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Abstract: This paper puts forward a new version of the Isotropic Material Design method for the 

optimum design of structures made of an elasto-plastic material within the Hencky-Nadai-Ilyushin 

theory. This method provides the optimal layouts of the moduli of isotropy to make the overall 

compliance minimal. Thus, the bulk and shear moduli are the only design variables, both assumed 

as non-negative fields. The trace of the Hooke tensor represents the unit cost of the design. The yield 

condition is assumed to be independent of the design variables, to make the design process as sim-

ple as possible. By eliminating the design variables, the optimum design problem is reduced to the 

pair of the two mutually dual Linear Constrained Problems (LCP). The solution to the LCP stress-

based problem directly determines the layout of the optimal moduli. A numerical method has been 

developed to construct approximate solutions, which paves the way for constructing the final lay-

outs of the elastic moduli. Selected illustrative solutions are reported, corresponding to various data 

concerning the yield limit and the cost of the design. The yield condition introduced in this paper 

results in bounding the values of the optimal moduli in the places of possible stress concentration, 

such as reentrant corners. 

Keywords: isotropic material design; compliance minimization; Hencky-Nadai-Ilyushin plasticity 

 

1. Introduction 

The problem of designing structures made of a linear elastic material is one of the 

major topics of Free Material Design (FMD). Within this approach, all the elastic moduli 

of Hooke’s tensor C are design variables. Usually, the aim is to minimize the compliance 

of the structure, while the unit cost is identified with the trace of Hooke’s tensor or the 

sum of its eigenvalues (see [1,2], to mention the first papers on the topic). The additional 

assumption of isotropy reduces the number of design variables to two: the bulk modulus 

k and shear modulus µ (see [3,4], where this method, called there the Isotropic Material 

Design (IMD), was proposed). In the 3D setting, the eigenvalues of the Hooke tensor are: 

    3 ,2 ,2 ,2 ,2 ,2k , hence = +tr 3 10kC . In the 2D setting, the eigenvalues of C are: 

 2 ,2 ,2k , hence = +tr 2 4kC . The present paper refers to those papers on FMD in 

which the Hooke tensor is subject only to the condition of positive semi-definiteness; in 

the case of the IMD method, this condition reduces to:  0, 0k . The upper bounds are 

absent to make the theory as simple as possible. Admitting the vanishing of moduli means 

working with the broadest possible class of the underlying microstructures. For instance, 

the hexagonal (or honeycomb in the plane) gridwork is characterized by a very small 

shear modulus, if ligaments are slender (see [5,6]). On the other hand, spiral microstruc-

tures are characterized by very small bulk modulus, which implies the effective Poisson 

ratio almost attaining its lower 2D limit equal −1 (see [7–12]). To encompass such a broad 

class of composites, it is necessary to admit the largest possible range of the bulk and shear 

moduli. Due to the simplicity of such modeling, it is possible to perform minimization 
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over the moduli analytically, thus eliminating the design variables in the first step. Even-

tually, one arrives at two, mutually dual, linear constrained problems (LCP) in the mean-

ing of Bouchitté and Fragalà [13]. The primal LCP problem is stress-based, with the inte-

grand expressed by a norm: ( )  ; its minimizer determines the effective moduli directly. 

The dual one is displacement-based and leads to the locking of strains within the unit ball 

defined by ( ) o , the function polar to ( )  . The stress field, which solves the stress-

based LCP problem, is simultaneously the stress field emerging in the optimal structure. 

On the other hand, the displacement field of the second LCP problem is proportional to 

the displacement field of the optimal structure. In the IMD optimal structure, the values 

of stresses are proportional to the values of the bulk and shear moduli, since the values of 

strains are subjected to the locking conditions ( )  1o ε . The mathematical proofs of these 

interrelations can be found in [14]. 

If the support conditions have discontinuities or the domain has reentrant corners, 

then the stress fields assume infinite values around these points. Consequently, the values 

of the optimal bulk or shear moduli may tend to infinity. The aim of the present paper is 

to cut these extremes of the plots of stresses. To this end, we impose the local yield condi-

tions on the stress fields: ( ) 
0

τ , where ( )   is a certain 1-homogeneous function and 


0  represents a plastic limit corresponding to the tensile test. Such an approach is com-

patible with the Hencky-Nadai-Ilyushin theory of elasto-plastic structures. The stress-

based problem of this theory differs from the stress-based problem of linear elasticity in 

the presence of the local yield condition ( ) 
0

τ  (see Chapter 5 in [15]). 

The introduction of the plasticity limit essentially changes the IMD method, since 

bounding the stresses entails bounding the values of the optimal bulk and shear moduli. 

The novelty of the present paper is this concept of the IMD method in its elasto-plastic 

setting.  

In the present paper, the yield condition will not involve the design variables; both 

the function ( )   as well as the bound 0  will be viewed as fixed during the optimiza-

tion process. On one hand, the elastic moduli represent only elastic properties and they 

can be viewed as having nothing to do with the plasticity limit, like in the case of a con-

tinuum description of brick masonry structures (see comments in Section 3 in [16]) or in 

composites with relatively stiff grains embedded within a soft matrix. It is clear that 

mainly the plastic properties of the matrix determine the overall plastic response of the 

composite. On the other hand, in general, all the effective characteristics of composites 

reflect the internal properties of the underlying microstructure (i.e., all features of the rep-

resentative volume element) (see [17]), which inevitably makes the design variables linked 

with the form of the plasticity limit. In the present paper, this link will not be taken into 

account. 

The natural formulation of the statics problem within the theory by Hencky-Nadai-

Ilyushin involves stresses as unknowns (see Chapter 5, Section 6.2 in [15]). The stress-

based FEM was already developed in the 1970s (see [18]) and then extended to elasto-

plasticity [19]. In the present paper, the present authors’ stress-based FE algorithm is pro-

posed, originated in [20] in the context of Anisotropic Material Design, extended to the 

elastic IMD setting in [3,10,11] and adopted here to the elasto-plastic version of the IMD 

method. Since the numerical method of solving IMD problems plays an essential role here, 

it is put forward in detail in Section 5, while the numerical optimization procedure is ex-

plained in Section 6.  

This paper does not concern the problem of the reconstruction of the microstructure 

whose effective properties would correspond to the optimum design proposed. Such re-

construction can be performed using the tools developed by Suquet in [17], which will be 

the subject of forthcoming works. 

The following notation and conventions are adopted. The d-dimensional design do-

main Ω is parameterized by the Cartesian coordinate system (x,y,z) for d = 3 and (x,y) for 
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d = 2. The components of the displacement vector u will be denoted by ( ), ,x y zu u u for d = 

3 and ( ),x yu u  for d = 2. In the 3D case (d = 3), the components of 2nd rank tensors of stress 

and strain in the (x,y,z) framework form the matrices: 

~

x xy xz

yx y yz

zx zy z

  

  

  

 
 
 
 
  

σ , ~

x xy xz

yx y yz

zx zy z

  

  

  

 
 
 
 
  

ε  (1) 

The sign ~ means that the tensor is represented by the given matrix in the fixed Car-

tesian coordinate system. Both stress and strain tensors are symmetric. Let I represent the 

identity matrix, or I = diag [1,1,1]. The scalar product of two vectors u, v is defined by 

 = + +
x x y y z z

u v u v u vu v . The set of 2nd rank symmetric tensors will be denoted by 2

sE . 

The scalar product of  2,
s

Eσ ε  is defined by: 

            = + + + + +2 2 2
x x xy xy y y xz xz yz yz z z

σ ε . (2) 

The Euclidean norms of the vectors and tensors in 2

s
E  are denoted by = u u u , 

= σ σ σ . The trace of the tensor  2

s
Eσ  is given by   = + +tr

x y z
σ . The deviator of 

 2

s
Eσ  is defined by: 

( )= −
1

dev tr
3

σ σ σ I . (3) 

The Euclidean norm of the deviator reads: 

( ) ( ) ( ) ( )         = − + − + − + + +
  

2 22 2 2 21
dev 6

3 x y x z y z xy yz xz
σ . (4) 

In the 2D case (d = 2), the tensors of stress and strain are represented by the matrices: 

~
x xy

yx y

 

 

 
 
  

σ , ~
x xy

yx y

 

 

 
 
  

ε . (5) 

The identity matrix is defined by I = diag [1,1]. The trace of the tensor  2

s
Eσ  is given 

by  = +tr
x y

σ . The deviator of  2

s
Eσ  is defined by:  

( )= −
1

dev tr
2

σ σ σ I  (6) 

or  

( )

( )

1

2dev ~
1

2

x y xy

yx y x

  

  

 
− 

 
 −
  

σ .  (7) 

The Euclidean norm of the deviator reads: 

( )  = − +
2

21
dev 2

2 x y xy
σ .  (8) 

For both cases of d = 2 or d = 3, the scalar product of the two tensors from 2 
s

E  can be 

rewritten as: 

 =  + Tr  Tr dev devσ ε σ ε σ ε  (9) 
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where: 

=
1

Tr  tr
d

σ σ  (10) 

which is a modified trace of a tensor. 

According to the linear theory of the continuum media, the strain tensor is the sym-

metric part of the gradient of the displacement vector. In the case of d = 2, we define the 

operation:  

( )

    
+  

     
=  

    
+       

1

2

1

2

yx x

y yx

vv v

x y x

v vv

y x y

ε v  (11) 

which determines the virtual strains corresponding to the virtual displacement field v. For 

a given function ( )f  of argument  2

s
Eσ , one can define its polar by:  

( ) ( )  → =  2  max  1 o

s
E f fη η η σ σ . (12) 

2. On the Hencky-Nadai-Ilyushin Theory of an Elasto-Plastic Body 

Within the theory by Hencky-Nadai-Ilyushin (also called Hencky’s theory, see [15]), 

the stress state σ is locally constrained by the plasticity condition: 

  ( ( )) 0,   F σ x x , (13) 

where Ω is the domain occupied by the body. The function F is assumed to be convex and 

continuous with respect to all stress components. Let us recall the HMH plasticity condi-

tion for isotropic metals proposed by Huber, Mises and Hencky (see [21]): 

   =3 3 3
0

3
  ,   dev 

2
D D D

eff eff σ ,  (14) 

where dev σ  is given by Equation (4) and refers to the 3D setting, and  3
0

D  is the plas-

tic limit corresponding to the tensile test. Thus, the hydrostatic state of stress = pσ Ican-

not cause plastic yielding, irrespective of the sign of the pressure p.  

The present paper deals with the optimum design of in-plane loaded, transversely 

homogeneous thin plates of thickness b; Ω will be its middle plane parameterized by the 

(x,y) system. In such a plate, the stress components   , ,
z xz yz

 are negligible in compar-

ison to other stresses. Substituting:   = = =0, 0, 0
z xz yz

 into Equation (14) leads to the 

HMH condition for the plane-stress problem: 

        = − + +2 2 2

0
  ,   3

eff eff x x y y xy .  (15) 

Here, the stress resultants are involved, still denoted by   , ,
x xy y

 of units N/m and 

 = 3
0 0

Db . It is worth noting that substitution   = = =0, 0, 0
z xz yz

 into Equation (4) 

does not lead to Equation (8). Indeed, Equation (15) now involves both stress invariants 

within the 2D setting, since:  

( ) ( ) ( )  = = +
221 3

  ,   Tr dev
2 2

eff σ σ σ σ  (16) 
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with Tr   = (tr )/ 2    and   devσ σ σ  defined by Equation (8). This shows that the func-

tion ( ) eff σ is isotropic. The function polar to ( ) σ  has the form: 

( ) ( )→ = +
22 2

  2 Tr dev
3

oη η η η . (17) 

Thus, we see that its construction can be performed by inverting the coefficients in 

Equation (16). The simplicity of this construction follows from the orthogonality of the 

tensors Tr  and  devσ I σ  and from Equation (9). Thus, the yield condition has the form 

of Equation (13) and ( ) = −
0

( )F σ σ . It is seen that in the considered case of the plane 

stress, the function ( ) σ  has all the properties of a norm; in particular, it vanishes only 

if all stress components vanish.  

Remark 1. In the plane strain problem of structures made of the materials satisfying Equation 

(14), the function ( ) σ  does not have the properties of a norm, since the condition ( ) = 0σ  

implies  = ,  Rσ I . Thus, within the theory of elasto-plasticity, there is a vital difference be-

tween the plane stress and plane strain cases. The results of the present paper cannot be transferred 

to the plane strain case; it would require an independent analysis. □  

The elastic energy stored in the plate, expressed in terms of the virtual stress field τ, 

is given by: 

( )




 
+ 

 


221 1 1
( )= Tr dev

2 2 2
W dxdy

k
τ τ τ ,  (18) 

the operations Tr(·) and dev(·) are defined by Equation (10) for d = 2 and Equation (6). The 

bulk modulus ( , )k x y  and the shear modulus  ( , )x y are determined like in the classical 

theory of in-plane loaded plates; their units are N/m. 

Any virtual stress field τ must satisfy the equilibrium equations, both local and along 

the loaded boundary of the domain, hence it should satisfy the virtual work equation: 



 =    ( ) ( )     ( )dxdy f Vτ ε v v v , (19) 

where ( )ε v  is given by Equation (11), while f(v) represents the virtual work of loads. If 

the body forces are neglected and the tractions of intensity g  are applied along the part 


1  of the contour  , then: 



= 
1

   ( )f dsv g v , 
(20) 

where s is the natural parameter of the contour 1 . The variational equation implies:  

—the local equations of equilibrium  

  
 

  
+ = + = =

   
0,     0,    

xy yx yx
xy yxx y x y

 (21) 

—the static boundary conditions 

   + = + =,  
x x yx y x xy x y y y
n n g n n g  (22) 

on the contour 1 . Such statically admissible stress fields form the set ( )  . In the prob-

lem considered, the stresses undergo the plasticity condition: 

( )( )  0,x yτ  for points (x,y) within  ,  (23) 
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where ( ) τ  is given by Equation (16). The set of stress fields satisfying Equation (23) will 

be denoted by ( )K . Thus, ( )   ( )Kτ . According to the results [15] concerning 

the Hencky-Nadai-Ilyushin theory, the unknown stress field σ  is the minimizer of the 

problem: 

( ) ( ) ( )




   
+      

   


221 1
( , )=min Tr dev  such that  ,J k dxdy K

k
τ τ τ τ . (24) 

The stress field σ is accompanied with the displacement fields ,
x y

u u  such that: 

 
  

 

 
  

 

 


 + −
= − +



 − +
= − + +



  
+ = + 

   

( , ),
4 4

( , ),
4 4

1 1
( , )

2 2

px
x y x

y p

x y y

y px
xy xy

u k k
x y

x k k

u k k
x y

y k k

uu
x y

y x

 (25) 

where the components of the so-called plastic strains   ( , ), ( , ), ( , )p p p
x y xyx y x y x y  are not 

kinematically compatible; they are not associated with any displacement field, i.e., there 

does not exist a vector field v such that Equation (11) holds. The pair ( , )pσ ε  satisfies the 

variational inequality: 

( )     
0

     such that p pσ ε τ ε τ τ  (26) 

representing the celebrated Hill’s principle of maximal plastic work. Having Equation 

(25), the equilibrium Equations (21) and (22) and the plasticity condition Equation (23) can 

construct the displacement fields ,
x y

u u  in the elasto-plastic structure.  

While the plasticity condition cancels extrema of the stress fields (see [22]), admitting 

the plastic components of strain degenerates the layout of the displacement fields (see 

[23]).  

Let us emphasize once again that the considered 2D problem is viewed as the plane 

stress problem of statics of a plate of constant thickness b. Thus, the intensities of the trac-

tions, the elastic moduli, the plastic limit 0  as well as the stress components are meas-

ured in N/m. The virtual work and the compliance have the units Nm.  

3. The Isotropic Material Design (IMD) Method within the Elasto-Plastic Range 

The aim is to construct the strongest transversely homogeneous plate made of the 

isotropic material of non-negative bulk and shear moduli; just these moduli are the only 

design variables of the problem. The unit cost of the design is assumed as trace of the 

Hooke tensor. In the 2D case, the eigenvalues of the Hooke tensor are: 2 ,2 ,2k   , hence 

the unit cost is equal to 2 4k + . The total cost is bounded by a constant 0 : 

( ) 0
2 4k dxdy



+  . (27) 

We shall assume in the sequel that the permissible stress 0
  does not depend on the 

design variables ( ),k  . Thus, the optimum design problem assumes the form:  

( ) 0
min ( , )   0, 0,   2 4Y J k k k dxdy  



  
=   +   

  
 , (28) 
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Y being the compliance of the optimal structure. Let us insert Equation (24) and perform 

minimization over the design variables ( ),k  , by making use of the sets ( ) ( ),K    

being independent of the design variables. The operation of minimization over the design 

variables can be performed by using the minimization result (see [24]): 

( )

1 2
1 2 1 2 1 2 0

1 2

2

1 2

0

min     over ,  such that:  0,  ( )

1
        

a a
dxdy u u u u u u dx

u u

a a dxdy

 



   
+   +   =  

   

 
= + 
  

 



 (29) 

in which 1 2
0, 0a a   are given functions in the domain Ω. The equality above is attained 

for: 

( )
( )

0

1 2

ˆ , ( , )  , =1,2
i i

u x y a x y i
a a dxdy




=

+
. 

(30) 

Upon assuming: 

22

1 2 1 2
2(Tr ) ,  4 dev , 2 , 4a a u k u = = = =τ τ  (31) 

we find:  

= 


2

0

1
Y , (32) 

where: 

( ) ( ) ( )


  
 =     

  
min    dxdy Kτ τ  (P)  (33) 

and the integrand is expressed by the norm: 

( ) Tr 2 dev = +τ τ τ .  (34) 

Assume that the problem (P) is solvable upon appropriate mathematical modifica-

tion; let τ  be the minimizer. The optimal moduli are expressed by: 



 

 = =
   

0 0

Tr ( , ) dev ( , )1 2
( , ) ,    ( , )

2 / 4 /

x y x y
k x y E x y E

τ τ
, (35) 

where 
0 0

/E =   . It is easy to note that Equation (27) is satisfied sharply.  

One can prove that the stress field in the optimal plate (in which the elastic moduli 

are determined by Equation (35)) coincides with the stress field τ  solving the problem 

(P). Thus, the method put forward makes it possible to form the safely designed least 

compliant plate structure in which the stress field satisfies both the equilibrium equations 

and the yield stress condition (Equation (23)). 
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4. The IMD Design: The Displacement-Based Elasto-Plastic Formulation 

4.1. The General Form of the Problem 

The IMD method requires the construction of the problem dual to (P) (see Equation 

(33)). To this end, we first release the constraints ( ) τ , and by treating the virtual 

displacements in Equation (19) as Lagrange multipliers, we rearrange (P) to the form: 

( )
( ) ( )

   


  
 = + −    

  
( )

min max ( )  
K V

f dxdy
τ v

v τ τ ε v .  (36) 

The operations: min and max can be interchanged (see [25]), which makes it possible 

to re-write Equation (36) as below: 

( )
( ) ( )

( )
( ) ( )







  


   


 


  
 = + −  =   

  

  
= −  − =   

  

  
= − 

  







( )

( )

0
( )

max ( ) min  

max ( ) max  

max ( ) ( ( ))  

KV

V K

V

f dxdy

f dxdy

f h dxdy

τv

v τ

v

v τ τ ε v

v τ ε v τ

v ε v

 (37) 

where 

( )

( )( )
2

0
0

1
( ) max

sE
h

 


 



=  −
τ
τ

ε τ ε τ .  (38) 

In the next step, we shall find the explicit form of Equation (38); its form will not 

involve the parameter 0
 . 

4.2. Construction of the Potential ( )h ε and the Explicit Formulation of the Problem Dual to (P)  

By using Equation (9) for the scalar product of two tensors from 2

s
E , taking into ac-

count Equations (34) and (16) and remembering that d = 2, we rewrite the local problem 

(Equation (38)) in the form: 

( ) ( )

 
2

2 2 2

0

0
                

Tr 3 dev 2

( ) max Tr Tr dev dev Tr 2 dev 
sE

h






+ 

=  +  − −
τ

τ τ

ε τ ε τ ε τ τ . 
(39) 

Let us introduce the notation: 

( ) ( )
1 1

Tr ,      Tr ,   ,    2 ,    ,    2
2 2x y xy x y xy

a p c b q r     = = = − = = − =ε τ   (40) 

and re-write Equation (39) in the form ( ) ( ) =0 0 1 , ,h h a c bε , where: 

( ) =0 1 , ,h a c b

( ) ( )

 
22 2 2

0

2 2

                , ,

3 2 2

max 2 2 2
p q r R

p q r

ap p qc rb q r





+ + 

− + + − + .  
(41) 

Let us introduce a new notation: 

1

0 00

3 3
,   ,     ,    / 2

22

p q r
x y z b b

 
= = = = .  (42) 

Equation (41) simplifies to the form: 

( )0 1
, ,h a c b = ( ) ( )2 2

1 0            ( , , ) (0,1)              

2
max 2

3x y z B
ax x cy b z y z 



 
− + + − + 

 
 (43) 
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where B(0,1) is a unit ball: 
2 2 2 1x y z+ +  . We see that the parameter 0

  is cancelled. 

Now, we introduce the spherical parameterization: 

cos ,    sin cos ,    sin sin ,   0 ,   0 2 ,   1x t y t z t t        = = =      . (44) 

Operation max over   gives: 

( ) ( )

1

2 22 2

1 1

cos ,    sin
bc

c b c b

 = =

+ +

,  
(45) 

which simplifies Equation (43) to the form: 

1
h =  ( ) ( )

 

   


 

 
− + − 

             1
         0               

2
max 2 cos cos 1 sin

3t
t a   (46) 

where: 

( ) ( ) ( ) ( )
2 222

1

1 1 1
,      or    dev  

42 2
x y x y xy

a c b      = + = + = = − +ε  (47) 

Let us introduce a division of the set 2

s
E  into the subdomains: 

   
   
   

2 ' 2

0 1

'' 2 ' 2

1 2

'' 2 2

2 3

Tr 1,  dev 2 ,    Tr 1,  dev 2

Tr 1,  dev 2 ,   Tr 1,  dev 2

Tr 1,  dev 2 ,   Tr 1,  dev 2

s s

s s

s s

D E D E

D E D E

D E D E

=    =   

=   −  =   

=   −  =   

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

 (48) 

Remark 2. The set 0
D  coincides with the set: 

( ) 1o ε  (49) 

where ( )o   is the function polar to ( )  . Indeed, the function ( )o   has the form: 

( )
1

max Tr , dev
2

o
 

=  
 

ε ε ε  (50) 

derived in [14], which confirms the above observation. □ 

The division (Equation (48)) of 2

s
E  into subdomains can be shown in the plane of 

principal strains. Let us recall that: 

( )
1 1

Tr ,  dev
2 2

I II I II
   = + = −ε ε  (51) 

Now, we are ready to show the explicit formula for the potential ( )h ε  defined by 

Equation (38), see Figures 1 and 2. 
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( )h ε  = ( ) ( )

( )

( ) ( )

 − 



 + 


 − + − 




− 



+ + − 


'
1

0

''
1

22 '
2

3

22 ''
2

2 Tr 1       

0                       

2 Tr 1      

2
3 Tr 1 dev 2     

3

2
 dev 2                             

3

2
3 Tr 1 dev 2    

3

D

D

D

D

D

D

ε ε

ε

ε ε

ε ε ε

ε ε

ε ε ε

  (52) 

The function ( )h ε  is continuous, i.e., it is continuously stitched along the lines 

Tr 1,   Tr 1,   dev 2= = − =ε ε ε  (see Figure 1). Moreover, it is convex, of linear growth 

outside the central domain D0, vanishes at =ε 0  and is non-negative. In conclusion, the 

problem dual to (P) (see Equation (33)) assumes the form:  


 



  
 = − 

  
0

( )
max ( ) ( ( ))  

V
f h dxdy

v
v ε v . (P*) (53) 

One can prove that this value coincides with Equation (33), and the duality gap is 

zero. The pair (P), (P*) constitutes the LCP problem in the meaning of Bouchitté and 

Fragalà [13]. 

 

Figure 1. The division (Equation (48)) of the plane of principal strains into subdomains. 
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(a) (b) 

 
(c) 

Figure 2. Scatter plots of the function h(ε) in the plane of principal strains εI, εII denoted as x-axis, 

y-axis, respectively. The axonometric (a), side (b) and top (c) view, respectively. 

Remark 3. Within the linear elastic range, Equation (53) reduces to: 

( )( ) 
 

=  
( )

max ( ) ( , ) 1  a.e. in  o

V
f x y

v
v ε v .  (54) 

Note that the locking domain ( )( )( , ) 1o x y ε v  is just the domain D0 given by Equation (48) 

(see Remark 2). Moreover, one can prove that the displacement field ( ),
x y

u u  in the optimal struc-

ture (whose moduli are given by Equation (35)) is proportional to the maximizer v  of Equation 

(53): 


=
0

u v .  (55) 

Thus, the optimization process introduces the bounds on strains, while the values of stresses follow 

the values of the optimal elastic moduli. □ 

5. Construction of the Approximants of Statically Admissible Stresses 

The optimal moduli ,k  
 are determined by the solution to Equation (33). There-

fore, it is thought appropriate to concentrate attention just on this problem and not on its 

dual form (Equation (53)). The aim of the present section is to show the numerical con-

struction of sequences of sets ( )h
   approximating the set ( )   of statically admissi-

ble stresses, e.g., stresses equilibrating the given boundary traction load, hence satisfying 

the equilibrium Equations (21) and (22); index h symbolizes the mesh density parameter. 

The description of the sequence of approximating sets ( )h
   needs specific nota-

tion, linked directly with the C++ programming syntax. The reader is asked to accept that 

the indices will start now from 0, not from 1. In particular, from now onward, the axes 
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(x,y) will be denoted by ( )0 1
,x x ; consequently, we shall write 0 1

,f f  instead of ,
x y

f f  

and 00 01 10 11
, , ,f f f f  instead of , , ,

x xy yx y
f f f f .  

If Ω is a polygon, then the stress-based finite element method can be formulated as: 

find the interpolation ( )   
h h

σ  of the statically admissible stress tensor field 

( ) σ , such that: 

 

    =  
1

h h h h hV D d dsυ σ υ g υ ,  
(56) 

where Dv represents the gradient of a vector field v and ( ) 
h

V V  is the finite element-

wise subspace of functions ( ) = → 2
0 1, :h h h Rυ  spanned by the polynomials of an ap-

propriate degree. The P1 (or Q1) degree polynomials p = p(x) 

( ) ( ) ( ) =  = = + + +   
2

0 1 00 10 0 01 1 11 0 1 00 10 01 11, , , ,
T

x x R p p p p x p x p x x p p p p Rx x   

are adopted in this paper (see [26]). 

The finite element mesh in the domain Ω is composed of M 3- (or 4-node) finite ele-

ments e
    covering the whole domain, provided it is a polygon. Let 


= e

e
h hυ υ  be 

the truncation of hυ  to the e-th element. Thus, the values ( ) ( ) ( )( ) = 0 1,h h hυ x x x  of the 

vector field ( ) = 0 1,h h h hVυ  truncated to the e-th element may be equivalently repre-

sented as two-dimensional vector: 

( ) ( ) ( ) ( ) ( ) ( )      +

= =

 
 = =  =   

 
  2

0 1 2 2 1
0 0

, 2 3 ,  

Tm m
Te e e e e e e

h h h i i i i e
i i

R mx x ξ x x x , (57) 

where 
0 1 2 2 1
, ,..., ,e e e e

m m
   

+
 are the unknown values of the scalar functions ( )e

hi
  , i = 0,1 at 

three (or four) subsequent vertices of the triangle (quadrilateral) e
 , while the polynomi-

als :e

i e
R  → , i = 0,1,…,m are the shape functions, which depend explicitly on the Car-

tesian co-ordinates ( )=  2
0 1,e e e

i i iz z Rz , i = 0,1,…,m of the three (m = 2) or four (m = 3) vertices 

defining a triangular or quadrilateral finite element Ωe (see Figure 3). In the case consid-

ered, the formulae defining the shape functions in Equation (57) are relatively simple. 

However, even here it is thought appropriate to avoid using the functions ( )e

i
   in Equa-

tion (57) and replace them by far more simple shape functions: : , 0,1,...,
i

R i m → = , 

defined on the master element; in our problem, these functions are expressed by: 

( ) ( ) ( )      = − − = =0 0 1 1 0 2 11 ,   ,   ξ ξ ξ   (58) 

for triangular reference (master) element and  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

         

         

= − − + = + − −

= + + + = − + −

0 0 1 0 1 1 0 1 0 1

2 0 1 0 1 3 0 1 0 1

1 1
1 ,  1

4 4
1 1

1 ,  1
4 4

ξ ξ

ξ ξ

   (59) 

for square master element, where  =    
2

0 1 ω
T

Rξ . The implementation of the 

shape functions (Equations (58) and (59)) for an arbitrary e
  element necessitates the in-

troduction of a family of mappings ( ) ( )= → =0 1, :ω , ωe e e e
e eF FF F , which link the 

master element ω with an arbitrary element e
  such that 

( ) ( ) ( ) = =  , , ωe e
i i eFx ξ x ξ ξ . This makes it possible to replace Equation (57) 

with a much simpler one:  
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( ) ( ) ( ) ( ) ( ) ( )      +

= =

 
 = = =   

 
 0 1 2 2 1

0 0

, , ω

Tm m
Te e e e e e

h h h i i i i
i i

Fx x x ξ ξ x ξ ξ . (60) 

The geometric mapping →:e
eF  is defined in a similar manner as the field e

hυ  

has been constructed. Using the shape functions i  and the Cartesian coordinates of 

nodes  =  0 1

Te e e
i i iz zz  of the finite element  e , we have the following simple relation: 

( ) ( ) ( ) ( )( ) ( )   
=

 =   = =  2 2
0 1 0 1

0

, ,
m

e e e e
i i e

i

R F F z Rξ F ξ ξ ξ ξ  (61) 

The derivative of this mapping is a linear operator represented by the matrix: 

( )

( ) ( )

( ) ( )

  
 
 
 =
  
 
   

0 0

0 1

1 1

0 1

e e

e

e e

F F

x x
D

F F

x x

ξ ξ

F ξ

ξ ξ

 (62) 

defined on master element ω (constant only for triangular element). On the basis of the 

easily calculated gradients ( ) i ξ  of the shape functions ( ) , ωi ξ ξ , the gradients 

( ) e
i x , i = 0, 1,…, m of the shape functions ( ) ( ) = ,e e

i ex x F ξ  are computed by:  

( ) ( )( ) ( )( ) ( )  
−

 = = 
Te e e e

i i iDx F ξ F ξ ξ  (63) 

drawing upon the knowledge of the matrix ( )( )
−TeDF ξ  being inverse-transpose to the 

matrix represented in Equation (62).  

 

Figure 3. The mapping Fe defining the relation between the triangular and quadratic master ele-

ment ω (on the left) and arbitrary current finite element Ωe (on the right). 
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In the adopted, purely stress approach, it is assumed that the interpolation of all 

stress components is defined analogously to the interpolation of the test displacement 

components ( ) ( )0 1
,e e

h h
   , i.e.: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

        

 

+ +

= = =

 
 = =   

 

= = 

  00 11 01 3 3 1 3 2
0 0 0

10 01

,

   , ,   ω

Tm m m
Te e e e e e e

h h h h i i i i i i
i i i

e e e
h h

σ x x x x ξ ξ ξ

x x x F ξ ξ

 (64) 

where 
0 1 2 3 0 3 1 3 2
, , ,..., , ,e e e e e e

m m m
     

+ + +
 are the unknown values of the scalar functions 

( ) ( ) ( )00 11 01
, ,e e e

h h h
      (i.e., nodal stresses) at three (or four) subsequent vertices of the tri-

angle (or quadrilateral) e
 . 

For the sake of simplicity, we assume that the load g applied to the boundary 

1
  =   of the design domain may have a different but constant value on selected 

sides of the polygon Ω, i.e., ( )  = = =  0 1

T
g g constx g x g , that is, we assume that a 

constant load is applied to the edge of any finite element, which is a fragment of the edge 

of the design domain Ω, possibly changing its value depending on the e-th number of the 

finite element e
 . This allows us to assume that the vector g can be defined by three or 

four constants on each edge vector (see Figure 4): 

20

1

e
e i
i e

i

g
R

g

 
=  
  

g , i = 0,1,…,m.  (65) 

 

Figure 4. Notation of traction forces applied to all three (or four) edges ( )0,1,2 ,3e

i
i =  of finite 

elements. 

The calculation of the integral over the entire domain Ω and its boundary Γ (strictly 

Γ1) in the variational Equation (56) can be reduced (as in classical, displacement-based 

FEM) to the calculation of the sum of the integrals over finite elements e
  and their se-

lected (i.e., loaded) boundaries 'e
 , which coincide with the boundary 1

     :  

 

    =   
'

' '

'
e e

e e e e
h h h h e h

e e

V D d dsυ σ υ g υ  
(66) 

Integration over e
  and 'e

  is shifted to the reference element ω and its boundaries 

ω , 0,1,...,
i

i m = . The left hand side is computed as follows: 
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( )( ) ( )( ) ( )

( ) ( )( ) ( )

( )
( ) ( )

( ) ( )
( )

( )( )( )

( )( )( )

( )( ) ( )( )

0 1 0 1

ω

0 1

ω

3 3 2
0

0 0

13 2 3 1
0 0

0 2

det

tr det

,

e

e e e e e e e

h h h h

e e e

h h

m m
Te e

e e
i i i i

he ei i

h hm m T
e ee e
hi i i i

i i

T
e e e e

h i

D dx dx D D d d

D D d

D

D

 

 

    

   

 



+
= =

+ +
= =

−

 =  =

=

 
 

   
 = =  
 

 
   
 

 =

 



 

 

σ υ σ F ξ υ F ξ F ξ

σ ξ υ ξ F ξ

ξ ξ F ξ
σ ξ υ ξ

F ξξ ξ

F ξ F ξ ( ) ( )( ) ( )( ) ( )1 2 1
0 0

,
m m T

e e e e

i h i i
i i

D   
−

+
= =

  =  ξ F ξ F ξ ξ

 (67) 

If the triangular element is used, the computation of the right hand side of Equation 

(56) is performed as below: 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

   

      

   



 =

=  +

+  − − + − +

+  +









'

' '

1
2 2' ' ' ' '

0 0 1

0

1
2 2' ' ' ' '

1 0 1

0

1
2 2' ' ' ' '

2 0 1

0

,0 ,0 ,0

,1 ,1 ,1

0, 0, 0,

e

e e
h

e e e e e
h

e e e e e
h

e e e e e
h

ds

DF DF d

DF DF d

DF DF d

g υ

g υ F

g υ F

g υ F

 (68) 

while in the case of quadrilateral elements, the computation is performed in the way: 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

   

   

   

   



−

−

−

−

 =

=  − − + − +

+  + +

+  + +

+  − − + −











'

' '

1
2 2' ' ' ' '

0 0 1

1

1
2 2' ' ' ' '

1 0 1

1

1
2 2' ' ' ' '

2 0 1

1

1
2 2' ' ' ' '

3 0 1

1

, 1 , 1 , 1

1, 1, 1,

,1 ,1 ,1

1, 1, 1,

e

e e
h

e e e e e
h

e e e e e
h

e e e e e
h

e e e e e
h

ds

DF DF d

DF DF d

DF DF d

DF DF d

g υ

g υ F

g υ F

g υ F

g υ F

 (69) 

Let N and Z represent the number of all nodes in the global finite element mesh and 

the number of the assumed (i.e., zeros) displacement degrees of freedom, respectively. 

The substitution of Equations (67)–(69) into the variational Equation (66) results in 

the set of linear equations =B T Q  representing the equilibrium conditions, where 
2 3N NR B  is the rectangular 2N × 3N statics matrix with 2N rows (equal to the total num-

ber of displacement degrees of freedom) and 3N columns (equal to the total number of 

stress nodal components), 2NRQ  is the vector of all known nodal loads and unknown 

nodal reactions and 3

0 1 3 1
... ...

T
N

j N
R   

−
 = 
 

T is the vector of all unknown 

nodal stresses 
j

  defining the components of the stress tensor, respectively. Similar to 

the methodology of the Force Method (well known in classical Structure Mechanics) used 

in the analysis of statically indeterminate bar structures, we perform the partition of the 

rectangular matrix B and vector Q into two matrices, upper ( )2 3N Z Nu R
− 

B  and lower 
3Z Nl R 

B , and two vectors, upper 2u N ZR −Q  (with known components) and lower 
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l ZRQ  (with unknown components), respectively. The (2N − Z) indices of the rows in 

upper matrix uB  correspond to the indices of the global, unknown, free displacement 

degrees of freedom, and the remaining Z indices of the rows in lower matrix lB  corre-

spond to the indices of the global, known, constrained degrees of freedom (corresponding 

to the boundary conditions). All components of the vector uQ  are known and the vector 

of the unknown boundary reactions can be calculated from the relation l l=Q B T  upon 

finding the vector T from the system of rectangular linear equations u u=B T Q . The set 

of all solutions of the equations u u=B T Q  can be expressed as: 

( )
1

0 1
0

,..., ,
s

s k k k
k

R   
−



−
=

  
 = = = +  

  
T T T T T   

where ( )
3

0 1 3 1
... ... , 0,1,..., 1

T
N

k k k jk N k
R k s   

−
 =  = −
 

T  are the vectors that 

span the s-dimensional kernel of the matrix uB  and 

3

0 1 3 1
... ...

T
N

j N
R       

−
 = 
 

T  is the arbitrary, fundamental solution of the set of 

linear equations u u=B T Q . In each e-th finite element e , the stress components (see 

Equation (71)) depend not only on ωξ  (i.e., ( )= e
ex F ξ ) and on appropriately se-

lected 3m + 3 indices 
j

i , 0,..., 3 2j m= +  (from among all 3N indices  0,1,...,3 1N− ) de-

fining local nodal stresses 
ji

 in e-th finite element, but additionally on s global parameters 

, 0,..., 1
k

k s = −  defining the linear combinations of the s base vectors k
T . In other 

words, upon constructing the solution (found only once) of linear, rectangular algebraic 

system u u=B T Q , one obtains a very simple approximation 
h

  of the statically admis-

sible set of the stress fields ( )   determined by s global parameters k
R   

( ) ( ) 3

0 1
,..., s

h h h s
S R  

−
 = =  = τ τ α α , (70) 

where in e-th finite element e
  the following interpolations of the stress components 

hold: 

( ) ( ) ( ) ( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )

( ) ( )
( )

( )

( )

0 3 3 0

0 3 3 0

1 4 3 1

1 4 3 1

00 0 1

1 1 1

0 1
0 0 0

11 0 1

1 1 1

0 1
0 0 0

01

...

...

...

...

m

m

m

m

e

h i i i m

s s s

k i k k i k k i k m
k k k

e

h i i i m

s s s

k i k k i k k i k m
k k k

e

h

      

        

      

        

 

+

+

+

+

  

− − −

= = =

  

− − −

= = =

= + + + +

+ + + +

= + + + +

+ + + +

=

  

  

α ξ ξ ξ

ξ ξ ξ

α ξ ξ ξ

ξ ξ ξ

α ( ) ( ) ( )

( ) ( )
( )

( )

( ) ( ) ( )

2 5 3 2

2 5 3 2

0 1

1 1 1

0 1
0 0 0

10 01

...

...

, , 0,1,...,3 2

m

m

i i i m

s s s

k i k k i k k i k m
k k k

e e

h h j j
i i e j m

    

        

 

+

+

  

− − −

= = =

+ + + +

+ + + +

= = = +

  

ξ ξ ξ

ξ ξ ξ

α α

 (71) 

6. Construction of the Approximate Solutions to the Problem (P) and Recovery of the 

Optimum Properties of the Initial Problem 

The test fields ( ) τ  of the problem (P) are interpolated by Equation (71) ele-

ment-wise. These interpolations are x-dependent, which is underlined by now using the 

notation ( ),hτ x α .  
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Let us re-write Equation (23) in the form: 

( )( ) ( ) ( ) ( ) ( ) ( )      = − + + 2 2 2
00 00 11 11 01 03τ x x x x x x . (72) 

According to the assumed stress field interpolation (Equation (71)), the discretized 

version of the problem (P) reads: find 
* sRα  such that: 

( )( )

( )( ) ( )( )

*

0 1

*

0 1 0

 ,

min  , and ,
s

h

h h
R

dx dx

dx dx



  






=

  
=    

  




α

τ x α

τ x α x τ x α
(Ph) (73) 

Integration in Equation (73) is performed numerically on master element ω, i.e.: 

( )( ) ( ) ( )( ) ( )0 1
ω

 being
Gauss
points

 ,   , dete e

h h
e

dx dx w D 


 
ξ
ξ

τ x α ξ τ ξ α F ξ , 
(74) 

where here ( ) = 0 1, ωξ  and ( )=w w ξ are Gauss integration points and weights, re-

spectively. In arbitrary element e and at arbitrary but fixed point ωξ , the gradient: 

( )( )
( )( ) ( )( ) ( )( )  


   −

   
 =  

    0 1 1

, , ,
,  ...

T
e e e
h h he s

h

s

R
τ ξ α τ ξ α τ ξ α

τ ξ α  (75) 

of the function ( )( ) → ,s e
hR Rα τ ξ α  appearing in the mapping: 

( ) ( ) ( )( ) ( )





 →

   =
ω

:

, det

s
h

s e e
h h

e

R R

R w Dα α ξ τ ξ α F ξ  (76) 

can be computed by the rule: 

( )( )
( ) ( )

( ) ( )

2 2

...

1
tr tr tr tr 

2
,

1tr tr 
2

...

0,..., 1 , 1 / 2 , 2

e ee
e eh he h
h hh

k ke sk
h

e e e e
h h h h

t c R

k s t c

 


 
 

   
 −        = + 

 
 − 

 
 
 

= − = =

τ ττ
τ ττ

τ ξ α

τ τ τ τ  (77) 

where: 

( ) ( )

( ) ( )

 

 

  

 

  
 

   =
   
 

   

00 01

10 11

, ,

, ,

e e
h h

e
k kh

e e
k h h

k k

ξ α ξ α

τ

ξ α ξ α
 (78) 

and: 
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( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( )

( ) ( )
( )


     




     




     



 

 

+

+

+


= + + +




= + + +




= + + +



 
= = − =

 

0 3 3 0

1 4 3 1

2 5 3 2

00
0 1

11
0 1

01
0 1

10 01

,
...

,
...

,
...

, ,
, 0,1,..., 1,

m

m

m

e
h

i k i k i k m

k

e
h

i k i k i k m

k

e
h

i k i k i k m

k

e e
h h

j j

k k

k s i i e

ξ α
ξ ξ ξ

ξ α
ξ ξ ξ

ξ α
ξ ξ ξ

ξ α ξ α

 (79) 

Equations (77)–(79) make it possible to calculate the quantity h  given by Equation 

(76) and s components of its gradient for arbitrary design parameter 
sRα , i.e.: 

( ) ( )( ) ( )

( ) ( )( ) ( )
ω

ω

, det

, det

s e e

h
e

e e s

h
e

R w D

w D R













 → =

=  





α ξ τ ξ α F ξ

ξ τ ξ α F ξ
 (80) 

In arbitrary element e, at arbitrary point ex  and for arbitrary 
sRα , let us re-

write Equation (23) as: 

( )   0e
xx α , ( ) ( )( )


 = −

0

1
, 1e e

x hα τ x α . (81) 

In arbitrary element e and at point ( )= e
ex F ξ  where ωξ  is arbitrary, the par-

tial derivative of Equation (81) with respect to k
  is equal to: 

( )

( )( )
    

    
     

       
= − + + +          

00 00 11 11 01
00 11 00 11 01

1 1
3

2,

e e e e e e
e e e e ex h h h h h
h h h h he

k k k k k kh

α

τ x α
, (82) 

where ( ) ( ) = =, , 0,1e e
hij hij i jξ α . For arbitrary p > 1, let us define the function: 

( )
0 if 0

: ;
if 0p

y
R R y

y y
 

 
→ = 



 (83) 

and write its derivative: 

( ) 
−


→ = 


1

0 if 0
: ;

if 0p

y
D R R D y

p y y
 (84) 

In the algorithm for the numerical solution of the (Ph) problem proposed below, we 

assume that the yield condition in Equation (81) is satisfied at a finite number of points, 

i.e., at all Gaussian points. For this reason, we slightly modify the notation of the func-

tional in Equation (81) and replace the lower index x symbolizing any point in Ω with a 

subscript denoting the successive Gaussian points counted in subsequent finite elements 

e
 , e = 0,1,…,M − 1, i.e.: 

( )
( )( )


 = −

0

,
1

e
h ge

g

τ x α
α , g = 0, 1,…., G − 1,  (85) 

where ( )= e
g ex F ξ  is the g-th image of the Gauss point ωξ  in the master element. 

The index g runs from 0 to G = m × M − 1, where m represents the number of Gauss points 
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in ω. We will also omit the superscript e identifying the number of finite elements. Now, 

we are ready to formulate the algorithm for solving the (Ph) problem: 

Step 0. Find a solution T of the static problem u u=B T Q . 

From now, the design parameter is the vector 
0 1 1

...
T s

s
R  

−
=    α . 

Step 1. For arbitrary real number P > 0, define the following penalty function: 

( ) ( ) ( )→   = +: ;s s
hf R R R f Pkα α α α ,  (86) 

where ( ) ( )( )
−

=

= 
1

0

G

g
g

k α α , and its gradient reads: 

( ) ( ) ( ) →    = +  : ;s s s s
hf R R R f P k Rα α α α  (87) 

where:  

( ) ( )( ) ( )
−

=

 =   
1

0

G
s

g g
g

k D Rα α α .  

Step 2. Initialize (small) real numbers: accuracy ε > 0, multiplier χ > 1, exponent p > 1, 

penalty P > 0. 

Step 3. Initialize design parameter 0
α .  

Step 4. Starting with 0
=α α , apply any algorithm of the nonlinear mathematical pro-

gramming to find the solution ( )* arg min
s

s

R

f R


= 
α

α α  of the unconstrained problem 

( )* min
sR

f f


=
α

α , where the function ( )f α  and its gradient ( ) f α  are defined by 

Equations (86) and (87), respectively. 

Step 5. If ( ) *P k α  then STOP, otherwise calculate the new value of the penalty 

parameter as P = χ P and initialize design parameter *

0
=α α . Go to Step 4. 

The approximants of the problem (P) (see Equation (33)) computed by the above al-

gorithm will be denoted by *. The quantity Y* will represent approximants of the optimal 

compliance Y (see Equation (32)). 

7. Case Studies and Discussions 

In the analysis of plate structures loaded in the plane, deforming within the linear 

elastic range, it is impossible to prevent singularities of stresses around critical points or 

along some lines. These points are reentrant corners, places where the load is concentrated 

or where the boundary conditions change abruptly and the structure loses its support. 

One can achieve better control over the stress level if the structure is not supported and 

the load is self-equilibrated; however, such problems are usually not practical. The stress-

based LCP problem of the IMD method within the elastic range (the specific case of prob-

lem (P), Equation (33), with the yield condition being neglected) also suffers from the 

drawback of the possible appearance of stress singularities. Thus, according to Equation 

(35), the optimal moduli blow up at these places. To be more precise, the bulk modulus 

becomes infinite where the trace of stress tensor is singular; the shear modulus blows up 

where the norm of the stress deviator tends to infinity. In the plane stress problem con-

sidered, the HMH condition assumes the form of Equation (15). That is why introduction 

of the yield condition (Equation (23)) alleviates all components of stress. Thus, one can 

expect that the condition (Equation (23)) in the IMD setting should bring about cutting all 

extremes of all components of the stress field solving the auxiliary problem (P), hence 

making regular all layouts of the optimal elastic moduli. 

Two optimum design problems are considered:  
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- Designing the material layout within the rectangular cantilever plate (of the in-plane 

dimensions 2L by 4L, see Figure 5a) subjected to a lateral constant traction of intensity 

gx: Examples 1a, 1b, 1c;  

- The optimum design of the L-shaped plate, see Figure 5b, subjected to the vertical 

shearing traction along one vertical side: Examples 2, 3. 

 
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. The vertical cantilever (a) covered by the regular quadrilateral and triangular FEM 

meshes and L-shaped cantilever (b) covered by the regular quadrilateral FEM mesh. The irregular 
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FEM meshes (c,e) of triangular finite elements along with the enlarged fragments (d,f) around the 

reentrant corner covering two variants of the L-shaped cantilevers, respectively. 

Within the purely elastic IMD method, the optimum cantilever plate suffers singular 

layouts of the moduli around the left and right ends of the support. Due to the linear 

elastic approach, the moduli are proportional to the magnitude of the load, while the 

shape of the layout is load-independent. The plastic version of the IMD introduces an 

essential change: the optimal layout of the moduli does depend upon the ratio:  0/xg , 

hence the layout of the optimal moduli becomes dependent on the magnitude of the load. 

We also have control over the size of plastic zones. One of the aims of the present paper 

is to analyze sequences of the optimal designs corresponding to various values of the ratio 
 0/xg . 

The optimal designs of the rectangular cantilever plate have been constructed by us-

ing the special software based on the numerical scheme outlined in Section 5. Two kinds 

of finite elements are used: the triangular (T) and quadrilateral (Q) described in Section 5. 

Both FE meshes are regular. 

The same software has been used to design the optimal moduli within: the L-shaped 

plate of sharp corners (see Figure 5b,c) and within the L-shaped plate with the reentrant 

corner being slightly rounded (see Figure 5e). The plate in Figure 5b is meshed by quad-

rilateral finite elements; the mesh is regular. The meshes for the plate in Figure 5c,e are 

irregular and composed of triangular finite elements. 

Let us fix the data: the thickness b of the plate and the length =1.0L m . The material 

to be designed is viewed as a composite of the properties varying around the values of 

the physical characteristics of aluminum. Thus, in all examples the referential Young mod-

ulus and the Poisson ratio are assumed to be equal: = =72000.0 , 0.34E MPa , respec-

tively. The yield stress will be fixed as:  = =3
0 0 / 50.0D b MPa. Let us note that the yield 

stress 0  has the units N/m, like the units of the stress resultants in the in-plane loaded 

plate. The value of the referential modulus E0 (this is not Young’s modulus, its units are 

N/m) appearing in the isoperimetric condition (Equation (27)) is assumed now as E0 = 2k0 

+ 4µ0, where: 

( ) ( )


 
= =

− +
0 0,

2 1 2 1

Eb Eb
k  (88) 

are characteristic bulk and shear stiffnesses of the plate of thickness b, made of the refer-

ential homogeneous material with moduli ,  E . The values of the remaining parameters 

appearing in the penalty function algorithm are adopted as follows: 

 −

− −

=  =

= =  = 

4

2 5

5.0 10 ,    1.3

2,   1.0 10 ,  1.0 10p

accuracy multiplier

ex initial P fponent penalty tol
  

The last quantity ftol is a parameter used in the gradient-oriented frprmn(…) proce-

dure in C++ (see [27] implementing the Fletcher–Reeves–Polak–Ribiere algorithm of the 

minimization of functions without constraints). Numerical integration has been per-

formed for the master element on the basis of the rules of integration with one and four 

Gauss points for triangular (T) and quadrilateral (Q) finite elements, respectively. All the 

data are now given, and the results are ready to be replicated. 

Example 1. The optimum design of the rectangular cantilever plate  

Case 1a. The lateral horizontal traction of intensity gx = 0.01 ∙ σ0 applied to the left edge 

(see Figure 5a).  

The optimum design problem (Equation (28)) has been solved by applying the nu-

merical method outlined in Sections 5 and 6. The two regular FEM meshes composed of 
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34 × 69 = 2346 quadrilateral and 68 × 69 = 4692 triangular finite elements were used. It has 

occurred that for sufficiently dense FEM meshes, the results obtained for triangular and 

quadrilateral elements are practically identical (see Figures 6 and 7). For this reason, the 

next results of optimal distributions of elastic moduli will be presented for a mesh 

spanned only by quadrilateral or only by triangular finite elements. 

 

 

(a)  

  
(b) (c) 

  
(d) (e) 

Figure 6. Optimal solutions of the problem of Example 1a. (a) The plot of the γ function, (b) bulk 

modulus k*/b, (c) shear modulus µ*/b, (d) Young’s modulus E*/b, (e) Poisson’s ratio ν* in the case of 

FEM mesh composed of quadrilateral elements. 
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(a)  

  
(b) (c) 

  
(d) (e) 

Figure 7. Optimal solutions of the problem of Example 1a. (a) The plot of the γ function, (b) bulk 

modulus k*/b, (c) shear modulus µ*/b, (d) Young’s modulus E*/b, (e) Poisson’s ratio ν* in the case of 

FEM mesh composed of triangular elements. 

The optimal layouts of the moduli * *, k  have been constructed by Equation (35), 

and the moduli * *,  E  are computed by: 

 


 

−
= =

+ +

* * * *
* *

* * * *

4
,      

k k
E

k k
 (89) 

(see Figures 6 and 7). Because the traction is small, Equation (23) does not introduce es-

sential cutting of the plot of ( ) σ . The final numerical results are:  

Optimal compliance Y*/b = 0.0001769 MN and П*/b = 17.509 MN: mesh (Q)  

Optimal compliance Y*/b = 0.0001764 MN and П*/b = 17.483 MN: mesh (T)  

Case 1b. The lateral traction of intensity gx = 0.1 ∙ σ0 applied to the left edge. 
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The optimal layouts of the moduli * *, k , * *,  E  have been constructed (see  

Figure 8). The final numerical results are:  

Optimal compliance Y*/b = 0.0197369 MN and П*/b = 184.913 MN: mesh (Q)  

Optimal compliance Y*/b = 0.0196817 MN and П*/b = 184.654 MN: mesh (T)  

 

 

 

(a)  

  
(b) (c) 

  
(d) (e) 

Figure 8. Optimal solutions for the Example 1b. (a) The plot of the γ function, (b) bulk modulus 

k*/b, (c) shear modulus µ*/b, (d) Young’s modulus E*/b, (e) Poisson’s ratio ν* in the case of FEM 

mesh composed of triangular elements. 

Zero (or numerically close to zero) values of the optimal moduli k* and µ* mean in 

practice the need to cut off these sub-areas from the entire Ω domain. In Figure 9 the same 

as in Figure 8, the optimal distributions of elastic moduli are shown with a clearly visible 

modification of the optimal shape of Ω consisting of cutting off the right upper corner of 

the cantilever at all those points where both optimal values of k* and µ* are equal to zero 

or are numerically close to zero. However, the correct cutting off of the material inside the 
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design domain cannot be easy programmed. For this reason, in the further examples, the 

empty domain within the design domain will not be cut off. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Optimal solutions for the Example 1b. In (a–d), the optimal layouts of the bulk, shear and 

Young moduli k*/b, µ*/b, E*/b and of Poisson’s ratio ν*, with the upper right corner of Ω being cut off, 

in the case of FEM mesh composed of triangular elements. 

Case 1c. The horizontal lateral traction of intensity gx = 0.125 ∙ σ0 applied to the left vertical 

edge. 

The optimal layouts of the moduli * *, k , * *,  E  have been constructed (see Figure 

10). The final numerical results are:  

Optimal compliance Y*/b = 0.0335001 MN and П*/b = 240.908 MN: mesh (Q)  

Optimal compliance Y*/b = 0.0334105 MN and П*/b = 240.585 MN: mesh (T)  

 

 

 

(a)  
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(b) (c) 

  
(d) (e) 

Figure 10. Optimal solutions of the problem of Example 1c. (a) The plot of the γ function, (b) bulk 

modulus k*/b, (c) shear modulus µ*/b, (d) Young’s modulus E*/b, (e) Poisson’s ratio ν* in the case of 

FEM mesh composed of quadrilateral elements. 

Having constructed the optimal designs for three subsequent, increasing magnitudes 

of the lateral traction, one can discuss the influence of the parameter gx/σ0 on the final 

solutions. Along with the increase in the lateral load gx, one can observe that those zones 

of the design domain Ω expand, in which the optimal moduli k* and µ* assume high or 

moderate values; those zones are shown in orange and red. This is very visible while com-

paring the layouts of the moduli k* and µ* in the vicinity of the lower vertices of the design 

domain, along the lower horizontal edge and both the vertical edges. In the case of the 

small load, which does not induce the plastic zones within the design domain, making the 

mesh denser causes the shrinking of the zones of high values of the optimal elastic moduli 

(see Figure 6) to several finite elements (whose dimensions are smaller and smaller if the 

mesh is made denser) around the corners. Just in these elements, the values of the optimal 

moduli grow up, thus making the cost condition satisfied. These values tend to infinity 

along with making the mesh denser and denser. By the introduction of the plastic limit 

within the whole design domain, we ban the mentioned tendency to accumulate the high 

values of the optimal moduli around some points; the zones of high values of the moduli 

become broader along with the expansion of plastic zones. This tendency is easy to verify 

by comparing the optimal layouts of the elastic moduli shown in Figures 6–10. The plastic 

zones are places where the γ function attains the upper bound—see places in yellow in 

Figures 8, 9, where the plot of the function γ becomes flat. Let us note that the intensity of 

the load can be increased only up to a certain limit; if this limit is exceeded, the problem 

(Ph) ceases to be solvable. Moreover, it is worth stressing that in each case (presented in 

Figures 6–10) the optimal Poisson ratio assumes the values from the whole admissible 

range: (−1,1); in particular, the auxetic zones (with negative Poisson ratio) appear in all 

cases, where necessary. In the case of the appearance of optimal plastic zones, the shape 

of the sub-domains in which the Poisson ratio remains negative changes slightly, always 

keeping the full range of its extremely small negative values. This can be partially ex-

plained by recalling the well-known properties of auxetic materials, in particular those 

related to the influence of negative Poisson’s ratio on the values of the stress concentration 
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factor in the design of body components subjected to stress: “When the Poisson’s ratio be-

comes negative, stress concentration factors are reduced in some situations and unchanged or in-

creased in others.”—see [28]. The results of many studies suggest that very often (but not 

always) a negative Poisson’s ratio gives the lowest possible (i.e., the most desirable) value 

of the stress concentration factor, which can be, in an analogous way, justified by our nu-

merical results of optimal distributions of elastic moduli minimizing the compliance of 

the elasto-plastic body with a simultaneous demand to meet the Mises plasticity condition 

at all points within the design domain Ω. However, the study does not analyze the impact 

of the optimal auxetic sub-domains on the values of the stress concentration factors. Many 

very interesting results on this subject can be found, e.g., in the monograph [8].  

Example 2. Optimum design of the L -shaped cantilever plate (see Figure 5b–d). 

The design problem has been solved with the use of regular and irregular FE meshes 

composed of 2523 quadrilateral or 5833 triangular finite elements, respectively. The L–

shaped cantilever is loaded with the vertical tangent traction of intensity gy = 0.1 ∙ σ0 ap-

plied to the right lower vertical edge. The optimal layouts of the moduli * *, k , * *,  E  

have been constructed (see Figure 11). The final numerical results are:  

Optimal compliance Y*/b = 0.0093363 MN and П*/b = 77.881 MN: mesh (Q)   

Optimal compliance Y*/b = 0.0092781 MN and П*/b = 77.638 MN: mesh (T)  

 

 

 

(a)  

  
(b) (c) 
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(d) (e) 

Figure 11. Optimal solutions of the problem of Example 2. (a) The plot of the γ function, (b) bulk 

modulus k*/b, (c) shear modulus µ*/b, (d) Young’s modulus E*/b, (e) Poisson’s ratio ν* in the case of 

FEM mesh composed of quadrilateral elements. 

Example 3. Optimum design of the L-shaped cantilever with a slightly rounded reentrant 

corner, see Figure 5e,f. 

The plate is covered with an irregular mesh of 5803 triangular finite elements. The 

cantilever is loaded with the vertical tangent traction of intensity gy = 0.1 ∙ σ0 applied to the 

right lower vertical edge. The optimal layouts of the moduli * *, k , * *,  E have been 

constructed (see Figure 12). The final numerical results are:  

Optimal compliance Y*/b = 0.0078393 MN and П*/b = 71.581 MN: mesh (T)  

 

 

 

(a)  

  
(b) (c) 
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(d) (e) 

Figure 12. Optimal solutions of the problem of Example 3. (a) The plot of the γ function, (b) bulk 

modulus k*/b, (c) shear modulus µ*/b, (d) Young’s modulus E*/b, (e) Poisson’s ratio ν* in the case of 

FEM mesh composed of triangular elements. 

All the remarks concerning the interpretation of the results concerning the rectangu-

lar cantilever apply here. Moreover, by making the reentrant corner curve smoothly, we 

alleviate the stress concentration, thus making the optimal Young modulus and Poisson’s 

ratio layouts much more regular (see Figures 11 and 12). 

8. Conclusions 

The hitherto existing works on topology optimization enhanced with local stress con-

straints have been formulated within the elastic range: on the stress components, being 

associated with the displacement field, the local constraints are imposed; they can concern 

all the components of stresses (see [29]) or the effective stress (see, e.g., [30]). In the present 

paper, another formulation of the topology optimization problem is set forth: the Hencky-

Nadai-Ilyushin elasto-plastic theory is adopted in which the stress state is not linked di-

rectly with the displacement field. Thus, the optimal structure (here: an in-plane loaded 

plate) works within the elasto-plastic range. Consequently, the optimal design does de-

pend upon the ratio: intensity of the load/yield stress. One of the aims of this paper is to 

analyze the variation of the design for a given load, if the yield stress level varies. It turns 

out that the approximants П* of the optimal compliance calculated for subsequent values 

of the plasticity limit and fixed intensity of the traction load decrease with the increasing 

value of yield stresses σ0 (see Figure 13a). If for an assumed intensity of the traction load 

the yield stress is taken too small, it is not possible to attain the minimum П* of the map-

ping Пh, which means that an optimal solution does not exist. Similar conclusions hold in 

the case of increasing the load gx for the assumed constant value of the yield stress σ0 (see 

Figure 13b). 

  
(a) (b) 

Figure 13. Optimal П* = П*(σ0, gx) calculated for the rectangular cantilever (see Figure 5a) as a func-

tion of: (a) yield stress σ0, i.e., П* = П*(σ0) (lateral load gx is fixed), (b) intensity gx of the traction 

load, i.e., П* = П*(gx) (yield stress σ0 is fixed). 

П
*

gx

Optimal values of П(gx)
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The research planned will concern the design of the underlying microstructures ex-

hibiting the given effective yield limit, characterized by the effective moduli predicted by 

the IMD method. 
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