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Abstract

:

The enormous use of cutting fluid in machining leads to an increase in machining costs, along with different health hazards. Cutting fluid can be used efficiently using the MQL (minimum quantity lubrication) method, which aids in improving the machining performance. This paper contains multiple responses, namely, force, surface roughness, and temperature, so there arises a need for a multicriteria optimization technique. Therefore, in this paper, multiobjective optimization based on ratio analysis (MOORA), VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), and technique for order of preference by similarity to ideal solution (TOPSIS) are used to solve different multiobjective problems, and response surface methodology is also used for optimization and to validate the results obtained by multicriterion decision-making technique (MCDM) techniques. The design of the experiment is based on the Box–Behnken technique, which used four input parameters: feed rate, depth of cut, cutting speed, and nanofluid concentration, respectively. The experiments were performed on AISI 304 steel in turning with minimum quantity lubrication (MQL) and found that the use of hybrid nanofluid (Alumina–Graphene) reduces response parameters by approximately 13% in forces, 31% in surface roughness, and 14% in temperature, as compared to Alumina nanofluid. The response parameters are analyzed using analysis of variance (ANOVA), where the depth of cut and feed rate showed a major impact on response parameters. After using all three MCDM techniques, it was found that, at fixed weight factor with each MCDM technique, a similar process parameter was achieved (velocity of 90 m/min, feed of 0.08 mm/min, depth of cut of 0.6 mm, and nanoparticle concentration of 1.5%, respectively) for optimum response. The above stated multicriterion techniques employed in this work aid decision makers in selecting optimum parameters depending upon the desired targets. Thus, this work is a novel approach to studying the effectiveness of hybrid nanofluids in the machining of AISI 304 steel using MCDM techniques.
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1. Introduction


Machining is a material removal process, in which undesired material is removed from the workpiece to give it a final shape. Different machining operations, such as turning, milling, grinding, and drilling, etc., are used in the manufacturing industry for metal cutting processes. The machining process aims to provide dimensional accuracy to the workpiece. Turning is one of the most widely used metal removal processes, used generally for cylindrical parts. To attain enhanced productivity, the wear of the tool and the obtained surface roughness of the workpiece must be minimal. At the interface of the cutting tool and workpiece, a large amount of heat is generated because of friction. This heat results in temperature generation, affecting tool life and the surface quality of the workpiece. Among the different varieties of steel alloys, the turning of AISI 304 steel is widely used in industries because of its diverse applications. There are a few challenges in the machining of AISI 304 steel alloy, as it possesses lower thermal conductivity along with the tendency of work hardening [1]. Thus, while machining AISI 304 steel, issues of rapid tool wear and increased cutting force are encountered, along with an increased cutting temperature [2]. For overcoming this temperature, cutting fluid is applied at the machining zone. The traditional approach to the application of cutting fluid is effective, but when used to an excess degree, it can cause a detrimental effect on human health as well as the environment.



To limit the use of traditional cutting fluid, the novel hybrid technique of minimum quantity lubrication (MQL) can be employed in the vicinity of the machining zone [3]. In this technique, the cutting fluid is engaged in the form of a spray, by applying pressurized air [4]. Hegab and Kishawy [5] used alumina and multiwalled carbon nanotube to investigate their effect on the energy consumption and the surface finish generated in the MQL assisted turning of Inconel 718. The carbon nanotube gave a better result than alumina and it was revealed that the weight % of the nanoparticle had a significant effect on the response parameters. The enhanced tribological and heat transfer properties of the nanoparticles added in the cutting fluid led to the improvement in surface characteristics by improving the interface bond between the Inconel surface and the cutting tool used. Sen et al. [6] performed a milling operation using a hybrid mixture of palm and castor oil with a mist lubrication technique. The reduction in surface roughness, by 16.14%, and 7.97% reduction in specific cutting energy, is reported. Duc et al. [7] performed hard turning on 90CrSi steel with minimum quantity lubrication. Alumina and molybdenum disulphide nanofluids are utilized for cutting fluid. A reduction in cutting force with an increase in thrust force is reported using MoS2 nanofluid. The use of both the nanoparticles in the MQL technique led to the improved performance of the carbide insert, due to the rise in the property of the base fluid in terms of thermal conductivity and lubrication. Bai et al. [8] studied the effect of different fluids using the minimum quantity lubrication technique on the response parameters. As per the authors, MQL or near dry machining is a suitable alternative for flood cooling in reducing environmental hazards, as well as production costs. The use of nanofluids as a coolant is seen as an emerging concept for machining purposes, as they possess enhanced heat transfer capabilities [9]. Do and Hsu [10] performed machining on AISI H13 and analysed the surface roughness using MQL. Higher cutting speed and low depth of cut resulted in improved surface finish using MQL. Dubey et al. [11] reviewed different methods of temperature measurement while machining. Prediction of temperature using thermocouples was found to be suitable. In another work, Dubey et al. [12] studied the effect of different cooling mechanisms on turning. Among various techniques, MQL was reported to be the most efficient lubrication method. Gupta et al. [13] optimized machining parameters in the turning of titanium alloy under the mist lubrication technique. The result revealed lower cutting force, using graphite nanofluids as it formed lower droplets because of a lower viscosity than the other two nanofluids, and resulted in deeper penetration at the machining zone. In the case of tool wear, graphite nanofluids also outperformed, as they possess better thermal conductivity than the other two and aided in dissipating heat and retaining the cutting tool hardness. Saini et al. [14] experimented on AISI-4340 steel under MQL conditions using different carbide inserts. The application of MQL resulted in a decrease in temperature of the chip–tool interface, thus maintaining the sharpness of the cutting edges of the tool. Singh et al. [15] investigated surface finish, cutting force, and tool wear on the turning of titanium alloy. The results revealed an enhancement in surface finish, by 15%, and a reduction in cutting force by using the near dry machining technique. Qu et al. [16] studied the machining of a ceramic matrix composite, with dry, flood, and minimum quantity lubrication. The improved surface finish obtained using nanofluids assisted MQL, along with less consumption of the cutting fluid in comparison to other lubrication techniques.



With the advancement in studies of nanofluids as lubricants in machining operation, researchers are now focussing on using hybrid nanofluids for enhanced heat transfer characteristics [17]. Babar and Ali [18] reviewed the synthesis and thermophysical properties of hybrid nanofluids. It was suggested that hybrid nanofluids possess superior thermal characteristics over mono nanofluids because mono nanofluid forms clusters, thus increasing the diameter of the particles and, thus, leading to an increase in pumping power and viscosity. The thermophysical characteristic of nanofluids (viscosity, specific heat, viscosity, and density) is improved by enhancing the nanoparticle concentration. Kumar et al. [19] studied the tribological behaviour of nanofluid on different categories of steel. It was revealed that the introduction of nanofluid aided in minimizing wear. Jamil et al. [20] used combinations of alumina and carbon nanotube particles for the hybrid nanofluids machining of titanium alloy with MQL. The obtained result was compared with cryogenic cooling and an improvement in tool life by 23% was observed. A reduction of 11.8% was suggested by the authors in cutting temperature using cryogenic cooling, in comparison to MQL. Zhang et al. [21] compared the effect of hybrid nanofluid with single nanofluid on response parameters while machining on nickel alloy. The application of alumina and silicon carbide hybrid nanofluids resulted in a reduction of cutting forces and surface roughness, respectively, as both the nanofluids gave a synergistic effect and improved the grinding performance. Gugulothu and Pasam [22] investigated the performance of carbon nanotube and molybdenum disulphide nanoparticle enriched cutting fluid for turning 1040 steel. An increase in thermal conductivity is noticed by increasing the particle size, while a decrease in viscosity is encountered when rising in temperature. A reduction in surface roughness, by 28.53% and 18.3%, is reported when compared with dry machining and traditional cutting fluid. Kumar et al. [23] performed machining on silicon nitride and compared the result with mono and hybrid nanofluids. The cutting force and surface roughness were reduced by 27% and 41%. Abbas et al. [24] optimized the turning parameters using Edgeworth–Pareto method for achieving minimum turning time. The obtained surface finish reported is 0.8µm. In another study, Abbas et al. [25] performed a sustainability assessment related to power consumption and surface characteristics in the machining of AISI 1045 steel. The use of alumina nanoparticles in mist lubrication significantly improved the surface characteristic and minimized the power consumption. The effect on response parameters can be attributed to the alumina nanofluid’s spraying ability, enhanced sliding behaviour, less friction, and seizure characteristic at the tool–workpiece contact. Alajmi and Almeshal [26] used artificial intelligence to optimize surface roughness in the turning of AISI 304 steel. It was revealed that ANFIS-QPSO resulted in a more accurate prediction of surface roughness. Su et al. [27] a used multiobjective criterion for optimising machining parameters of AISI 304 steel. The reduction in surface roughness and specific energy consumption was reported to be 66.90% and 81.46%. Khan et al. [28] performed a grinding operation on D2 steel using an alumina wheel, and compared dry machining with MQL grinding. The effectiveness of heat dissipation and the penetration property of the cutting fluid using MQL gave better results. Li et al. [29] investigated tool wear and surface topography in the turning of austenitic steel. Response surface methodology was used as the optimization technique. The effective cutting parameters obtained were 120 mm/min cutting speed and 0.18 feed rate along with 0.42 mm depth of cut.



From the literature, it is evident that the machining of AISI 304 steel has been attempted by different researchers using nanofluids in improving the machining performances in terms of reduced cutting force, tooltip temperature, and surface roughness. The optimization of the process parameters is performed using Taguchi, grey relational analysis, genetic algorithm, and response surface methodology, but very little work is reported on an analysis of optimal parameters using multicriterion decision making (MCDM) techniques using minimum quantity lubrication. In the present work, alumina and graphene nanoparticles are hybridized in different volumetric concentrations. The performance of the hybrid nanofluids is analyzed in terms of cutting forces, surface roughness, and nodal temperature for the MQL turning of AISI 304 steel. The study aims to analyze the synergistic effect of the hybrid nanofluids on the response parameters for the MQL turning of steel, and suggest the optimum parameter and cutting fluid that can be used by researchers and industries while machining steel. The results obtained are further compared with that of alumina particle nanofluid. Furthermore, the selection of the optimized machining level parameter and their respective ranking is ascertained using three MCDM techniques, namely, MOORA (Multiobjective Optimization Method by Ratio Analysis), VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje), and TOPSIS (technique for order performance by similarity to ideal solution).




2. Materials and Methods


The experiment was performed using a conventional lathe Duo machine (Duo Machine Corps, Rajkot, India). Turning was carried on an AISI 304 steel workpiece of 60 mm diameter, whose chemical composition is mentioned in Table 1. WIDIA’s tungsten carbide inserts (CNMG 120408) of grade TN 2000 and corner radius of 0.8 were used as a cutting tool material which is clamped mechanically on WIDIA’s tool holder. The experimental response, such as cutting force, was measured by using a piezoelectric Kistler dynamometer (9257B). It consists of a charge amplifier of Type 5697A1, comprising hardware for the data acquisition and the DynoWare software (3.1.2.0) for operating and storing the value of average cutting force. Turning operation was performed for 250 mm length of cylindrical workpiece and the average value of cutting force was recorded. Mitutoyo surface roughness tester (SJ210) was used for average surface roughness measurement (Ra). It consists of a probe comprising of the diamond tip of a 2 µm radius that traverses on the workpiece. The cut off length is 0.08 mm and measuring speed is 0.25 mm/s, and the retraction speed of the probe is 1mm/s. The temperature measurement was performed using a K-type thermocouple, whose one end is clamped in a carbide insert, while the other end is attached to National Instrument’s data acquisition system, which recorded the cutting temperature. The cutting fluid used for machining is biodegradable oil based, which is enriched with water based alumina nanofluid and alumina–graphene hybrid nanofluid. The selection of nanofluids is carried out to analyze the synergistic effect of alumina (high conductivity) and graphene (high thermal conductivity along with lubricity) on turning in MQL environment. The combined properties of both nanoparticles are essential for any cutting fluid used in machining. The samples of mono and hybrid nanofluids were prepared in a volumetric ratio of 90:10 in three varying volumetric concentrations of 0.5%, 1%, and 1.5%, respectively. For the discharge of the cutting fluid, a minimum quantity lubrication setup was used. The experiments were repeated thrice and the average value was taken of the responses for better accuracy. The experimental setup is shown in Figure 1.



Design of experiment is made by using MINITAB-19 and for statistical analysis response surface methodology’s Box–Behnken design was used, with four factors at three different levels where the factors are, namely, depth of cut, feed rate, cutting velocity, and nanofluid concentration, which is shown in Table 2. Due to 4 factors with 3 levels, the design contains 27 possible combinations to perform experiments. Table 3 contains all 27 combinations which give the most effective results of response parameters.



Optimization is very important in a production system because it helps to achieve good product quality at minimum cost. In this paper, there are three response parameters, and optimizing them individually may take a significant amount of time, effort and increase process complexity. Therefore, this paper deals with four optimization techniques to obtain a better result.



2.1. Response Surface Methodology


Response surface methodology is a collection of statistical and mathematical techniques which are useful for the modeling and analysis of a problem in which the response of interest is influenced by multiple variables and the objective is to optimize the response. Response surface methodology is used for surface analysis of response parameters; along with that, problems formulation and process optimization can also be performed using RSM [30].




2.2. Multicriterion Decision Making


Multicriteria decision making is mainly aimed at the optimization of conflicting responses, but in this paper, it is utilized for optimizing multiple criteria of nonconflicting nature. It is very useful when the number of response parameters is large in the count, because it calculates the optimized results for two responses and more than two responses in the same number of steps. The methodology used in these techniques is shown in Figure 2. Here, the goal is to mainly check the reliability of three MCDM techniques (MOORA, VIKOR, TOSIS) for nonconflicting responses [31,32].



2.2.1. Multiobjective Optimization Based on Ratio Analysis (MOORA)


MOORA is a simpler and popular MCDM technique; it is used to simultaneously optimize two or more than two conflicting/nonconflicting response parameters [33,34]. It is mainly used for the quantitative attribute.




2.2.2. VIKOR


The VIKOR method is a multicriteria decision making (MCDM) or multicriteria decision analysis method. It was originally developed by Serafim Opricovic (1979-80) to solve decision problems with conflicting and noncommensurable (different units) criteria. It is used to simultaneously optimize two or more two responses. The decision maker desires to have a solution that is nearest to the ideal, whereas the alternatives are evaluated as per the established criteria. VIKOR ranks alternatives and determines the solution, named compromise, that is the closest to the ideal [35].




2.2.3. TOPSIS


TOPSIS is an MCDM technique. It is also used to calculate the optimized value when responses are large in number. It is a technique for order of preference by similarity to the ideal solution. It was developed by Ching-Lai Hwang and Yoon in 1981 and, further, it was developed by Yoon in 1981 and Harang in 1993 [36].






3. Results


In this paper, there are three major responses, namely, force, surface roughness, and temperature. All the three selected response parameters come under the nonbeneficial category; therefore, all of them should be at their minimum. To minimize them, proper lubrication and cooling are required at the machining interface. Therefore, in the present paper, mono and hybrid nanofluids with an MQL setup is used for cooling and lubrication purpose. As per the experimental results, it is found that the response parameters give more promising results, as they aided in reducing cutting forces, tool temperature, and surface roughness with hybrid nanofluids, as compared to single nanofluids alone, as shown in Table 4.



3.1. Response Surface Methodology


RSM is used as a multipurpose technique: it can help to create mathematical model to predict the response and it can also help to analyze the surface response through the response surface curve for better understanding the effect of a process parameter on a response parameter; it also helps in the analysis of variance of process parameters and it can also calculate the optimized parameter. In this paper, a second degree model is used for performing data analysis and to determine the significance of the model’s parameters, calculation of mean response, and to arrive at optimum operating conditions on the control variables that helps to achieve a maximum or a minimum response over a certain region of interest. Therefore, after getting response parameters (Table 4), the quadratic model has been developed for the analysis of variance to check the stability and significance of the response, as well as process parameters [37]. The mathematical model for response parameters is discussed in the equations given below:



For alumina


Cutting Force = −370 − 1.86vc + 3378 fo + 874 ap − 49 np% − 0.0055 vc * vc − 13159 fo * fo − 418 ap * ap − 12.0 np%*np% + 5.5 vc * fo + 2.13 vc * ap − 0.067 vc *np%+ 931 fo * ap + 354 fo *np% − 13.9ap*np%.



(1)






Surface Roughness = 2.34 + 0.0069 vc − 23.52 fo + 1.68 ap − 0.306 np% − 0.000001 vc * vc + 143.7 fo * fo − 0.169 ap * ap − 0.138 np%*np% − 0.0275 vc * fo − 0.00796 vc * ap − 0.00317 vc *np%− 4.02 fo * ap + 6.38 fo *np% − 0.234 ap *np%



(2)






Temperature = −95 − 2.01 vc + 2248 fo + 433 ap − 108.6 np%− 0.00094 vc * vc − 3501 fo * fo − 212.1 ap * ap − 16.6 np%*np% − 4.79 vc * fo + 1.896 vc * ap + 1.357 vc *np% − 532 fo * ap + 153 fo *np% − 17.5 ap *np%



(3)







For alumina–graphene


Cutting Force = −350 − 2.27 vc + 5998 fo + 646 ap − 146 np%+ 0.0044 vc * vc − 22338 fo * fo − 351 ap * ap − 7.6 np%*np% − 7.6 vc * fo + 1.76 vc * ap + 0.32 vc *np% + 1223 fo * ap + 292 fo *np%+ 59 ap *np%



(4)






Surface Roughness = 1.20 + 0.01201 vc − 14.02 fo + 0.988 ap − 0.023 np% − 0.000020 vc * vc + 97.6 fo * fo − 0.038 ap * ap − 0.120 np%*np% − 0.0399 vc * fo − 0.00541 vc * ap − 0.00415 vc *np% − 2.75 fo * ap + 4.39 fo *np%− 0.143 ap *np%



(5)






Temperature = 47 − 3.66 vc + 1187 Feed + 399 ap − 134.9 np%+ 0.00684 vc * vc − 4758 Feed*Feed − 171.3 ap * ap − 26.7 np%*np% + 4.54 vc *Feed + 1.171 vc * ap + 1.230 vc *np%− 459 Feed* ap + 615 Feed*np% − 15.2 ap *np%



(6)







The above mentioned regression model helps to predict the response parameters, i.e., cutting force, temperature, roughness. Now, the analysis of variance is required to analyze the significance and influence of the process parameters and their factors on response parameters. ANOVA was carried out at a 95% confidence level, which means the p-value of the factors must be less than 0.05 to satisfy the condition of a significant factor criteria. The coefficient of determinant, i.e., R2 and adjusted R2, is also one of the parameters to show the significance of experimental results. A regression model helps to calculate the coefficient of the determinant, and it should be more the 80% because, for the experimental results, 80% is an acceptable limit [38]. The ANOVA analysis, describing the p-value and percentage contribution of the response parameters in alumina and alumina–graphene enriched cutting fluid, is given in Table 5 and Table 6.



In Table A1, the analysis of the variance for force has been carried out to analyze the significance of the process parameters and their impact on the response parameter i.e., force. Table A1 signifies that depth of cut has a major impression on cutting force, approximately 65.2841%, which is the highest among all of the process parameters and their factors. As discussed above, parameters having a p-value <0.05 are significant; therefore, velocity, feed, depth of cut, np% and velocity*velocity, velocity* depth of cut, feed*np% are the significant parameters for cutting force. The coefficient of determinant is also used to show the significance and accuracy of experimental results: if R2 and adjusted R2 is greater than 90% the output is acceptable. In the case of cutting force, R2 is 96.25% and adjusted R2 is 91.87%. In Table A2, the analysis of the variance for roughness has been carried out, to analyze the significance of the process parameters and their impact on response parameter i.e., surface roughness. Table 5 signifies that the feed rate makes a major impression on surface roughness, approximately 62.38%, which is the highest among all of the process parameters and their factors. The coefficient of determinant is also used to show the significance and accuracy of experimental results: if R2 and adjusted R2 is greater than 90% the output is acceptable. In the case of surface roughness, R2 is 95.76% and adjusted R2 is 90.81%. In Table A3, ANOVA signifies that depth of cut makes a major impression on tool temperature, approximately 55.53%, which is the highest among all of the process parameters and their factors. The coefficient of determinant also use to show the significance and accuracy of experimental results, so, in the case of tool temperature, R2 is 95.52% and adjusted R2 is 90.29%.



In Table A4, an analysis of the variance for cutting force has been carried out to analyze the significance of the process parameter and their impact on cutting force. Table A4 signifies that depth of cut makes a major impression on cutting force, it contributes approximately 68.977% which is the highest among all the process parameters and their factors. The coefficient of determinant is also used to show the significance and accuracy of experimental results: if R2 and adjusted R2 is greater than 90% the output is acceptable. In the case of surface roughness, R2 is 94.96% and adjusted R2 is 89.09%. In the case of Table A5, the feed rate shows the major impact on surface roughness. It contributes approximately 57.547%, which is the highest among all the process parameters and their factors; while the coefficient of the determinant of experimental calculated R2 as 95.60% and adjusted R2 as 90.47%. In Table A6, ANOVA signifies that the depth of cut makes a major impression on tool temperature, approximately 48.52%, which is the highest among all of the process parameters and their factors. The coefficient of determinant is also used to show the significance and accuracy of experimental results, so, in the case of tool temperature, R2 is 93.53%and adjusted R2 is 85.99%%.



As ANOVA signifies the impact of process parameters on response parameters, similarly, the response surface curve shows the variation in response parameters by varying input. Figure 3 represents the response surface curve at variable feed, depth of cut, and nanofluid concentration for Al2O3 nanoparticles. Figure 3a,b shows variation in forces, with 0.08 feed rate, 1.5% nanofluid concentration and 0.6 depth of cut force as minimum. The reduction in cutting force can be attributed to the rolling effect produced by the spherical size of alumina, which possesses high strength, hardness and delivers enough abrasive resistance in the process of friction and aids in minimizing the frictional coefficient in the zone of contact [39]. Figure 3c,d explains variation in surface roughness, at maximum nanofluid concentration and minimum feed rate, depth of cut surface roughness is minimum as alumina resulted in minimizing the adhesion between the tool insert and workpiece and forming a tribo film, thus resulting in improved surface quality [40]. Similarly, Figure 3e,f, shows the responses plot for temperature, and, in both cases, at maximum nanofluid concentration and minimum feed rate responses are minimum.



As discussed in the case of alumina nanofluid, similar results are shown in the case of hybrid nanofluid (alumina–graphene). Figure 4 shows the variation in responses (force, surface roughness, and temperature) by varying input parameters. Figure 4a, b shows the response surface curve for cutting force, at the minimum value of feed rate, depth of cut, and maximum nanofluid concentration. The reduction in cutting force is more in the case of alumina–graphene hybrid nanofluids machining as compared to alumina nanofluids due to the exfoliation of the sheet like structure of graphene because of the shearing action produced by the chip on the tool rake face. In Figure 4c–f, surface roughness and temperature, at a 0.08 feed rate, 1.5% nanofluid concentration, and 0.6 depth of cut force is minimum. After analyzing both the figures, force, surface roughness, and temperature increase, while the increase in depth of cut and feed at minimum nanofluid concentration and decreases with a decrease in depth of cut and feed at maximum concentration [37].




3.2. MOORA Analysis for Mono and Hybrid Nanofluid


MOORA is used for selecting the best optimum parameters. Table A7 and Table A8 contain the decision matrix, normalized decision matrix, and assessed value for alumina and alumina–graphene based nanofluid results. The decision matrix contains all the response parameters, such as force, surface roughness, and temperature. Normalization of the matrix is performed to convert them into dimensionless quantities. After normalization of the decision matrix, it will be further multiplied with the weight factor and convert the matrix into the weighted normalized matrix; after that, assessment values (Bi) for the considered alternatives were determined and ranking them in descending order, the maximum value is ranked as the best (rank 1) and the minimum is ranked as the worst (rank27) [41,42]. The combined analysis of different MCDM techniques and the respective ranks obtained from the decision-making criteria used in mono and hybrid nanofluid cutting fluid based machining is mentioned in Table 7 and Table 8.




3.3. VIKOR Analysis for Mono and Hybrid Nanofluid


VIKOR is a multicriteria optimization technique used for selecting the best optimum parameters in a conflicting and nonconflicting response. Table A9 and Table A10 contain the decision matrix, normalized decision matrix, and VIKOR index for alumina and alumina–graphene based nanofluid results. The decision matrix contains all the response parameters, such as force, surface roughness, and temperature. Normalization of the matrix is performed to convert them into dimensionless quantities. After normalization of the decision matrix, it will be further multiplied with the weight factor and convert the matrix into the weighted normalized matrix, at the end, the VIKOR index was determined and they were ranked in ascending order: the minimum VIKOR index value is ranked as the best (rank 1) and the maximum VIKOR index is ranked as the worst (rank27) [43,44,45].




3.4. TOPSIS Analysis for Mono and Hybrid Nanofluid


TOPSIS analysis is used to predict ideal solutions in multiresponse parameters. Table A11 and Table A12 contain the decision matrix, normalized decision matrix, and relative ideal solution for alumina and alumina–graphene based nanofluid results. Decision matrices contain response parameters such as force, roughness, and temperature. After forming a decision matrix, normalization of the matrix is required to convert them into dimensionless quantities. Afterward, the weighted normalized matrix has been formed by multiplying the weight factor with the normalized matrix. Next, the positive ideal solution (s+) and negative ideal solutions (s−) were calculated. Ranking of the ideal solution has been assigned by arranging them in descending order [46,47,48,49].



The optimum results obtained from all four techniques are summarized in Table 9. In all four techniques, RSM gives the minimum optimized results, whereas the rest of the three techniques give similar optimum results. RSM gives the optimum output value for the new input parameters, which are different from the input parameters mentioned in the design of the experiment; whereas the MCDM techniques give ideal results from the 27 experimentals used in this paper [50,51].





4. Conclusions


The methodology used in this paper, of using multicriterion decision-making techniques in selecting the optimum parameters while performing turning operations with mono and hybrid nanofluids enriched with cutting fluid, is novel in this field. As nanofluids are very costly, their use in an efficient manner needs to be studied. The present study can help researchers and industries in choosing the optimum parameters while machining AISI 304 steel, which has wide applications. As per the experimental results, hybrid nanofluids seem to be more effective than a single nanofluid. This paper deals with three response parameters—force, surface roughness, and temperature—all of which are nonbeneficial; therefore, they should have the minimum value. After comparing the results, the following conclusions are made and summarized below:




	
The use of hybrid nanofluid (alumina–graphene) resulted in an average reduction of response parameters by approximately 13% in cutting forces, 31% in surface roughness, and 14% in temperature, when compared to alumina nanofluid.



	
It can be seen that the use of nanoparticle concentration in a lesser amount resulted in better surface characteristics and resulted in the lowering of cutting forces.



	
Analysis of variance revealed the influence of input parameters on the response parameters. In both the cases, i.e., single and hybrid nanofluid, depth of cut showed a major impact while calculating force and temperature. The contribution of the depth of cut is approximately 65.81% and 57.63% in the case of single nanofluid while in the case of hybrid the % contributions are 68.38% and 51.14%, respectively. However, in the case of surface roughness, the most influenced parameter is the feed rate: its contributions in the cases of single and hybrid nanofluid are 63.18% and 58.47%, respectively.



	
Response surface methodology is used for optimizing the response. As per RSM, the best process parameters for optimum response in the case of Al2O3 are 86.667 m/min velocity, 0.08 mm/min feed rate, 0.6 mm depth of cut, and at 1.5% of nanoparticle concentration. In the case of alumina–graphene, the suitable parameters for optimum results are 110.909 m/min velocity, 0.08 mm/min feed rate, 0.6484 mm depth of cut, and a nanoparticle concentration of 1.5%, respectively.



	
The multicriteria decision-making techniques are used, such as MOORA, VIKOR, and TOPSIS for nonconflicting, nonbeneficial responses at 0.5 weight factor. According to the MCDM techniques, the best input parameter for optimum response is at 90 m/min velocity, 0.6 mm depth of cut, 0.08 mm/min feed rate, and 1% nanoparticle concentration.



	
All three MCDM techniques showed similar responses, at a constant or fixed weight factor of 0.5.








The present paper discusses machining performance using hybrid nanofluids. Here, graphene was used for developing hybrid nanofluids. Though it gave desirable results when compared to alumina, it is costly, so there is a need to find a cheaper alternative for graphene for hybridization, so that machining cost can be minimized. Moreover, in this research, both the nanoparticles (alumina–graphene) were mixed in a fixed mixing ratio of 90:10. There is a need to use different mixing ratios and further optimize the mixing ratio so that the optimum value can be obtained. In the future, further research can be performed on the optimization of MQL parameters. Furthermore, work on the hybridization of MCDM techniques can also be done. The thermal modeling of the cutting tool in multiphase using hybrid nanofluids is yet to be explored.
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Nomenclature




	Fc
	Cutting force



	Vc
	Cutting speed



	ap
	Depth of cut



	np%
	Nanofluid concentration



	fo
	Feed rate



	Bi
	Assignment value



	Ri
	Relation closeness



	Qi
	VIKOR index



	u
	Utility



	r
	Regret



	s+
	Separation from best solution



	s−
	Separation from worst solution



	MQL
	Minimum quality lubrication



	MOORA
	Multiobjective optimization on the basis of ratio analysis



	VIKOR
	VIšekriterijumsko KOmpromisno Rangiranje



	TOPSIS
	Technique for order of preferences by similarity to the ideal solution



	MCDM
	Multicriteria decision making



	RSM
	Response surface methodology
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Table A1. Analysis of variance for cutting force using alumina.






Table A1. Analysis of variance for cutting force using alumina.















	Source
	DF
	Adj SS
	Adj MS
	F-Value
	p-Value
	%

Contribution
	Remark





	Model
	14
	271,912
	19,422
	32.21
	0.000
	
	



	Linear
	4
	260,306
	65,076
	107.91
	0.000
	
	



	Vc
	1
	1250
	1250
	2.07
	0.175
	0.44779
	



	fo
	1
	69,693
	69,693
	115.56
	0.000
	24.96624
	significant



	ap
	1
	182,240
	182,240
	302.19
	0.000
	65.28413
	significant



	np%
	1
	7122
	7122
	11.81
	0.005
	2.551326
	significant



	Square
	4
	9236
	2309
	3.83
	0.031
	
	



	Vc * Vc
	1
	130
	130
	0.22
	0.651
	0.04657
	



	fo * fo
	1
	2364
	2364
	3.92
	0.071
	0.84686
	significant



	ap * ap
	1
	7564
	7564
	12.54
	0.004
	2.709664
	significant



	np%*np%
	1
	48
	48
	0.08
	0.782
	0.017195
	



	2-Way Interaction
	6
	2370
	395
	0.65
	0.687
	
	



	Vc* fo
	1
	173
	173
	0.29
	0.602
	0.061974
	



	Vc * ap
	1
	1475
	1475
	2.45
	0.144
	0.528392
	



	Vc *np%
	1
	4
	4
	0.01
	0.936
	0.001433
	



	fo * ap
	1
	500
	500
	0.83
	0.381
	0.179116
	



	fo *np%
	1
	201
	201
	0.33
	0.575
	0.072005
	



	ap *np%
	1
	18
	18
	0.03
	0.868
	0.006448
	



	Error
	12
	7237
	603
	
	
	2.592522
	



	Lack-of-Fit
	10
	6598
	660
	2.07
	0.370
	2.363612
	



	Pure Error
	2
	639
	319
	
	
	0.22891
	



	Total
	26
	279,149
	
	
	
	100
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Table A2. Analysis of variance of surface roughness using alumina.






Table A2. Analysis of variance of surface roughness using alumina.















	Source
	DF
	Adj SS
	Adj MS
	F-Value
	p-Value
	%

Contribution
	Remark





	Model
	14
	3.75774
	0.26841
	21.99
	0.000
	
	



	Linear
	4
	3.25267
	0.81317
	66.61
	0.000
	
	



	Vc
	1
	0.51884
	0.51884
	42.50
	0.000
	13.28918
	significant



	fo
	1
	2.43565
	2.43565
	199.52
	0.000
	62.3849
	significant



	ap
	1
	0.00409
	0.00409
	0.33
	0.574
	0.104758
	



	np%
	1
	0.29409
	0.29409
	24.09
	0.000
	7.532599
	significant



	Square
	4
	0.39176
	0.09794
	8.02
	0.002
	
	



	Vc * Vc
	1
	0.00001
	0.00001
	0.00
	0.981
	0.000256
	



	fo * fo
	1
	0.28201
	0.28201
	23.10
	0.000
	7.223191
	significant



	ap * ap
	1
	0.00124
	0.00124
	0.10
	0.755
	0.03176
	



	np%*np%
	1
	0.00638
	0.00638
	0.52
	0.484
	0.163413
	



	2-Way Interaction
	6
	0.11331
	0.01889
	1.55
	0.245
	
	



	Vc* fo
	1
	0.00434
	0.00434
	0.36
	0.562
	0.111161
	



	Vc * ap
	1
	0.02055
	0.02055
	1.68
	0.219
	0.526352
	



	Vc *np%
	1
	0.00904
	0.00904
	0.74
	0.406
	0.231544
	



	fo * ap
	1
	0.00931
	0.00931
	0.76
	0.400
	0.238459
	



	fo *np%
	1
	0.06514
	0.06514
	5.34
	0.039
	1.668447
	



	ap *np%
	1
	0.00493
	0.00493
	0.40
	0.537
	0.126273
	



	Error
	12
	0.14649
	0.01221
	
	
	3.752084
	



	Lack-of-Fit
	10
	0.14421
	0.01442
	12.63
	0.076
	3.693686
	



	Pure Error
	2
	0.00228
	0.00114
	
	
	0.058398
	



	Total
	26
	3.90423
	
	
	
	100
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Table A3. Analysis of variance of temperature using alumina.






Table A3. Analysis of variance of temperature using alumina.















	Source
	DF
	Adj SS
	Adj MS
	F-Value
	p-Value
	%

Contribution
	Remark





	Model
	14
	36,667.4
	2619.1
	19.34
	0.000
	
	



	Linear
	4
	31,351.5
	7837.9
	57.88
	0.000
	
	



	Vc
	1
	1061.5
	1061.5
	7.84
	0.016
	2.772098
	significant



	fo
	1
	8140.1
	8140.1
	60.12
	0.000
	21.2578
	significant



	ap
	1
	21,264.3
	21,264.3
	157.04
	0.000
	55.53153
	significant



	np%
	1
	885.6
	885.6
	6.54
	0.025
	2.312737
	significant



	Square
	4
	2134.3
	533.6
	3.94
	0.029
	
	



	Vc * Vc
	1
	3.8
	3.8
	0.03
	0.869
	0.009924
	



	fo * fo
	1
	167.3
	167.3
	1.24
	0.288
	0.436902
	



	ap * ap
	1
	1943.3
	1943.3
	14.35
	0.003
	5.074911
	significant



	np%*np%
	1
	92.1
	92.1
	0.68
	0.426
	0.240518
	



	2-Way Interaction
	6
	3181.6
	530.3
	3.92
	0.021
	
	



	Vc* fo
	1
	132.1
	132.1
	0.98
	0.343
	0.344978
	



	Vc * ap
	1
	1165.0
	1165.0
	8.60
	0.013
	3.042387
	significant



	Vc *np%
	1
	1656.1
	1656.1
	12.23
	0.004
	4.32489
	significant



	fo * ap
	1
	163.3
	163.3
	1.21
	0.294
	0.426456
	



	fo *np%
	1
	37.5
	37.5
	0.28
	0.608
	0.097931
	



	ap *np%
	1
	27.6
	27.6
	0.20
	0.660
	0.072077
	



	Error
	12
	1624.9
	135.4
	
	
	4.243412
	



	Lack-of-Fit
	10
	1551.4
	155.1
	4.23
	0.206
	4.051467
	



	Pure Error
	2
	73.4
	36.7
	
	
	0.191683
	



	Total
	26
	38,292.3
	
	
	
	100
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Table A4. Analysis of variance for force using alumina–graphene.






Table A4. Analysis of variance for force using alumina–graphene.















	Source
	DF
	Adj SS
	Adj MS
	F-Value
	p-Value
	%

Contribution
	Remark





	Model
	14
	214,022
	15,287
	16.17
	0.000
	
	



	Linear
	4
	198,614
	49,654
	52.51
	0.000
	
	



	Vc
	1
	2623
	2623
	2.77
	0.122
	1.163
	



	fo
	1
	34,622
	34,622
	36.61
	0.000
	15.362
	significant



	ap
	1
	155,455
	155,455
	164.39
	0.000
	68.977
	significant



	np%
	1
	5915
	5915
	6.25
	0.028
	2.624
	significant



	Square
	4
	12,667
	3167
	3.35
	0.046
	
	



	Vc * Vc
	1
	84
	84
	0.09
	0.771
	0.037
	



	fo * fo
	1
	6813
	6813
	7.20
	0.020
	3.0230
	significant



	ap * ap
	1
	5312
	5312
	5.62
	0.035
	2.357
	significant



	np%*np%
	1
	19
	19
	0.02
	0.888
	0.0084
	



	2-Way Interaction
	6
	2741
	457
	0.48
	0.809
	
	



	Vc* fo
	1
	336
	336
	0.35
	0.562
	0.149
	



	Vc * ap
	1
	999
	999
	1.06
	0.324
	0.443
	



	Vc *np%
	1
	90
	90
	0.10
	0.763
	0.039
	



	fo * ap
	1
	861
	861
	0.91
	0.359
	0.382
	



	fo *np%
	1
	137
	137
	0.14
	0.710
	0.060
	



	ap *np%
	1
	318
	318
	0.34
	0.573
	0.141
	



	Error
	12
	11,348
	946
	
	
	5.035
	



	Lack-of-Fit
	10
	11,222
	1122
	17.88
	0.054
	4.979
	



	Pure Error
	2
	126
	63
	
	
	0.055
	



	Total
	26
	225,370
	
	
	
	100
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Table A5. Analysis of variance of surface roughness using alumina–graphene.






Table A5. Analysis of variance of surface roughness using alumina–graphene.















	Source
	DF
	Adj SS
	Adj MS
	F-Value
	p-Value
	%

Contribution
	Remark





	Model
	14
	1.89893
	0.13564
	18.63
	0.000
	
	



	Linear
	4
	1.63737
	0.40934
	56.24
	0.000
	
	



	Vc
	1
	0.32364
	0.32364
	44.46
	0.000
	16.293
	significant



	fo
	1
	1.14306
	1.14306
	157.04
	0.000
	57.547
	significant



	ap
	1
	0.00188
	0.00188
	0.26
	0.621
	0.094
	



	np%
	1
	0.16880
	0.16880
	23.19
	0.000
	8.498
	significant



	Square
	4
	0.19034
	0.04758
	6.54
	0.005
	
	



	Vc * Vc
	1
	0.00180
	0.00180
	0.25
	0.628
	0.0906
	



	fo * fo
	1
	0.12994
	0.12994
	17.85
	0.001
	6.5418
	significant



	ap * ap
	1
	0.00006
	0.00006
	0.01
	0.927
	0.0030
	



	np%*np%
	1
	0.00477
	0.00477
	0.66
	0.434
	0.240
	



	2-Way Interaction
	6
	0.07122
	0.01187
	1.63
	0.222
	3.585
	



	Vc* fo
	1
	0.00918
	0.00918
	1.26
	0.283
	0.462
	



	Vc * ap
	1
	0.00950
	0.00950
	1.30
	0.276
	0.478
	



	Vc *np%
	1
	0.01552
	0.01552
	2.13
	0.170
	0.781
	



	fo * ap
	1
	0.00436
	0.00436
	0.60
	0.454
	0.219
	



	fo *np%
	1
	0.03084
	0.03084
	4.24
	0.062
	1.552
	



	ap *np%
	1
	0.00183
	0.00183
	0.25
	0.625
	0.092
	



	Error
	12
	0.08734
	0.00728
	
	
	4.397
	



	Lack-of-Fit
	10
	0.08606
	0.00861
	13.34
	0.072
	4.332
	



	Pure Error
	2
	0.00129
	0.00064
	
	
	0.064
	



	Total
	26
	1.98628
	
	
	
	100
	










[image: Table] 





Table A6. Analysis of variance of temperature using alumina–graphene.






Table A6. Analysis of variance of temperature using alumina–graphene.















	Source
	DF
	Adj SS
	Adj MS
	F-Value
	p-Value
	%

Contribution
	Remark





	Model
	14
	32,997.8
	2357.0
	12.40
	0.000
	
	



	Linear
	4
	28,041.7
	7010.4
	36.88
	0.000
	
	



	Vc
	1
	1746.0
	1746.0
	9.18
	0.010
	4.949
	significant



	fo
	1
	8247.7
	8247.7
	43.39
	0.000
	23.378
	significant



	ap
	1
	17,118.4
	17,118.4
	90.05
	0.000
	48.522
	significant



	np%
	1
	929.6
	929.6
	4.89
	0.047
	2.6349
	significant



	Square
	4
	2285.2
	571.3
	3.01
	0.062
	
	



	Vc * Vc
	1
	201.8
	201.8
	1.06
	0.323
	0.572
	



	fo * fo
	1
	309.2
	309.2
	1.63
	0.226
	0.876
	



	ap * ap
	1
	1267.8
	1267.8
	6.67
	0.024
	3.593
	significant



	np%*np%
	1
	238.0
	238.0
	1.25
	0.285
	0.674
	



	2-Way Interaction
	6
	2671.0
	445.2
	2.34
	0.099
	
	



	Vc* fo
	1
	118.9
	118.9
	0.63
	0.444
	0.337
	



	Vc * ap
	1
	444.5
	444.5
	2.34
	0.152
	1.259
	



	Vc *np%
	1
	1360.8
	1360.8
	7.16
	0.020
	3.857
	significant



	fo * ap
	1
	121.3
	121.3
	0.64
	0.440
	0.343
	



	fo *np%
	1
	604.7
	604.7
	3.18
	0.100
	1.7140
	



	ap *np%
	1
	20.8
	20.8
	0.11
	0.747
	0.0589
	



	Error
	12
	2281.2
	190.1
	
	
	6.4661
	



	Lack-of-Fit
	10
	2226.7
	222.7
	8.16
	0.114
	6.3116
	



	Pure Error
	2
	54.6
	27.3
	
	
	0.1547
	



	Total
	26
	35,279.0
	
	
	
	100
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Table A7. MOORA analysis for alumina.






Table A7. MOORA analysis for alumina.





	
Decision Matrix

	
Normalizing Matrix

	




	
Cutting Force

(N)

	
Surface Rough

Ness

(µm)

	
Temperature

(°C)

	

	

	

	
B

	
Rank






	
511.4568

	
2.63064

	
238.717

	
0.2719

	
0.2376

	
0.2433

	
−0.3764

	
27




	
461.075

	
2.29599

	
195.552

	
0.2451

	
0.2074

	
0.1993

	
−0.3259

	
19




	
304.0594

	
1.426832

	
198.8272

	
0.1617

	
0.1289

	
0.2026

	
−0.2466

	
9




	
247.841

	
2.15581

	
149.8645

	
0.1318

	
0.1947

	
0.1527

	
−0.2396

	
8




	
374.3974

	
2.051186

	
197.3411

	
0.1990

	
0.1852

	
0.2011

	
−0.2927

	
15




	
427.3259

	
2.360216

	
216.5133

	
0.2272

	
0.2132

	
0.2207

	
−0.3305

	
21




	
464.4795

	
1.767456

	
242.0562

	
0.2469

	
0.1596

	
0.2467

	
−0.3266

	
20




	
250.7642

	
1.627584

	
190.1616

	
0.1333

	
0.1470

	
0.1938

	
−0.2371

	
7




	
363.342

	
1.717272

	
193.6079

	
0.1932

	
0.1551

	
0.1973

	
−0.2728

	
13




	
270.5931

	
1.893312

	
155.181

	
0.1439

	
0.1710

	
0.1582

	
−0.2365

	
6




	
360.6416

	
2.016965

	
192.6746

	
0.1917

	
0.1822

	
0.1964

	
−0.2851

	
14




	
409.7601

	
1.924486

	
196.3889

	
0.2178

	
0.1738

	
0.2002

	
−0.2959

	
16




	
447.6368

	
1.830473

	
211.6454

	
0.2380

	
0.1653

	
0.2157

	
−0.3095

	
18




	
396.0915

	
1.983618

	
204.6936

	
0.2106

	
0.1791

	
0.2086

	
−0.2992

	
17




	
437.9675

	
2.946243

	
215.5425

	
0.2328

	
0.2661

	
0.2197

	
−0.3593

	
26




	
174.4423

	
1.914002

	
128.1041

	
0.0927

	
0.1729

	
0.1306

	
−0.1981

	
2




	
220.7251

	
2.050069

	
143.7265

	
0.1173

	
0.1851

	
0.1465

	
−0.2245

	
5




	
142.7404

	
1.655947

	
83.77385

	
0.0759

	
0.1495

	
0.0854

	
−0.1554

	
1




	
299.3917

	
2.214356

	
170.1335

	
0.1592

	
0.2000

	
0.1734

	
−0.2663

	
11




	
260.6497

	
1.569603

	
158.5022

	
0.1386

	
0.1418

	
0.1615

	
−0.2209

	
4




	
325.648

	
2.052732

	
137.5602

	
0.1731

	
0.1854

	
0.1402

	
−0.2494

	
10




	
469.7263

	
2.047881

	
224.6752

	
0.2497

	
0.1849

	
0.2290

	
−0.3318

	
22




	
207.0041

	
1.973061

	
141.2001

	
0.1101

	
0.1782

	
0.1439

	
−0.2161

	
3




	
246.1514

	
2.76224

	
154.44

	
0.1309

	
0.2495

	
0.1574

	
−0.2689

	
12




	
425.7669

	
2.531105

	
214.1387

	
0.2264

	
0.2286

	
0.2182

	
−0.3366

	
23




	
436.1839

	
2.665395

	
213.5229

	
0.2319

	
0.2407

	
0.2176

	
−0.3451

	
24




	
444.4571

	
2.54873

	
227.5397

	
0.2363

	
0.2302

	
0.2319

	
−0.3492

	
25
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Table A8. MOORA analysis for alumina–graphene.






Table A8. MOORA analysis for alumina–graphene.





	
Decision Matrix

	
Normalizing Matrix

	




	
Cutting Force

(N)

	
Surface Rough

Ness

(µm)

	
Temperature

(°C)

	

	

	

	
B

	
Rank






	
466.982

	
1.833

	
206.295

	
0.2833

	
0.2386

	
0.2409

	
−0.3814

	
27




	
416.010

	
1.601

	
185.731

	
0.2524

	
0.2083

	
0.2168

	
−0.3388

	
24




	
275.566

	
0.881

	
184.549

	
0.1672

	
0.1146

	
0.2155

	
−0.2486

	
8




	
218.882

	
1.505

	
129.479

	
0.1328

	
0.1959

	
0.1512

	
−0.2399

	
6




	
341.841

	
1.431

	
170.509

	
0.2074

	
0.1862

	
0.1991

	
−0.2964

	
16




	
428.187

	
1.643

	
187.083

	
0.2598

	
0.2139

	
0.2184

	
−0.3460

	
26




	
420.214

	
1.231

	
209.147

	
0.2549

	
0.1602

	
0.2442

	
−0.3296

	
21




	
245.700

	
1.131

	
173.671

	
0.1491

	
0.1472

	
0.2028

	
−0.2495

	
9




	
322.866

	
1.193

	
167.294

	
0.1959

	
0.1552

	
0.1953

	
−0.2732

	
13




	
251.789

	
1.318

	
134.084

	
0.1528

	
0.1716

	
0.1565

	
−0.2404

	
7




	
329.283

	
1.410

	
166.504

	
0.1998

	
0.1835

	
0.1944

	
−0.2889

	
14




	
381.823

	
1.338

	
169.741

	
0.2316

	
0.1741

	
0.1982

	
−0.3020

	
17




	
408.718

	
1.281

	
182.915

	
0.2480

	
0.1667

	
0.2136

	
−0.3141

	
18




	
327.195

	
1.381

	
176.862

	
0.1985

	
0.1797

	
0.2065

	
−0.2923

	
15




	
352.906

	
2.061

	
168.371

	
0.2141

	
0.2683

	
0.1966

	
−0.3395

	
25




	
159.859

	
1.330

	
110.731

	
0.0970

	
0.1731

	
0.1293

	
−0.1997

	
3




	
185.999

	
1.431

	
124.199

	
0.1128

	
0.1863

	
0.1450

	
−0.2221

	
5




	
117.917

	
1.151

	
72.428

	
0.0715

	
0.1498

	
0.0846

	
−0.1530

	
1




	
247.324

	
1.542

	
147.002

	
0.1500

	
0.2007

	
0.1716

	
−0.2612

	
11




	
215.319

	
1.090

	
98.396

	
0.1306

	
0.1418

	
0.1149

	
−0.1937

	
2




	
302.967

	
1.436

	
128.114

	
0.1838

	
0.1868

	
0.1496

	
−0.2601

	
10




	
388.041

	
1.426

	
194.190

	
0.2354

	
0.1856

	
0.2267

	
−0.3239

	
19




	
171.010

	
1.371

	
122.044

	
0.1037

	
0.1785

	
0.1425

	
−0.2124

	
4




	
203.345

	
1.924

	
133.458

	
0.1234

	
0.2504

	
0.1558

	
−0.2648

	
12




	
351.721

	
1.763

	
185.077

	
0.2134

	
0.2294

	
0.2161

	
−0.3295

	
20




	
360.343

	
1.864

	
184.502

	
0.2186

	
0.2426

	
0.2154

	
−0.3383

	
23




	
310.181

	
1.683

	
229.770

	
0.1882

	
0.2190

	
0.2683

	
−0.3377

	
22
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Table A9. VIKOR analysis for alumina.






Table A9. VIKOR analysis for alumina.





	
Decision Matrix

	
Normalizing Matrix

	

	




	
Cutting Force

(N)

	
Surface Rough

Ness

(µm)

	
Temperature

(°C)

	

	

	

	
u

	
r

	
Q

	
Rank






	
511.4568

	
2.63064

	
238.717

	
0.2719

	
0.2376

	
0.2433

	
−0.5797

	
−0.1932

	
1.0000

	
27




	
461.075

	
2.29599

	
195.552

	
0.2451

	
0.2074

	
0.1993

	
−0.5798

	
−0.1932

	
0.7763

	
21




	
304.0594

	
1.426832

	
198.8272

	
0.1617

	
0.1289

	
0.2026

	
−0.5800

	
−0.1933

	
0.4232

	
10




	
247.841

	
2.15581

	
149.8645

	
0.1318

	
0.1947

	
0.1527

	
−0.5800

	
−0.1933

	
0.3750

	
9




	
374.3974

	
2.051186

	
197.3411

	
0.1990

	
0.1852

	
0.2011

	
−0.5799

	
−0.1933

	
0.5214

	
14




	
427.3259

	
2.360216

	
216.5133

	
0.2272

	
0.2132

	
0.2207

	
−0.5798

	
−0.1933

	
0.7134

	
19




	
464.4795

	
1.767456

	
242.0562

	
0.2469

	
0.1596

	
0.2467

	
−0.5798

	
−0.1932

	
0.7853

	
22




	
250.7642

	
1.627584

	
190.1616

	
0.1333

	
0.1470

	
0.1938

	
−0.5800

	
−0.1933

	
0.3656

	
8




	
363.342

	
1.717272

	
193.6079

	
0.1932

	
0.1551

	
0.1973

	
−0.5800

	
−0.1933

	
0.4608

	
12




	
270.5931

	
1.893312

	
155.181

	
0.1439

	
0.1710

	
0.1582

	
−0.5801

	
−0.1933

	
0.2711

	
5




	
360.6416

	
2.016965

	
192.6746

	
0.1917

	
0.1822

	
0.1964

	
−0.5799

	
−0.1933

	
0.4848

	
13




	
409.7601

	
1.924486

	
196.3889

	
0.2178

	
0.1738

	
0.2002

	
−0.5799

	
−0.1933

	
0.5970

	
16




	
447.6368

	
1.830473

	
211.6454

	
0.2380

	
0.1653

	
0.2157

	
−0.5799

	
−0.1932

	
0.7100

	
18




	
396.0915

	
1.983618

	
204.6936

	
0.2106

	
0.1791

	
0.2086

	
−0.5799

	
−0.1933

	
0.5747

	
15




	
437.9675

	
2.946243

	
215.5425

	
0.2328

	
0.2661

	
0.2197

	
−0.5797

	
−0.1932

	
0.9375

	
26




	
174.4423

	
1.914002

	
128.1041

	
0.0927

	
0.1729

	
0.1306

	
−0.5802

	
−0.1933

	
0.1918

	
2




	
220.7251

	
2.050069

	
143.7265

	
0.1173

	
0.1851

	
0.1465

	
−0.5801

	
−0.1933

	
0.3017

	
6




	
142.7404

	
1.655947

	
83.77385

	
0.0759

	
0.1495

	
0.0854

	
−0.5803

	
−0.1934

	
0.0000

	
1




	
299.3917

	
2.214356

	
170.1335

	
0.1592

	
0.2000

	
0.1734

	
−0.5800

	
−0.1933

	
0.4569

	
11




	
260.6497

	
1.569603

	
158.5022

	
0.1386

	
0.1418

	
0.1615

	
−0.5801

	
−0.1933

	
0.1972

	
3




	
325.648

	
2.052732

	
137.5602

	
0.1731

	
0.1854

	
0.1402

	
−0.5800

	
−0.1933

	
0.3590

	
7




	
469.7263

	
2.047881

	
224.6752

	
0.2497

	
0.1849

	
0.2290

	
−0.5798

	
−0.1932

	
0.8085

	
25




	
207.0041

	
1.973061

	
141.2001

	
0.1101

	
0.1782

	
0.1439

	
−0.5801

	
−0.1933

	
0.2543

	
4




	
246.1514

	
2.76224

	
154.44

	
0.1309

	
0.2495

	
0.1574

	
−0.5800

	
−0.1932

	
0.6650

	
17




	
425.7669

	
2.531105

	
214.1387

	
0.2264

	
0.2286

	
0.2182

	
−0.5798

	
−0.1933

	
0.7329

	
20




	
436.1839

	
2.665395

	
213.5229

	
0.2319

	
0.2407

	
0.2176

	
−0.5798

	
−0.1932

	
0.8017

	
24




	
444.4571

	
2.54873

	
227.5397

	
0.2363

	
0.2302

	
0.2319

	
−0.5797

	
−0.1932

	
0.7929

	
23
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Table A10. VIKOR analysis for alumina–graphene.






Table A10. VIKOR analysis for alumina–graphene.





	
Decision Matrix

	
Normalizing Matrix

	

	

	

	




	
Cutting Force

(N)

	
Surface Rough

Ness

(µm)

	
Temperature

(°C)

	

	

	

	
u

	
r

	
Q

	
Rank






	
466.982

	
1.833

	
206.295

	
0.2833

	
0.2386

	
0.2409

	
−0.5797

	
−0.1932

	
1.0000

	
27




	
416.010

	
1.601

	
185.731

	
0.2524

	
0.2083

	
0.2168

	
−0.5798

	
−0.1932

	
0.7975

	
23




	
275.566

	
0.881

	
184.549

	
0.1672

	
0.1146

	
0.2155

	
−0.5800

	
−0.1933

	
0.4698

	
12




	
218.882

	
1.505

	
129.479

	
0.1328

	
0.1959

	
0.1512

	
−0.5800

	
−0.1933

	
0.3816

	
7




	
341.841

	
1.431

	
170.509

	
0.2074

	
0.1862

	
0.1991

	
−0.5799

	
−0.1933

	
0.5456

	
15




	
428.187

	
1.643

	
187.083

	
0.2598

	
0.2139

	
0.2184

	
−0.5798

	
−0.1932

	
0.8395

	
24




	
420.214

	
1.231

	
209.147

	
0.2549

	
0.1602

	
0.2442

	
−0.5798

	
−0.1932

	
0.7865

	
22




	
245.700

	
1.131

	
173.671

	
0.1491

	
0.1472

	
0.2028

	
−0.5800

	
−0.1933

	
0.4268

	
9




	
322.866

	
1.193

	
167.294

	
0.1959

	
0.1552

	
0.1953

	
−0.5800

	
−0.1933

	
0.4543

	
11




	
251.789

	
1.318

	
134.084

	
0.1528

	
0.1716

	
0.1565

	
−0.5800

	
−0.1933

	
0.2966

	
5




	
329.283

	
1.410

	
166.504

	
0.1998

	
0.1835

	
0.1944

	
−0.5799

	
−0.1933

	
0.5023

	
13




	
381.823

	
1.338

	
169.741

	
0.2316

	
0.1741

	
0.1982

	
−0.5799

	
−0.1932

	
0.6436

	
17




	
408.718

	
1.281

	
182.915

	
0.2480

	
0.1667

	
0.2136

	
−0.5798

	
−0.1932

	
0.7278

	
20




	
327.195

	
1.381

	
176.862

	
0.1985

	
0.1797

	
0.2065

	
−0.5799

	
−0.1933

	
0.5337

	
14




	
352.906

	
2.061

	
168.371

	
0.2141

	
0.2683

	
0.1966

	
−0.5798

	
−0.1932

	
0.8551

	
26




	
159.859

	
1.330

	
110.731

	
0.0970

	
0.1731

	
0.1293

	
−0.5802

	
−0.1933

	
0.2131

	
3




	
185.999

	
1.431

	
124.199

	
0.1128

	
0.1863

	
0.1450

	
−0.5801

	
−0.1933

	
0.3083

	
6




	
117.917

	
1.151

	
72.428

	
0.0715

	
0.1498

	
0.0846

	
−0.5803

	
−0.1934

	
0.0000

	
1




	
247.324

	
1.542

	
147.002

	
0.1500

	
0.2007

	
0.1716

	
−0.5800

	
−0.1933

	
0.4450

	
10




	
215.319

	
1.090

	
98.396

	
0.1306

	
0.1418

	
0.1149

	
−0.5802

	
−0.1934

	
0.0891

	
2




	
302.967

	
1.436

	
128.114

	
0.1838

	
0.1868

	
0.1496

	
−0.5800

	
−0.1933

	
0.3937

	
8




	
388.041

	
1.426

	
194.190

	
0.2354

	
0.1856

	
0.2267

	
−0.5798

	
−0.1932

	
0.7049

	
19




	
171.010

	
1.371

	
122.044

	
0.1037

	
0.1785

	
0.1425

	
−0.5801

	
−0.1933

	
0.2597

	
4




	
203.345

	
1.924

	
133.458

	
0.1234

	
0.2504

	
0.1558

	
−0.5800

	
−0.1932

	
0.6285

	
16




	
351.721

	
1.763

	
185.077

	
0.2134

	
0.2294

	
0.2161

	
−0.5798

	
−0.1933

	
0.6960

	
18




	
360.343

	
1.864

	
184.502

	
0.2186

	
0.2426

	
0.2154

	
−0.5798

	
−0.1932

	
0.7620

	
21




	
310.181

	
1.683

	
229.770

	
0.1882

	
0.2190

	
0.2683

	
−0.5798

	
−0.1932

	
0.8513

	
25
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Table A11. TOPSIS analysis for alumina.






Table A11. TOPSIS analysis for alumina.





	
Decision Matrix

	
Normalizing Matrix

	

	




	
Cutting Force

(N)

	
Surface Rough

Ness

(µm)

	
Temperature

(°C)

	

	

	

	
S+

	
S−

	
Ri

	
Rank






	
511.4568

	
2.63064

	
238.717

	
0.2719

	
0.2376

	
0.2433

	
0.1371

	
0.0144

	
0.095

	
27




	
461.075

	
2.29599

	
195.552

	
0.2451

	
0.2074

	
0.1993

	
0.1093

	
0.0400

	
0.268

	
21




	
304.0594

	
1.426832

	
198.8272

	
0.1617

	
0.1289

	
0.2026

	
0.0726

	
0.0907

	
0.555

	
10




	
247.841

	
2.15581

	
149.8645

	
0.1318

	
0.1947

	
0.1527

	
0.0548

	
0.0916

	
0.626

	
7




	
374.3974

	
2.051186

	
197.3411

	
0.1990

	
0.1852

	
0.2011

	
0.0891

	
0.0590

	
0.398

	
15




	
427.3259

	
2.360216

	
216.5133

	
0.2272

	
0.2132

	
0.2207

	
0.1099

	
0.0370

	
0.252

	
22




	
464.4795

	
1.767456

	
242.0562

	
0.2469

	
0.1596

	
0.2467

	
0.1186

	
0.0547

	
0.316

	
19




	
250.7642

	
1.627584

	
190.1616

	
0.1333

	
0.1470

	
0.1938

	
0.0620

	
0.0951

	
0.605

	
8




	
363.342

	
1.717272

	
193.6079

	
0.1932

	
0.1551

	
0.1973

	
0.0821

	
0.0724

	
0.468

	
13




	
270.5931

	
1.893312

	
155.181

	
0.1439

	
0.1710

	
0.1582

	
0.0541

	
0.0912

	
0.628

	
6




	
360.6416

	
2.016965

	
192.6746

	
0.1917

	
0.1822

	
0.1964

	
0.0845

	
0.0633

	
0.428

	
14




	
409.7601

	
1.924486

	
196.3889

	
0.2178

	
0.1738

	
0.2002

	
0.0940

	
0.0583

	
0.383

	
16




	
447.6368

	
1.830473

	
211.6454

	
0.2380

	
0.1653

	
0.2157

	
0.1056

	
0.0554

	
0.344

	
18




	
396.0915

	
1.983618

	
204.6936

	
0.2106

	
0.1791

	
0.2086

	
0.0947

	
0.0565

	
0.374

	
17




	
437.9675

	
2.946243

	
215.5425

	
0.2328

	
0.2661

	
0.2197

	
0.1240

	
0.0238

	
0.161

	
26




	
174.4423

	
1.914002

	
128.1041

	
0.0927

	
0.1729

	
0.1306

	
0.0326

	
0.1165

	
0.781

	
2




	
220.7251

	
2.050069

	
143.7265

	
0.1173

	
0.1851

	
0.1465

	
0.0464

	
0.1006

	
0.684

	
4




	
142.7404

	
1.655947

	
83.77385

	
0.0759

	
0.1495

	
0.0854

	
0.0103

	
0.1397

	
0.931

	
1




	
299.3917

	
2.214356

	
170.1335

	
0.1592

	
0.2000

	
0.1734

	
0.0703

	
0.0749

	
0.516

	
12




	
260.6497

	
1.569603

	
158.5022

	
0.1386

	
0.1418

	
0.1615

	
0.0497

	
0.1006

	
0.669

	
5




	
325.648

	
2.052732

	
137.5602

	
0.1731

	
0.1854

	
0.1402

	
0.0626

	
0.0831

	
0.570

	
9




	
469.7263

	
2.047881

	
224.6752

	
0.2497

	
0.1849

	
0.2290

	
0.1162

	
0.0430

	
0.270

	
20




	
207.0041

	
1.973061

	
141.2001

	
0.1101

	
0.1782

	
0.1439

	
0.0419

	
0.1055

	
0.716

	
3




	
246.1514

	
2.76224

	
154.44

	
0.1309

	
0.2495

	
0.1574

	
0.0754

	
0.0839

	
0.527

	
11




	
425.7669

	
2.531105

	
214.1387

	
0.2264

	
0.2286

	
0.2182

	
0.1121

	
0.0328

	
0.226

	
23




	
436.1839

	
2.665395

	
213.5229

	
0.2319

	
0.2407

	
0.2176

	
0.1165

	
0.0278

	
0.193

	
24




	
444.4571

	
2.54873

	
227.5397

	
0.2363

	
0.2302

	
0.2319

	
0.1199

	
0.0263

	
0.180

	
25
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Table A12. TOPSIS analysis for alumina–graphene.






Table A12. TOPSIS analysis for alumina–graphene.





	
Decision Matrix

	
Normalizing Matrix

	

	




	
Cutting

Force

(N)

	
Surface Rough

Ness

(µm)

	
Temperature

(°C)

	

	

	

	
S+

	
S−

	
Ri

	
Rank






	
466.982

	
1.833

	
206.295

	
0.2833

	
0.2386

	
0.2409

	
0.1455

	
0.0202

	
0.122

	
27




	
416.010

	
1.601

	
185.731

	
0.2524

	
0.2083

	
0.2168

	
0.1214

	
0.0424

	
0.259

	
25




	
275.566

	
0.881

	
184.549

	
0.1672

	
0.1146

	
0.2155

	
0.0811

	
0.0998

	
0.552

	
9




	
218.882

	
1.505

	
129.479

	
0.1328

	
0.1959

	
0.1512

	
0.0608

	
0.1020

	
0.626

	
6




	
341.841

	
1.431

	
170.509

	
0.2074

	
0.1862

	
0.1991

	
0.0958

	
0.0657

	
0.407

	
16




	
428.187

	
1.643

	
187.083

	
0.2598

	
0.2139

	
0.2184

	
0.1257

	
0.0387

	
0.235

	
26




	
420.214

	
1.231

	
209.147

	
0.2549

	
0.1602

	
0.2442

	
0.1237

	
0.0572

	
0.316

	
19




	
245.700

	
1.131

	
173.671

	
0.1491

	
0.1472

	
0.2028

	
0.0725

	
0.0961

	
0.570

	
8




	
322.866

	
1.193

	
167.294

	
0.1959

	
0.1552

	
0.1953

	
0.0857

	
0.0802

	
0.484

	
13




	
251.789

	
1.318

	
134.084

	
0.1528

	
0.1716

	
0.1565

	
0.0613

	
0.0986

	
0.617

	
7




	
329.283

	
1.410

	
166.504

	
0.1998

	
0.1835

	
0.1944

	
0.0912

	
0.0700

	
0.434

	
14




	
381.823

	
1.338

	
169.741

	
0.2316

	
0.1741

	
0.1982

	
0.1026

	
0.0641

	
0.385

	
17




	
408.718

	
1.281

	
182.915

	
0.2480

	
0.1667

	
0.2136

	
0.1123

	
0.0603

	
0.349

	
18




	
327.195

	
1.381

	
176.862

	
0.1985

	
0.1797

	
0.2065

	
0.0938

	
0.0687

	
0.423

	
15




	
352.906

	
2.061

	
168.371

	
0.2141

	
0.2683

	
0.1966

	
0.1188

	
0.0498

	
0.295

	
23




	
159.859

	
1.330

	
110.731

	
0.0970

	
0.1731

	
0.1293

	
0.0390

	
0.1256

	
0.763

	
3




	
185.999

	
1.431

	
124.199

	
0.1128

	
0.1863

	
0.1450

	
0.0512

	
0.1129

	
0.688

	
5




	
117.917

	
1.151

	
72.428

	
0.0715

	
0.1498

	
0.0846

	
0.0176

	
0.1522

	
0.896

	
1




	
247.324

	
1.542

	
147.002

	
0.1500

	
0.2007

	
0.1716

	
0.0727

	
0.0890

	
0.550

	
10




	
215.319

	
1.090

	
98.396

	
0.1306

	
0.1418

	
0.1149

	
0.0359

	
0.1253

	
0.777

	
2




	
302.967

	
1.436

	
128.114

	
0.1838

	
0.1868

	
0.1496

	
0.0742

	
0.0875

	
0.541

	
12




	
388.041

	
1.426

	
194.190

	
0.2354

	
0.1856

	
0.2267

	
0.1141

	
0.0521

	
0.313

	
20




	
171.010

	
1.371

	
122.044

	
0.1037

	
0.1785

	
0.1425

	
0.0460

	
0.1184

	
0.720

	
4




	
203.345

	
1.924

	
133.458

	
0.1234

	
0.2504

	
0.1558

	
0.0809

	
0.0982

	
0.548

	
11




	
351.721

	
1.763

	
185.077

	
0.2134

	
0.2294

	
0.2161

	
0.1125

	
0.0477

	
0.298

	
22




	
360.343

	
1.864

	
184.502

	
0.2186

	
0.2426

	
0.2154

	
0.1174

	
0.0437

	
0.271

	
24




	
310.181

	
1.683

	
229.770

	
0.1882

	
0.2190

	
0.2683

	
0.1207

	
0.0536

	
0.307

	
21
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Figure 1. Experimental setup for MQL turning of AISI304 steel. 
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Figure 2. Methodology of different MCDM techniques. 
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Figure 3. Response surface plot for alumina nanofluid for cutting force. (a) np% Vs fo; (b) np% Vs ap; for surface roughness (c) np% Vs fo; (d) np% Vs ap and for cutting temperature (e) np% Vs fo; (f) np% Vs ap. 
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Figure 4. Response surface plot for alumina-graphene nanofluids for cutting force. (a) np% Vs fo; (b) np% Vs ap; for surface roughness (c) np% Vs fo; (d) np% Vs ap and for cutting temperature (e) np% Vs fo; (f) np% Vs ap. 
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[image: Materials 14 07207 g004]







[image: Table] 





Table 1. Chemical constituents of AISI 304 steel.
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	Elements
	S
	P
	C
	Mo
	Cu
	Si
	Mn
	Ni
	Cr
	Fe





	Weight %
	0.02
	0.027
	0.065
	0.13
	0.14
	0.3
	1.78
	8.1
	18.2
	71.2
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Table 2. Input parameters used in the current study.
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	Levels/Factors
	−1
	0
	1





	Depth of cut (mm)
	0.6
	0.9
	1.2



	Feed rate (mm/rev)
	0.08
	0.12
	0.16



	Cutting speed (m/min)
	60
	90
	120



	Nanofluid concentration (wt.%)
	0.5
	1.0
	1.5
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Table 3. Design of Experiment.
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	S.No.
	Cutting Speed

(m/min)
	Feed Rate

(mm/rev)
	Depth of Cut

(mm)
	Nanoparticle Concentration

(%)





	1
	90
	0.16
	1.2
	1.0



	2
	60
	0.12
	1.2
	1.0



	3
	120
	0.12
	0.9
	1.5



	4
	60
	0.12
	0.6
	1.0



	5
	90
	0.12
	0.9
	1.0



	6
	60
	0.12
	0.9
	0.5



	7
	120
	0.12
	1.2
	1.0



	8
	120
	0.08
	0.9
	1.0



	9
	90
	0.08
	1.2
	1.0



	10
	60
	0.08
	0.9
	1.0



	11
	90
	0.12
	0.9
	1.0



	12
	120
	0.12
	0.9
	0.5



	13
	90
	0.12
	1.2
	1.5



	14
	90
	0.12
	0.9
	1.0



	15
	60
	0.16
	0.9
	1.0



	16
	120
	0.12
	0.6
	1.0



	17
	90
	0.12
	0.6
	0.5



	18
	90
	0.08
	0.6
	1.0



	19
	90
	0.08
	0.9
	0.5



	20
	90
	0.08
	0.9
	1.5



	21
	60
	0.12
	0.9
	1.5



	22
	90
	0.12
	1.2
	0.5



	23
	90
	0.12
	0.6
	1.5



	24
	90
	0.16
	0.6
	1.0



	25
	90
	0.16
	0.9
	1.5



	26
	90
	0.16
	0.9
	0.5



	27
	120
	0.16
	0.9
	1.0
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Table 4. Response parameter in turning of AISI 304 steel.
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Alumina

	
Alumina-Graphene




	
S. No.

	
Cutting Force

(N)

	
Surface Roughness

(µm)

	
Temperature

(°C)

	
Cutting Force

(N)

	
Surface Roughness

(µm)

	
Temperature

(°C)






	
1

	
511.45

	
2.630

	
238.71

	
466.98

	
1.833

	
206.29




	
2

	
461.07

	
2.295

	
195.55

	
416.00

	
1.600

	
185.73




	
3

	
304.05

	
1.426

	
198.82

	
275.56

	
0.880

	
184.54




	
4

	
247.84

	
2.155

	
149.86

	
218.88

	
1.505

	
129.47




	
5

	
374.39

	
2.051

	
197.34

	
341.84

	
1.431

	
170.50




	
6

	
427.32

	
2.360

	
216.51

	
428.18

	
1.643

	
187.08




	
7

	
464.47

	
1.767

	
242.05

	
420.21

	
1.230

	
209.14




	
8

	
250.76

	
1.627

	
190.16

	
245.69

	
1.131

	
173.67




	
9

	
363.34

	
1.717

	
193.60

	
322.86

	
1.192

	
167.29




	
10

	
270.59

	
1.893

	
155.18

	
251.78

	
1.318

	
134.08




	
11

	
360.64

	
2.016

	
192.67

	
329.28

	
1.410

	
166.50




	
12

	
409.76

	
1.924

	
196.38

	
381.82

	
1.337

	
169.74




	
13

	
447.63

	
1.830

	
211.64

	
408.71

	
1.280

	
182.91




	
14

	
396.09

	
1.983

	
204.69

	
327.19

	
1.380

	
176.86




	
15

	
437.96

	
2.946

	
215.54

	
352.90

	
2.061

	
168.37




	
16

	
174.44

	
1.914

	
128.10

	
159.85

	
1.330

	
110.73




	
17

	
220.72

	
2.050

	
143.72

	
185.99

	
1.431

	
124.19




	
18

	
142.74

	
1.655

	
83.77

	
117.91

	
1.151

	
72.427




	
19

	
299.39

	
2.214

	
170.13

	
247.32

	
1.542

	
147.00




	
20

	
260.64

	
1.569

	
158.50

	
215.31

	
1.089

	
98.395




	
21

	
325.64

	
2.052

	
137.56

	
302.96

	
1.435

	
128.11




	
22

	
469.72

	
2.047

	
224.67

	
388.04

	
1.426

	
194.18




	
23

	
207.00

	
1.973

	
141.20

	
171.01

	
1.371

	
122.04




	
24

	
246.15

	
2.762

	
154.44

	
203.34

	
1.924

	
133.45




	
25

	
425.76

	
2.531

	
214.13

	
351.72

	
1.763

	
185.07




	
26

	
436.18

	
2.665

	
213.52

	
360.34

	
1.864

	
184.50




	
27

	
444.45

	
2.548

	
227.53

	
310.18

	
1.682

	
229.77
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Table 5. ANOVA analysis of MQL machining with alumina nanofluid.
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Cutting Force (N)

	
Surface Roughness (μm)

	
Temperature (°C)




	
Source

	
p-Value

	
%

Contribution

	
p-Value

	
%

Contribution

	
p-Value

	
%

Contribution






	
Model

	
0.000

	

	
0.000

	

	
0.000

	




	
Linear

	
0.000

	

	
0.000

	

	
0.000

	




	
Vc

	
0.175

	
0.44779

	
0.000

	
13.28918

	
0.016

	
2.772098




	
fo

	
0.000

	
24.96624

	
0.000

	
62.3849

	
0.000

	
21.2578




	
ap

	
0.000

	
65.28413

	
0.574

	
0.104758

	
0.000

	
55.53153




	
np%

	
0.005

	
2.551326

	
0.000

	
7.532599

	
0.025

	
2.312737




	
Square

	
0.031

	

	
0.002

	

	
0.029

	




	
Vc * Vc

	
0.651

	
0.04657

	
0.981

	
0.000256

	
0.869

	
0.009924




	
fo * fo

	
0.071

	
0.84686

	
0.000

	
7.223191

	
0.288

	
0.436902




	
ap * ap

	
0.004

	
2.709664

	
0.755

	
0.03176

	
0.003

	
5.074911




	
np%*np%

	
0.782

	
0.017195

	
0.484

	
0.163413

	
0.426

	
0.240518




	
2-Way Interaction

	
0.687

	

	
0.245

	

	
0.021

	




	
Vc* fo

	
0.602

	
0.061974

	
0.562

	
0.111161

	
0.343

	
0.344978




	
Vc * ap

	
0.144

	
0.528392

	
0.219

	
0.526352

	
0.013

	
3.042387




	
Vc *np%

	
0.936

	
0.001433

	
0.406

	
0.231544

	
0.004

	
4.32489




	
fo * ap

	
0.381

	
0.179116

	
0.400

	
0.238459

	
0.294

	
0.426456




	
fo *np%

	
0.575

	
0.072005

	
0.039

	
1.668447

	
0.608

	
0.097931




	
ap *np%

	
0.868

	
0.006448

	
0.537

	
0.126273

	
0.660

	
0.072077




	
Error

	

	
2.592522

	

	
3.752084

	

	
4.243412




	
Lack-of-Fit

	
0.370

	
2.363612

	
0.076

	
3.693686

	
0.206

	
4.051467




	
Pure Error

	

	
0.22891

	

	
0.058398

	

	
0.191683




	
Total

	

	
100

	

	
100

	

	
100
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Table 6. ANOVA analysis of MQL machining with alumina–graphene hybrid nanofluid.
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Cutting Force (N)

	
Surface Roughness (μm)

	
Temperature (°C)




	
Source

	
p-Value

	
%

Contribution

	
p-Value

	
%

Contribution

	
p-Value

	
%

Contribution






	
Model

	
0.000

	

	
0.000

	

	
0.000

	




	
Linear

	
0.000

	

	
0.000

	

	
0.000

	




	
Vc

	
0.122

	
1.163

	
0.000

	
16.293

	
0.016

	
2.772098




	
fo

	
0.000

	
15.362

	
0.000

	
57.547

	
0.000

	
21.2578




	
ap

	
0.000

	
68.977

	
0.621

	
0.094

	
0.000

	
55.53153




	
np%

	
0.028

	
2.624

	
0.000

	
8.498

	
0.025

	
2.312737




	
Square

	
0.046

	

	
0.005

	

	
0.029

	




	
Vc * Vc

	
0.771

	
0.037

	
0.628

	
0.0906

	
0.869

	
0.009924




	
fo * fo

	
0.020

	
3.0230

	
0.001

	
6.5418

	
0.288

	
0.436902




	
ap * ap

	
0.035

	
2.357

	
0.927

	
0.0030

	
0.003

	
5.074911




	
np%*np%

	
0.888

	
0.0084

	
0.434

	
0.240

	
0.426

	
0.240518




	
2-Way Interaction

	
0.809

	

	
0.222

	
3.585

	
0.021

	




	
Vc* fo

	
0.562

	
0.149

	
0.283

	
0.462

	
0.343

	
0.344978




	
Vc * ap

	
0.324

	
0.443

	
0.276

	
0.478

	
0.013

	
3.042387




	
Vc *np%

	
0.763

	
0.039

	
0.170

	
0.781

	
0.004

	
4.32489




	
fo * ap

	
0.359

	
0.382

	
0.454

	
0.219

	
0.294

	
0.426456




	
fo *np%

	
0.710

	
0.060

	
0.062

	
1.552

	
0.608

	
0.097931




	
ap *np%

	
0.573

	
0.141

	
0.625

	
0.092

	
0.660

	
0.072077




	
Error

	

	
5.035

	

	
4.397

	

	
4.243412




	
Lack-of-Fit

	
0.054

	
4.979

	
0.072

	
4.332

	
0.206

	
4.051467




	
Pure Error

	

	
0.055

	

	
0.064

	

	
0.191683




	
Total

	

	
100

	

	
100

	

	
100











[image: Table] 





Table 7. Analysis of MCDM techniques in alumina enriched nanofluid.
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Response Parameters

	
Ranks by Different MCDM Techniques




	
Cutting Force

(N)

	
Surface Roughness

(µm)

	
Temperature

(°C)

	
MOORA

	
VIKOR

	
TOPSIS






	
511.45

	
2.630

	
238.71

	
27

	
27

	
27




	
461.07

	
2.295

	
195.55

	
19

	
21

	
21




	
304.05

	
1.426

	
198.82

	
9

	
10

	
10




	
247.84

	
2.155

	
149.86

	
8

	
9

	
7




	
374.39

	
2.051

	
197.34

	
15

	
14

	
15




	
427.32

	
2.360

	
216.51

	
21

	
19

	
22




	
464.47

	
1.767

	
242.05

	
20

	
22

	
19




	
250.76

	
1.627

	
190.16

	
7

	
8

	
8




	
363.34

	
1.717

	
193.60

	
13

	
12

	
13




	
270.59

	
1.893

	
155.18

	
6

	
5

	
6




	
360.64

	
2.016

	
192.67

	
14

	
13

	
14




	
409.76

	
1.924

	
196.38

	
16

	
16

	
16




	
447.63

	
1.830

	
211.64

	
18

	
18

	
18




	
396.09

	
1.983

	
204.69

	
17

	
15

	
17




	
437.96

	
2.946

	
215.54

	
26

	
26

	
26




	
174.44

	
1.914

	
128.10

	
2

	
2

	
2




	
220.72

	
2.050

	
143.72

	
5

	
6

	
4




	
142.74

	
1.655

	
83.77

	
1

	
1

	
1




	
299.39

	
2.214

	
170.13

	
11

	
11

	
12




	
260.64

	
1.569

	
158.50

	
4

	
3

	
5




	
325.64

	
2.052

	
137.56

	
10

	
7

	
9




	
469.72

	
2.047

	
224.67

	
22

	
25

	
20




	
207.00

	
1.973

	
141.20

	
3

	
4

	
3




	
246.15

	
2.762

	
154.44

	
12

	
17

	
11




	
425.76

	
2.531

	
214.13

	
23

	
20

	
23




	
436.18

	
2.665

	
213.52

	
24

	
24

	
24




	
444.45

	
2.548

	
227.53

	
25

	
23

	
25
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Table 8. Analysis of MCDM techniques in alumina–graphene nanofluid.
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Response Parameters with (Alumina-Graphene)

	
Rank by Different MCDM Techniques




	
Cutting Force

(N)

	
Surface Roughness

(µm)

	
Temperature

(°C)

	
MOORA

	
VIKOR

	
TOPSIS






	
466.98

	
1.833

	
206.29

	
27

	
27

	
27




	
416.01

	
1.601

	
185.73

	
24

	
23

	
25




	
275.56

	
0.881

	
184.54

	
8

	
12

	
9




	
218.88

	
1.505

	
129.47

	
6

	
7

	
6




	
341.84

	
1.431

	
170.50

	
16

	
15

	
16




	
428.18

	
1.643

	
187.08

	
26

	
24

	
26




	
420.21

	
1.231

	
209.14

	
21

	
22

	
19




	
245.70

	
1.131

	
173.67

	
9

	
9

	
8




	
322.86

	
1.193

	
167.29

	
13

	
11

	
13




	
251.78

	
1.318

	
134.08

	
7

	
5

	
7




	
329.28

	
1.410

	
166.50

	
14

	
13

	
14




	
381.82

	
1.338

	
169.74

	
17

	
17

	
17




	
408.71

	
1.281

	
182.91

	
18

	
20

	
18




	
327.19

	
1.381

	
176.86

	
15

	
14

	
15




	
352.90

	
2.061

	
168.37

	
25

	
26

	
23




	
159.85

	
1.330

	
110.73

	
3

	
3

	
3




	
185.99

	
1.431

	
124.19

	
5

	
6

	
5




	
117.91

	
1.151

	
72.42

	
1

	
1

	
1




	
247.32

	
1.542

	
147.00

	
11

	
10

	
10




	
215.31

	
1.090

	
98.39

	
2

	
2

	
2




	
302.96

	
1.436

	
128.11

	
10

	
8

	
12




	
388.04

	
1.426

	
194.19

	
19

	
19

	
20




	
171.01

	
1.371

	
122.04

	
4

	
4

	
4




	
203.34

	
1.924

	
133.45

	
12

	
16

	
11




	
351.72

	
1.763

	
185.07

	
20

	
18

	
22




	
360.34

	
1.864

	
184.50

	
23

	
21

	
24




	
310.18

	
1.683

	
229.77

	
22

	
25

	
21
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Table 9. The optimum results through RSM, MOORA, VIKOR, and TOPSIS.






Table 9. The optimum results through RSM, MOORA, VIKOR, and TOPSIS.





	
Parameters/Technique

	
Cutting Speed

(mm/min)

	
Feed Rate

(mm/rev)

	
Depth of Cut

(mm)

	
Np%

	
CuttingForce

(N)

	
Surface Roughness

(μm)

	
Temperature

(°C)






	
RSM

	
Alumina

	
86.667

	
0.08

	
0.6

	
1.5

	
101.756

	
1.48475

	
83.77




	
Alumina-Graphene

	
110.909

	
0.08

	
0.6484

	
1.5

	
92.657

	
0.91186

	
78.766




	
MOORA

	
Alumina

	
90

	
0.08

	
0.6

	
1.0

	
142.7404

	
1.655947

	
83.77385




	
Alumina-Graphene

	
90

	
0.08

	
0.6

	
1.0

	
117.917

	
1.151

	
72.428




	
VIKOR

	
Alumina

	
90

	
0.08

	
0.6

	
1.0

	
142.7404

	
1.655947

	
83.77385




	
Alumina-Graphene

	
90

	
0.08

	
0.6

	
1.0

	
117.917

	
1.151

	
72.428




	
TOPSIS

	
Alumina

	
90

	
0.08

	
0.6

	
1.0

	
142.7404

	
1.655947

	
83.77385




	
Alumina-Graphene

	
90

	
0.08

	
0.6

	
1.0

	
117.917

	
1.151

	
72.428
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