li-ion battery by

pyrometallurgical process. China Nonferr. Metal. 2019, 8, 79–83. [CrossRef]
6. Guo, M.M.; Xi, X.L.; Zhang, Y.H.; Yu, S.W.; Long, X.L.; Jiang, Z.K.; Nie, Z.R.; Xu, K.H. Recovering valuable metals from waste

ternary cathode materials of power battery by combined high temperature hydrogen reduction and hydrometallurgy. Chin. J.
Nonferr. Met. 2020, 30, 1415–1426.

7. Hu, J.T.; Zhang, J.L.; Li, H.X.; Chen, Y.Q.; Wang, C.G. A promising approach for the recovery of high value-added metals from
spent lithium-ion batteries. J. Power Sources 2017, 351, 192–199. [CrossRef]

8. Lupi, C.; Pasquali, M. Electrolytic nickel recovery from lithium-ion batteries. Miner. Eng. 2003, 16, 537–542. [CrossRef]
9. Sun, M.C.; Ye, H.; Chen, W.J.; Li, H.Y.; Xiao, J. Study on Recovering Valuable Metals from Spent Lithium-ion Batteries. Nonferr.

Metal. Extr. Metal. 2019, 3, 68–72.
10. Li, X.Y. Research on Key Technologies of Partial Porous Externally Pressurized Gas Bearing; Harbin Institute of Technology: Harbin,

China, 2019.
11. Wang, X.F.; Kong, X.H.; Zhao, Z.Y. Recovery of noble metal in lithium ion battery. Battery. Bimon. 2001, 1, 14–15. [CrossRef]
12. Li, L.; Fan, E.; Guan, Y.; Zhang, X.; Chen, R. Sustainable recovery of cathode materials from spent lithium-ion batteries using

lactic acid leaching system. ACS Sustain. Chem. Eng. 2017, 5, 5224–5233. [CrossRef]
13. Zhang, H.J.; Cheng, J.H.; Zhu, C.; Yang, J.; Gu, M. Recovery of Copper, Cobalt and Nickel from Spent Lithium Ion Batteries by a

Combined Process of Acid Leaching and Bioleaching. Hydrometall. China 2019, 38, 22–27. [CrossRef]
14. Chen, G.Z.; Fray, D.J.; Farthing, T.W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride.

Cheminform 2010, 32, 361–364. [CrossRef]
15. Zhu, Y.; Meng, M.A.; Wang, D. Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the

TiNi alloy. Chin. Sci. Bull. 2006, 51, 2535–2540. [CrossRef]
16. Qiu, G.; Wang, D.; Meng, M.; Jin, X.; Chen, G.Z. Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2.

J. Electroanal. Chem. 2006, 589, 139–147. [CrossRef]
17. Peng, J.; Chen, H.; Jin, X.; Wang, T.; Wang, D.; Chen, G.Z. Phase-Tunable Fabrication of Consolidated (α+β)-TiZr Alloys for

Biomedical Applications through Molten Salt Electrolysis of Solid Oxides. Chem. Mater. 2009, 21, 5187–5195. [CrossRef]
18. Chen, G.Z.; Gordo, E.; Fray, D.J. Direct electrolytic preparation of chromium powder. Metall. Mater. Trans. B 2004, 35, 223–233.

[CrossRef]

http://doi.org/10.13205/j.hjgc.202104018
http://doi.org/10.16552/j.cnki.issn1001-1625.2018.08.017
http://doi.org/10.1016/j.susmat.2014.10.001
http://doi.org/10.1016/j.jhazmat.2016.12.021
http://doi.org/10.19612/j.cnki.cn11-5066/tf.2019.05.018
http://doi.org/10.1016/j.jpowsour.2017.03.093
http://doi.org/10.1016/S0892-6875(03)00080-3
http://doi.org/10.3969/j.issn.1001-1579.2001.01.006
http://doi.org/10.1021/acssuschemeng.7b00571
http://doi.org/10.13355/j.cnki.sfyj.2019.01.005
http://doi.org/10.1038/35030069
http://doi.org/10.1007/s11434-006-2105-1
http://doi.org/10.1016/j.jelechem.2006.02.002
http://doi.org/10.1021/cm902073g
http://doi.org/10.1007/s11663-004-0024-6


Materials 2021, 14, 6875 18 of 18

19. Gordo, E.; Chen, G.Z.; Fray, D.J. Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in
molten chloride salts. Electrochim. Acta 2004, 49, 2195–2208. [CrossRef]

20. Zhang, B.; Xie, H.; Lu, B.; Chen, X.; Xing, P.; Qu, J.; Song, Q.; Yin, H. A Green Electrochemical Process to Recover Co and Li from
Spent LiCoO2-Based Batteries in Molten Salts. ACS Sustain. Chem. Eng. 2019, 7, 13391–13399. [CrossRef]

21. Chen, G.Z.; Fray, D.J. Understanding the electro-reduction of metal oxides in molten salts. In Proceedings of the Symposium of
Recent Advances in Non-Ferrous Metals Processing, 2004 TMS Annual Meeting, Charlotte, NC, USA, 14–18 March 2004.

22. Li, N.; Peng, Y.; Chen, Z.; Xiong, W.; Li, S. Preparation of Mg-Zr Alloys through Direct Electro-deoxidation of MgO-ZrO2 in
CaCl2-NaCl Molten Salt. Electrochim. Acta 2021, 372, 137816. [CrossRef]

23. Konishi, H.; Nohira, T.; Ito, Y. Formation of Dy–Fe alloy films by molten salt electrochemical process. Electrochim. Acta 2002, 47,
3533–3539. [CrossRef]

24. Kubota, T.; Iida, T.; Nohira, T.; Ito, Y. Formation and phase control of Co-Gd alloy films by molten salt electrochemical process.
J. Alloys Compd. 2004, 379, 256–261. [CrossRef]

25. Ding, X. Study of the Mechanism on Formation of Calcium Ferrite in the Fe2O3-CaO-SiO2 System; University of Science and Technology
Beijing: Beijing, China, 2015.

26. Xu, Z.Y. Study on Grain Orientation and Low Frequency Electromagnetic Properties of FeSiAl Alloy Absorbents. Bachelor’s
Thesis, Wuhan University of Technology, Wuhan, China, 2019.

27. Pi, Q.L. Study on Surface Coating Modification of Layered Cathodes Materials LiNixCo1−xO2 for Li-ion Batteries. Master’s
Thesis, Harbin Engineering University, Harbin, China, 2009.

28. Liang, L.; Li, Q.; Qiao, Q.D.; Li, P. Research progress on LiNiO2 cathode material for Li-ion batteries. Inorg. Chem. Ind. 2007, 39,
9–11. [CrossRef]

29. Zhang, N.; Tang, Z.Y.; Huang, Q.H.; Han, B. The Synthesis and Modification of Cathode Material LiNiO2. Chemistry 2005,
068(010), 799.

http://doi.org/10.1016/j.electacta.2003.12.045
http://doi.org/10.1021/acssuschemeng.9b02657
http://doi.org/10.1016/j.electacta.2021.137816
http://doi.org/10.1016/S0013-4686(02)00323-7
http://doi.org/10.1016/j.jallcom.2004.02.041
http://doi.org/10.3969/j.issn.1006-4990.2007.09.003

	Introduction 
	Experimental Method 
	Experimental Results and Discussion 
	The Electrochemical Behavior of Ni3+ on Mo Electrode 
	Cyclic Voltammetry 
	Square Wave Voltammetry 
	Chronoamperometry 
	Open Circuit Chronopotentiometry 

	The Electrochemical Behavior of LiNO2 in the Solid Electrode on the Mo Cavity Electrode 
	Preparation of Nickel by Electrolysis of LiNiO2 with Molten Salt Constant Current 
	The Behavior of Lithium under Constant Current Conditions 

	Conclusions 
	References

