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Abstract: A clean energy revolution is occurring across the world. As iron and steelmaking have
a tremendous impact on the amount of CO2 emissions, there is an increasing attraction towards
improving the green footprint of iron and steel production. Among reducing agents, hydrogen
has shown a great potential to be replaced with fossil fuels and to decarbonize the steelmaking
processes. Although hydrogen is in great supply on earth, extracting pure H2 from its compound is
costly. Therefore, it is crucial to calculate the partial pressure of H2 with the aid of reduction reaction
kinetics to limit the costs. This review summarizes the studies of critical parameters to determine the
kinetics of reduction. The variables considered were temperature, iron ore type (magnetite, hematite,
goethite), H2/CO ratio, porosity, flow rate, the concentration of diluent (He, Ar, N2), gas utility,
annealing before reduction, and pressure. In fact, increasing temperature, H2/CO ratio, hydrogen
flow rate and hematite percentage in feed leads to a higher reduction rate. In addition, the controlling
kinetics models and the impact of the mentioned parameters on them investigated and compared,
concluding chemical reaction at the interfaces and diffusion of hydrogen through the iron oxide
particle are the most common kinetics controlling models.

Keywords: hydrogen; green steelmaking; kinetics; ironmaking; iron ore; reduction

1. Introduction

Nowadays, carbon dioxide emissions have become one of the most important envi-
ronmental concerns, the consequences of which include global warming. Approximately
7% of the total carbon dioxide produced in the world belongs to the iron and steel in-
dustries [1]. On average, 1.9 tons of carbon dioxide are emitted per ton of crude steel
produced. Hence, the iron and steel industries are trying to reduce carbon dioxide emis-
sions and make the iron production process more environmental-friendly by developing
new technologies [2]. Among the technologies being developed in this regard, hydro-
gen as a reducing agent [3–6], carbon capture and storage (CCS) [7,8], carbon capture
and utilization (CCU) [9,10], biomass as a reducing agent [11,12], and electrolysis can be
mentioned [13–15].

Hydrogen such as carbon monoxide can reduce iron oxides and produces water vapor
instead of carbon dioxide. At the moment, a mixture of hydrogen and carbon monoxide
is used for iron ore reduction in the direct reduction plants by reforming the natural gas.
Hence, it seems by performing some modifications and considering the technical and
economical essentials, direct reduction plants can use hydrogen as the only reducing agent
in the future. Furthermore, hydrogen can be produced from renewable sources such as
biomass that makes the process more environmentally friendly. Therefore, the reduction of
iron ore with hydrogen has attracted much attention in recent years [16,17].

In order to minimize the consumption of energy and other elements, it is crucial to
study the kinetics of reduction reactions. As there are several reactions that are occurring
simultaneously, the kinetics of reduction is very complex [18].
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Due to the working temperature, there are different ways to obtain metallic iron from
hematite. Reactions can be a chain of single reaction, single and double reaction or a triple
reaction as the following [19]: (Fe2O3, Fe3O4 and FeO corresponds to hematite, magnetite
and wüstite, respectively).

Fe2O3 → Fe3O4 → Fe for T < 450 ◦C (1)

Fe2O3 → Fe3O4 → FexO + Fe→ Fe for 450 ◦C < T < 570 ◦C (2)

Fe2O3 → Fe3O4 → FeO→ Fe for T > 570 ◦C (3)

Due to its nature, the kinetics of iron ore reduction by hydrogen can be classified as
gas–solid reactions. There are usually three kinetic-controlling mechanisms of diffusion
through the gas film layer, diffusion through the ash layer, and the chemical reaction for
these reactions (Figure 1). Hence, five steps can be considered for iron ore reduction by
hydrogen [3,20,21]:

1. Diffusion of hydrogen through the film surrounding the iron ore particle.
2. Diffusion of hydrogen through the blanket of ash (consisting of the final product, i.e.,

iron, and gangue such as silica, alumina, etc.) to the surface of the unreacted iron ore.
3. Chemical reaction of hydrogen with iron ore at this reaction surface.
4. Diffusion of the gaseous product (H2O) through the ash back to the exterior surface

of the particle.
5. Diffusion of the gaseous product (H2O) through the gas film back to the main body of

fluid [20,21].
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• Control by diffusion through the gas film

t
τ
= X, τ =

ρR
3bkgCg

(4)
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• Control by diffusion through the ash layer

t
τ
= 1− 3(1− X)

2
3 + 2(1− x) τ =

ρR2

6bDeCg
(5)

• Chemical reaction control

t
τ
= 1− (1− X)

1
3 , τ =

ρR
bk′′Cg

(6)

where “t” is time, “X” is fraction of reacted material (reaction fraction), and “τ” is the
reaction completion time. “ρ” is the density of solid reactant, “R” is the radius of the
particle, “b” is the stoichiometric coefficient of the solid reactant when the stoichiometric
coefficient of the gaseous reactant is equal to 1, “kg” is the mass transfer coefficient. “Cg” is
the concentration of the gaseous reactant in the main body of fluid, “De” is the diffusion
coefficient, and “k”” is the rate constant of the reaction.

For the high gas velocity, it can be assumed that film diffusion does not offer any
resistance to transfer and reaction. Thus, film resistance can safely be ignored [20,21].

It can be determined from Equations (5) and (6) that the reduction time is proportional
to R2 and R for the diffusion through ash layer and chemical reaction respectively. So, by
plotting log (time) vs. log (particle radius), the slope of the line can determine the kinetics
controlling mechanism [22].

Figure 2 illustrates that chemical reaction and ash diffusion are both controlling factors,
but diffusion limits the rate of reduction mainly near the end. Although several parameters
such as temperature, porosity, mineralogy, etc. have an effect on the kinetics of reduction, it
seems that the two mentioned mechanisms are the major kinetics controlling mechanisms
for the iron reduction by a gaseous reductant [22]. Some researchers also considered the
mechanisms based on nucleation and growth.
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In this research, the studies that have determined the effect of different parameters on
the kinetics of reduction by experiment, modeling and simulation are reviewed.
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2. Effect of Different Parameters on the Kinetics of Reduction
2.1. Effect of Temperature

The effect of temperature on the kinetics of reaction was investigated from two
points of view. The dependence of rate constant is explained by the Arrhenius equa-
tion (Equation (7)), where “k” is the rate constant, “A” is the frequency factor, which is
related to the frequency of collisions and the orientation of a favorable collision probability,
“Ea” is the activation energy, “R” is the ideal gas constant, and “T” is the temperature
in Kelvin.

k = A exp
−Ea

RT
(7)

The diffusion coefficient in solids also is a function of temperature and is expressed
by the Arrhenius equation (Equation (8)). In this equation, “D0” is the maximal diffusion
coefficient, “Ea” is the activation energy of diffusion, “R” is the ideal gas constant, and “T”
is the temperature in Kelvin.

D = D0 exp
−Ea

RT
(8)

Hence, in both cases, the rate of reduction will increase exponentially by increasing
the temperature.

Barde et al. investigated the reduction rate in the range of 800–1000 ◦C and found
that the increase in reduction rate by increasing the temperature is more effective at the
early stages of the reduction [23]. Valipour et al., presented a mathematical model of the
reduction of iron ore by a gas mixture of hydrogen, water vapor, carbon monoxide, and
carbon dioxide. The results confirmed the positive dependence of temperature on the
reduction rate. They found that the increase in diffusivity and reaction rate are the causes
of this phenomenon [24]. Tsay et al. also achieved similar results in their experiments and
mathematical model. Their results also showed that the higher diffusivity of hydrogen
at higher temperatures can overcome the larger gas transport resistance of the larger
pellets [25]. Baolin et al. found that for temperatures higher than 600 ◦C, the reduction of
Fe2O3 to Fe3O4 is very fast and as a result, the effect of temperature on the reduction rate is
not considerable. However, for the reduction of Fe3O4 to FeO the temperature becomes
more effective and increasing the reduction rate can be obviously detected. By the further
reduction of FeO to Fe, the effect of temperature becomes negligible again [19]. Wagner
et al. reached similar results. Their experiments showed that the effect of temperature
on the reduction rate is more intensive for the reduction temperatures lower than 800 ◦C
(Figure 3) [26]. Choi et al., achieved the 80% and 100% reduction at 5 and 10 s, respectively,
at 1100 ◦C [27] while the 80% was obtained in the study by Fruehan et al. in about 500 s at
600 ◦C, both in the 100% H2 flow [28].
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2.2. Effect of H2/CO Ratio

The ratio of hydrogen to carbon monoxide in the reducing gas is of great impor-
tance to control the reduction rate. The equilibrium diagram of iron oxides, hydrogen
and carbon monoxide (Figure 4) shows the equilibrium gas composition to reduce iron
ore. Thermodynamic calculations have shown that CO has a higher reducing ability at
lower temperatures, whereas reduction by H2 is more thermodynamically stable at higher
temperatures [29]. From a kinetic point of view, due to the atomic size of hydrogen and
its high diffusivity, H2 is a faster reductant in comparison with CO at temperatures above
850 ◦C [30]. Hence, increasing the temperature both thermodynamically and kinetically
improves the hydrogen reduction.
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Zuo et al. investigated the effect of mixture gas composition on reduction degree and
compared the experimental data with a mathematical model. In this study, increasing
the reaction rate with the higher hydrogen content in three temperatures (800 ◦C, 900 ◦C
and 1000 ◦C) is reported (Figure 5). This occurs due to the higher reducing and diffusing
capacities of hydrogen compared with CO at temperatures above 890 ◦C. Furthermore, as
the temperature increases the rise of reduction degree for the higher H2 content decreases,
which is also approved by Kemppainen et al. [31,32]. In addition, the suggested mathemat-
ical model presents an acceptable linear relationship with the reduction degree (over 93%).
The only exception is for the cases at 1000 ◦C, which is justified due to the deformation of
pellets at high temperatures [32].

In another study, Yi et al., studied the reduction rate of iron ore pellets at 850, 900,
950, 1000 and 1050 ◦C with varying H2/CO proportions from 0.4 to 2.6. By increasing the
ratio range from 0.4 to 1.6, a superior reduction rate was observed. On the other hand,
changing the ratio range from 1.6 to 2.6 has little effect on the reduction rate. This indicates
the importance of choosing the right ratio of H2/CO and not simply raising the amount
of hydrogen content [33]. Abdelrahim et al., found that the pellets reduced in CO-CO2-
H2-H2O-N2 have more porosity and surface area than that reduced in CO-CO2-N2 [34].
Formation of carbide, slower reduction, and reaching the complete reduction at higher
temperatures, for the hematite reduction by CO in comparison with H2 was reported by
Abu Tahari et al. [35].
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El-Geassy observed the role of hydrogen in the H2/CO gas mixture for reducing
wüstite. In this experiment, wüstite was reduced up to 25%. The next step was substituting
hydrogen with nitrogen for a while and then the reduction continued in pure CO atmo-
sphere. The result of this experiment compared with reducing the wüstite with pure CO
from the beginning. Figure 6 designates that using H2/CO instead of pure CO accelerates
the reduction rate. The main cause of this observation is the nucleating of iron on the
wüstite surface in the H2 atmosphere. The addition of H2 to CO facilitates the nucleation
of iron on the surface of the wüstite and also accelerates the growth of iron grains [36].
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2.3. Effect of Hydrogen Flow Rate

The hydrogen inlet flow rate can specify the overall concentration of hydrogen in the
reactive structure. Barde et al. studied the reduction of iron–silica Magnetically Stabilized
Porous Structure (MSPS) by hydrogen. Figure 7 shows the steam generation for 1.5 and
2 standard liters per minute hydrogen inlet flow rate at 800 ◦C. It was observed that a
higher inlet flow rate results in higher steam generation at the early stages of the reaction.
However, the two graphs are not notably different at the later stages [23]. Kawasaki et al.
realized that there is a critical gas velocity, which is specified experimentally at different
temperatures. The superficial gas velocity considered 0.01 to 0.03 mol/(min.cm3). Below
critical gas velocity, the gas flow rate controls the rate of the reaction [37].
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2.0 SLPM at 800 ◦C [23] “modified”.

Kulia et al. investigated the effect of various hydrogen flow rates (0.1, 0.2, 0.3, 0.4, and
0.5 L/min) on fractional reduction of magnetite ore at 900 ◦C and 1 atm pressure. The result
of the experiments shows an increase in fractional reduction as the flow rate raises from
0.1 to 0.4 L/min (Figure 8). In addition, the flow rates above 0.4 L/min are not noticeably
different from the others. Therefore, 0.4 L/min was considered as the optimum hydrogen
flow rate [38].
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Figure 8. Fractional reduction of magnetite vs. time plot for the reduction of magnetite ore fines at
different flow rates at 900 ◦C [38] “modified”.

Ohmi et al., evaluate the effect of hydrogen flow rate, which was diluted by N2/H2O
on the mixed control plots. The conclusion is similar to [32]. Furthermore, resistance
for gaseous diffusion around a pellet increases with the decrease in gas flow rate due to
experiments [39,40].

2.4. Effect of Mineralogy

Edstrom et al., compared hydrogen reduction of hematite with magnetite. As illus-
trated in Figure 9, the reduction of hematite by hydrogen is faster than the reduction of
magnetite, especially at higher temperatures. This is because of the hard and dense shell of
magnetite, which causes lower diffusivity [41]. Furthermore, due to the higher density of
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hematite (5.260 g/cm3) in comparison with magnetite (5.175 g/cm3), during the reduction
of hematite to magnetite, some microcracks form because of the volume change. The
formed cracks work as porosities and make the diffusion of gas easier (Figure 10) [42,43].
Heikkilä et al. compared the reduction behavior of iron ore pellets, sinter, and lump ore at
different temperatures. The lump ore showed the lowest reduction rate at all temperatures
due to its low porosity and surface area. At the lower temperatures, (lower than 800 ◦C)
the pellet reacted faster, but at the higher temperatures, the reduction rate of the sinter was
higher (Figure 11). It was found that it is because of the higher initial magnetite content in
the composition of the sintered sample, which reduces slowly at low temperatures [44].
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Oxy-hydroxides such as goethite have shown high reducibility due to the high surface
area caused by water loss [45].

Fruehan et al. found that if iron oxides are converted to magnetite and kept in the
same form as magnetite for a few minutes before reduction to iron, which can be called
“annealing”, it causes a decrease in the degree of reduction especially at higher temperatures
and lower hydrogen pressures (Figure 12) [28].
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2.5. Effect of Particle Size

Zhang et al. found that by increasing the pellet size from 5.5 to 8.5 mm, the reduction
rate decreases steadily due to the shorter diffusion distance (Figure 13) [46]. Similar results
were obtained by researchers [47–49], which were approved by mathematical modeling [24].
At low reduction temperatures, particle size is not an effective parameter and other rate-
limiting parameters become more important [50]. Hou et al. studied the reduction of
particle sizes from 0.025 to 0.2 mm. The results showed that for the particle sizes smaller
than 0.045 mm the dependence of reduction rate on particle size is not considerable, because
the internal diffusion resistance is neglectable for particle size below 0.045 mm [19].
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Figure 13. Dependence of reduction degree on reduction time of oxidized spherical pellets with
different diameters. Data obtained at 1070 ◦C in flowing H2 gas [46] “modified”.

Wagner et al. investigated the hydrogen reduction of three samples of coarse powder
(P1), sintered piece (S1), and nanopowder (N1). Although the specific area for N1 and S1
is higher than P1 due to their smaller particle size, the reduction of the P1 sample was
faster than the two other samples. By investigation of the reduced samples’ morphology,
it became clear that S1 and N1 samples became compact and lost most of their porosities
after reduction while the P1 sample retains its porosity after the reduction (Figure 14) [26].
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2.6. Effect of Impurities

The effect of impurities on the reduction of iron ore by hydrogen is mostly similar
to the reduction of carbon monoxide. Qie et al. found that by increasing the temperature
and hydrogen concentration, the formation of the phases such as MgFe2O4 and FexSiyO4
become faster, which increases the resistance of interfacial chemical reaction during the
reduction. Higher contents of CaO, SiO2, and MgO can be found in larger particles which
leads to the formation of cracks and accelerate the reduction of wüstite [51]. Alumina forms
Fe3O4–FeAl2O4 solution by diffusion of Al3+ from wüstite, which enriches the hercynite
content in the solution at the reaction interface. Further reduction of Fe3O4–FeAl2O4
solution leads to the formation of micro-cracks, which increases the rate of reduction
(Figure 15) [52]. However, in another research, Teplov found that the presence of Al2O3
and MgO decreases the rate of magnetite reduction by hydrogen and the effect of Al2O3 is
higher than MgO [47]. The presence of TiO2 of more than 0.5 wt.% increases the rate of
reduction at the beginning of the reduction process due to the formation of cracks in pellets
(Figure 16) [53].
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Figure 16. Effect of titanium dioxide on reduction of hematite. The curves show the difference from
the reduction curve of pure hematite. The grade of reduction for pure hematite can be read from the
secondary x-axis at the top of the figure [53] “modified”.

2.7. Apparent Activation Energy

Activation energy is the minimum energy required to perform a chemical reaction, or
in other words, the energy required to overcome a potential barrier. As mentioned earlier,
the dependence of constant rate on the activation energy is expressed by the Arrhenius
equation. In the case of complex reactions, the calculated activation energy is actually
the average of all elementary steps. However, for an elementary reaction, a spectrum of
individual collisions is related to billions of molecules with different geometries, angels,
and frequencies of vibration [54].

Researchers have used several methods based on the Arrhenius equation for deter-
mining the activation energy. The fraction of reaction is defined as:

α =
mi −m
mi −m f

(9)

where mi is the initial mass of the solid reactant (iron oxide), m is the actual mass of solid
reactant at the time of t, and mf is the final mass of the solid reactant at the end of reaction
or in other words, all of the solid mass that can react in the reaction.
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The rate equation for a gas–solid reaction is defined generally as:

dα

dt
= k(T)× f (α) (10)

where k(T) is the rate constant as a function of temperature, and f(α) is a function of the
fraction of reaction that depends on the kinetics model. Using the Arrhenius equation:

dα

dt
= A× exp

(
− Ea

RT

)
× f (α) (11)

ln

(
dα
dt

f (α)

)
= − Ea

RT
+ ln(A) (12)

By plotting the ln
(

dα
dt

f (α)

)
versus 1

T the activation energy can be determined from the

slope of the line [10,19,23,41,49,51,55–58] (Figure 17).
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Some researchers used the Kissinger method for calculating the activation energy [59,60].
In this method, the maximum rate of reaction is achieved when the derivation of the
equation with respect to time is zero:

d
dt

(
dα

dt

)
=

d
dt

(
A× exp

(
− Ea

RT

)
× f (α)

)
= 0 (13)

After derivation, Equation (14) is obtained:

A× Ea

RT2 × exp
(
− Ea

RT

)
dT
dt
× f (α) + A× exp

(
− Ea

RT

)
× d f (α)

dt
= 0 (14)

Using “Chain rule”, Equation (15) can be expressed as:

d f (α)
dt

=
d f (α)

dα
× dα

dt
(15)

The g(α) and Φ can be defined as:

dα

d f (α)
= g(α) (16)

dT
dt

= φ (17)
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Using Equations (11) and (14)–(17), Equation (13) can be further rewritten as:

ln
(

φ

Tm2

)
= ln

(
AR

Eag(α)

)
− Ea

RTm
(18)

where Φ is the heating rate and Tm is the temperature when the reaction rate is maximum.
By plotting ln

(
φ

Tm2

)
versus 1

Tm
the activation energy can be determined from the slope of

the line (Figure 18) [61].
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Figure 18. Temperature-programmed Arrhenius plots for the two-step reduction. (a) Fe2O3→ Fe3O4,
(b) Fe3O4 → Fe [60] “modified”.

The amounts of apparent activation energy determined in various studies related
to the reduction of iron oxides to hydrogen are listed in Table 1. As it turns out, the
activation energies have a wide range of values. This is because the value of activation
energy depends on the chemical composition, physical properties of materials, temperature
range, and process conditions. It is inferred from Table 1 that, the activation energy
decreases by increasing the percentage of hydrogen in the reducing gas, which indicates
the easier reduction of iron oxides by hydrogen than carbon monoxide. In addition, the
activation energy for the reduction of natural magnetite to iron is higher than the reduction
of magnetite, which has produced by the reduction of hematite. Furthermore, the activation
energy is lower for the higher temperature ranges and some researchers reported a decrease
in activation energy around a transition temperature that may be related to the changes in
the kinetics controlling mechanism.

Table 1. The amounts of apparent activation energy related to the reduction of iron oxides by hydrogen.

Reference Reduction Reaction/Step Ea (kJ/mol) Relevant Operating Conditions

[62] Fe2O3 → Fe 57.1 Pure Fe2O3
Fe2O3 → Fe 110.5 Fe2O3 mixed with MgO
Fe2O3 → Fe 108.4 Fe2O3 mixed with Al2O3
Fe2O3 → Fe 108.4 Fe2O3 mixed with In2O3
Fe2O3 → Fe 108.4 Fe2O3 mixed with Li2O
Fe2O3 → Fe 130.0 Fe2O3 mixed with TiO2
Fe2O3 → Fe 89.9 Hematite ore

[60] Fe2O3 → Fe3O4 89.1 5% H2 + 95% N2
Fe3O4 → Fe 70.4 5% H2 + 95% N2

[63] Fe2O3 → Fe 51.0 Hematite ore
Fe2O3 → Fe 96.1 Natural single crystals

[64] Fe2O3 → Fe 20–46 Fe2O3 nanopowder
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Table 1. Cont.

Reference Reduction Reaction/Step Ea (kJ/mol) Relevant Operating Conditions

[65] Fe2O3 → Fe 15–20 Fe2O3/metal Pellets
[58] Fe2O3 → Fe3O4 75.9

Fe2O3 → Fe3O4 94.8 10% H2 + 90% N2
Fe3O4 → Fe 88.0
Fe3O4 → Fe 103.0 10% H2 + 90% N2

[55] Fe2O3 → Fe 28.1 10% H2 + 90% N2
Fe2O3 → Fe 93.7 5.7% CO + 4.3% H2 + 90% N2

[56] Fe2O3 → Fe 111 Hematite pellet with biomass
Fe2O3 → Fe 122 Hematite pellet without biomass

[23] Fe3O4 → FeO 47
FeO→ Fe 30

[66] Fe3O4 → Fe 200 227 ◦C < T < 250 ◦C
Fe3O4 → Fe 71 250 ◦C < T < 390 ◦C
Fe3O4 → Fe 44 T > 390 ◦C

[67] Fe3O4 → Fe (step) 59–69 5% H2 + 95% He
Fe3O4 → Fe 61–75 5% H2 + 95% He

[19] Fe3O4 → FeO 13.5 5% H2 + 95% Ar
[57] Fe2O3 → Fe 37.4 25% H2 + 75% CO

Fe2O3 → Fe 40.1 50% H2 + 50% CO
Fe2O3 → Fe 54.3 75% H2 + 25% CO
Fe2O3 → Fe 53.5 100% H2

[51] Fe2O3 → Fe 50.9 5% H2 + 30% CO + 65% N2
Fe2O3 → Fe 36.3 10% H2 + 30% CO + 60% N2
Fe2O3 → Fe 35.8 15% H2 + 30% CO + 55% N2
Fe2O3 → Fe 30.4 20% H2 + 30% CO + 50% N2

[25] Fe2O3 → Fe3O4 92.0
Fe3O4 → FeO 71.1

FeO→ Fe 63.6
[48] Fe2O3 → Fe 215
[36] FeO→ Fe 53.7 100% H2

FeO→ Fe 60.6 75% H2 + 25% CO
FeO→ Fe 64.8 50% H2 + 50% CO

[59] Fe2O3 → Fe3O4 105–120 Fe2O3 nanopowder
Fe3O4 → Fe 55–45 Fe2O3 nanopowder

2.8. Kinetics Controlling Models

The summary of some research on the iron oxides reduction by hydrogen and the
used kinetics models are provided in Table 2. As was mentioned earlier, the kinetics model
depends on the reduction condition such as temperature, iron oxide type, particle size,
etc. The table shows that although some researchers have chosen the nucleation models
as the controller, chemical reaction at the interfaces and diffusion of hydrogen through
the iron oxide particle are two common models among the related studies and it seems
that the kinetics of iron ore reduction by hydrogen is mixed-control. Furthermore, it was
asserted by most of the researchers that the rate-controlling step is the reduction of wüstite
to iron when a dense shell of iron forms on the wüstite layer and the diffusion of hydrogen
through this shell becomes difficult [17]. In addition, it should be observed that increasing
the temperature improves the kinetics of reduction in both models, but its effect is more
significant for diffusion. Hence, at high temperatures and especially at the early stages of
the reduction, diffusion is not the rate controller [23,26].
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Table 2. Kinetics models of the iron oxides reduction by hydrogen due to the condition.

Reference Kinetics Controller Condition/Description

[62] topo chemical reaction Pure Fe2O3
[60] two-dimensional nucleation reduction of hematite to magnetite
[49] diffusion through ash

chemical reaction
[46] chemical reaction reduction of magnetite

[58] Two- and three-dimensional
nucleation T < 420 ◦C

chemical reaction T > 420 ◦C

[55] Two-dimensional nucleation
and chemical reaction initial stage

diffusion through ash end of reaction
[56] chemical reaction reduction of wüstite
[23] chemical reaction

[66] diffusion reduction of magnetite at
low temperature

[57] chemical reaction
diffusion through ash

[51] chemical reaction
diffusion through ash

[65] chemical reaction reduction of hematite to magnetite
diffusion through ash reduction of magnetite to wüstite

[36] chemical reaction reduction of wüstite to iron
[59] nucleation reduction of hematite to magnetite
[68] nucleation reduction of wüstite to iron
[33] chemical reaction reduction of hematite to magnetite

chemical reaction reduction of magnetite to wüstite
diffusion through ash reduction of wüstite to iron

[69] chemical reaction
diffusion through ash

[37] diffusion through film
diffusion through ash

[25] diffusion through ash
[70] nucleation initial stage

chemical reaction and
diffusion through ash end of reaction

[48] nucleation initial stage
[50] diffusion through film reduction of hematite to magnetite

chemical reaction reduction of magnetite to wüstite
[28] diffusion through ash reduction of wüstite to iron
[71] diffusion through ash
[72] chemical reaction

diffusion through ash

3. Conclusions

In order to reduce the amount of CO2 pollution in the iron and steel industry, it is
crucial to investigate new methods of iron oxide reduction. Among all these techniques,
using hydrogen as a reducing agent is receiving much attention. In addition, it is necessary
to study the exact material and energy consumption by investigating the kinetics of the
reduction reactions. These solid–gas reactions are complex and can vary due to the working
temperature, gas atmosphere, chemical composition, etc. The mechanisms that control
the kinetics of reduction are the diffusion of H2/H2O through the gas film layer, diffusion
of H2/H2O through the ash layer, and chemical reaction. For the high gas velocity, film
resistance can be ignored. It was approved by some researchers that nucleation also
can be considered as a controlling mechanism at the early stages of the reduction and at
low temperatures.
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Moreover, the parameters such as temperature, porosity, mineralogy, etc. can play a
vital role in order to determine the kinetics of hydrogen reduction precisely. The following
conclusions can be made for each parameter according to this literature review:

• Effect of Temperature: Due to the Arrhenius equation, by increasing the temperature,
the rate of reduction will increase exponentially. At temperatures above 590 ◦C, the
effect of temperature on the reduction of Fe2O3 to Fe3O4 and reduction of FeO to Fe is
negligible, but for the reduction of Fe3O4 to FeO it is considerable.

• Effect of H2/CO ratio: The reaction rate would increase with the higher hydrogen
content at temperatures above 1000 ◦C. Additionally, H2/CO proportion has the most
beneficial effect on the reduction rate when being 1.6, and the higher ratios effect
is negligible.

• Effect of hydrogen flow rate: Higher inlet flow rate causes higher steam generation at
the early stages of the reaction and at the later stages, the effect is minor. Additionally,
there is a critical gas velocity below which gas flow rate controls the rate of the reaction.

• Effect of iron ore mineralogy: Because of the hard and dense shell of magnetite
in comparison with hematite, magnetite has lower diffusion. Thus, the reduction
of hematite by hydrogen is faster than the reduction of magnetite, especially at
higher temperatures.

• Effect of particle size: As the size of the particle decreases the specific area increases,
therefore the reduction rate enlarges because the reaction starts from the surface.
Furthermore, the smaller particle size leads to a shorter distance that gas has to pass to
reach inner layers. However, as the particle size shrinks, the chance of agglomeration
will increase and as a result, the specific area decreases.

• Effect of impurities: The effect of impurities can be assumed as reduction by H2
and CO. Impurities such as CaO, SiO2, and MgO and alumina forms can lead to the
formation of micro-cracks that promote the reduction of wüstite. Contrarily, some
impurities such as Al2O3 and MgO decrease the rate of magnetite reduction.

Activation energy definition is the minimum energy that is required to perform a
chemical reaction. Lower activation energy shows easier reduction of iron oxides. For
instance, the activation energy decreases by increasing the percentage of hydrogen in the
reducing gas. In fact, activation energy is dependent on chemical composition, physical
properties of materials, temperature range, and process conditions. As a result, there is a
wide range of values for the activation energy of reactions. The activation energy of natural
magnetite to iron is higher than the reduction of the other forms of iron oxide.

Kinetics models depend on different parameters of reduction such as temperature,
iron oxide type, particle size, etc. commonly, chemical reactions at the interfaces and the
diffusion of hydrogen through the iron oxide particle are used as kinetics models. Through
the reduction of wüstite to iron an iron shell covers the surface of the sample and makes
the diffusion hard. Thus, wüstite reduction is the rate-controlling and slowest step.
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