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Abstract: In situ environmental transmission electron microscope (ETEM) could provide intuitive
and solid proof for the local structure and chemical evolution of materials under practical working
conditions. In particular, coupled with atmosphere and thermal field, the behavior of nano catalysts
could be directly observed during the catalytic reaction. Through the change of lattice structure,
it can directly correlate the relationship between the structure, size and properties of materials in
the nanoscale, and further directly and accurately, which is of great guiding value for the study of
catalysis mechanism and the optimization of catalysts. As an outstanding catalytic material in the
application of methane reforming, molybdenum oxide (MoO3)-based materials and its deoxidation
process were studied by in situ ETEM method. The corresponding microstructures and components
evolution were analyzed by diffraction, high-resolution transmission electron microscopy (HRTEM)
and electron energy loss spectrum (EELS) techniques. MoO3 had a good directional deoxidation
process accompanied with the process of nanoparticles crushing and regrowth in hydrogen (H2) and
thermal field. However, in the absence of H2, the samples would exhibit different structural evolution.

Keywords: TEM; in situ; deoxidation; MoO3

1. Introduction

Molybdenum (Mo)-based materials are often used as efficient catalysts for various
heterogeneous gas-solid catalytic reactions [1,2]. Primarily, molybdenum oxide (MoO3)/
molybdenum carbide (MoC) catalysts are widely used in the chemical industry due to
their value in the carbon cycle catalysis [3,4], including methane reforming [5]. As an
excellent catalytic and substrate material, MoC also perfectly compounds other materials
to achieve better results. For example, Ding Ma et al. employed α-MoC in hydrogenation
reaction, showing high selectivity and yield because α-MoC and nitrogen compounds
preferentially activate the C=O and C−OH bonds over C=C and C−C [6]. Interestingly,
MoO3 is also the raw material used to produce MoC [7]. Xinhe Bao and colleagues prepared
a highly reactive Au/MoC catalyst using MoO3 and Au nanoparticles. In the process, the
MoO3 to MoC transition and the intermediate states, such as MoOxCy and Au dispersion
processes, were completed by the Strong Metal-Support Interaction (SMIS) [8]. The first
step of the MoO3 deoxygenation process, both with MoO3/MoC catalysts and during
the molybdenum carbide reaction, deserves to be explored in detail [9,10]. In addition,
previous work pointed out the connection between deoxygenation sites and the active
sites of the subsequent reaction, which helps explore the evolution of reaction sites [11].
Moreover, MoO3 and MoOx are two-dimensional materials widely used in devices, which
is one of the significances of exploring MoO3 deoxidation [12,13].

It is of great significance to explore the generations of catalysts and process of re-
action [14,15]. And there are many in situ methods, such as X-ray diffraction patterns
(XRD), Fourier Transform Infrared (FTIR), and X-ray Absorption Fine Structure (XAFS)
are widely used in catalytic research, also the thermodynamic experiments mostly analyze
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the structure from a macro perspective rather than directly observing the reaction [14]. At
present, there are few means for direct observation of catalytic reactions [16]. However, the
recent development of environmental transmission electron microscope (ETEM) makes it
possible to observe the nanomaterials’ performances during chemical reactions at an atomic
scale [17,18]. In situ techniques such as thermal, electrical, and force fields are used to study
the dynamics under external conditions during catalyst evolution and track the catalyst
motion at the atomic scale to observe the atomic dynamics in real-time [19]. Therefore, the
structure-activity relationships and reasons for activity could be better understood. In catal-
ysis, many catalytic mechanisms are not clearly comprehended. The catalytic experiment
can only show that some reactions are promoted, but the reason for their activity is still
unknown [18]. Moreover, selective exploration should also get enough attention at the
atomic scale, to guide more targeted, cheaper, and sustainable new catalysts [14].

In recent years, ETEM has been widely used to study heterogeneous catalytic reactions
to effectively observe surface reactions, according to the high-resolution transmission elec-
tron microscopy (HRTEM) images attained [20,21]. Many areas are explored in situ TEM,
such as the oxidation and reduction of materials [22,23] and the evolution of the catalyst in
reactions, like ammonia synthesis [24,25]. HRTEM captures the detailed information of the
catalyst changes, analyzes the phase changes of the sample with diffraction information,
then provides insight into the material’s structure and correlates its performance accord-
ingly [26]. On this basis, the analysis of elements and valence states combined with electron
energy loss spectrum (EELS) or energy Dispersive X-Ray Spectroscopy (EDX) analysis is an
excellent complement to electron microscopy [20]. Therefore, in situ TEM has irreplaceable
significance in understanding the structure-activity relationship [27].

In this article, MoO3 deoxidizing process was studied in situ by ETEM, under thermal
heating and a hydrogen (H2) atmosphere. The deoxidization process starts with the
temperature increasing, and the structure breaks down simultaneously. The deoxidization
process continues with the continuous temperature increase, and the broken structure
grows again. In contrast, different phenomena are present under pure thermal heating
in a vacuum. Specifically, there are no splitting and growth phenomena, but the MoO3
sublimation is evident. Simultaneously, the pressure and reaction location may be related to
the active site and catalytic activity. These phenomena were verified by electron diffraction
maps and EELS plots. The deoxygenation process of MoO3 is carried out on the atomic scale,
which is important for understanding and exploring the production process of MoC. Also,
it is important to study the relationship between the evolution and structural properties of
Mo-based catalysts in the catalytic process.

2. Results
2.1. Deoxidation of MoO3

The MoO3 used in this study is the commercially available MoO3 nanoparticles (NPs)
with a 50–100 nm diameter dispersed in ethanol solution and cast on a SiNx-based heating
chip. The NPs were loaded into the ETEM by an in situ heating holder (Wildfire S3, DENS
solutions). For the in situ experiment, the temperature was controlled by a DENs heating
system, and the atmosphere was controlled with an ETEM gas path system.

2.1.1. Characteristics Analysis of Molybdenum Oxide MoO3

Before the in situ experiment, the samples were preliminarily analyzed, and to obtain
clearer images for the study, thinner NPs were chosen. Figure 1a shows a low magni-
fication TEM image for MoO3 NPs dispersed on the carbon film, where the NPs size is
uniform. Figure 1b is the spectrum of the sample collected using EELS, corresponding to
the MoO3position. The Mo-M4,5 and M2,3 edges are attributed to Mo, and the O-K edge
corresponds to O. Generally, the O/Mo ratio is obtained through quantitative analysis of
the Mo-M3 and Ok edges [16]. Therefore, in the following in situ experiments, the variation
characteristics were acquired in real-time with the structural analysis. The XRD data in
Figure S1 shows that the main peak positions accurately correspond to each crystal plane.
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Apart from the spectroscopic analysis of MoO3 samples, static electron microscopy charac-
terization was performed, and the structure and phase of samples were analyzed. Figure 1c
shows the HRTEM images and diffraction patterns from the [10] direction of orthorhombic
MoO3 samples. Figure 1d is the enlarged red rectangular area in Figure 1c. The (100)
and (001) spots in the diffraction pattern in Figure 1c correspond to the crystal plane with
3.64 nm 3.92 nm spacings in Figure 1d, respectively [12]. According to TEM images analysis,
the crystal direction of the dispersed sample is mostly displayed in the [10] direction.
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Figure 1. (a) TEM images of MoO3; (b) EELS of MoO3; (c,d) HRTEM images of MoO3.

2.1.2. MoO3Structural Changes in H2 Atmosphere

Figure 2a shows the experimental schematic of the in situ ETEM and heated scaffold
system. The ventilation function of the environmental in situ ETEM introduces H2 gaseous
spheres as an external field. Meanwhile, the heating support system controls the tempera-
ture to achieve the heating of the sample. As shown in Figure 2a, the NPs dispersed on the
silicon nitride chip and heated. Under these conditions, real-time information of samples,
including HRTEM photos and EELS mapping data, was collected.

Starting from MoO3 NPs, the MoO3 response when the conditions changed from
reduction to redox was studied. H2 pressures of 0.1 mbar and 0.6 mbar were applied,
and the temperature was gradually increased from 25 ◦C to 900 ◦C. Previous studies
have shown that pressure affects the phase transition at different temperatures [9,28].
Figure 2b–g shows the MoO3 evolution in a 0.6 mbar H2 atmosphere. Moire fringes were
generated near the characteristic temperatures, 250 ◦C and 800 ◦C, around the diffraction
temperature. However, it is not evident at other temperatures like 600 ◦C. In other words,
the temperature at which Moire fringes are produced is the temperature at which the phase
transition takes place violently. On the other hand, it is the temperature at which the
particle’s shape changes dramatically at later heating especially after 600 ◦C. The Moire
fringes are the sample splitting caused by temperature change and the particle dislocation
caused by deoxidation and successive phase transition. However, during stability periods,
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such as 400–600 ◦C, the Moire fringes are not prominent. Therefore, it was considered
the stabilizing period for MoO2. At this point, the deoxidation process continues, but the
phase transition is not significant and is not a major concern. Combined with diffraction
information at different temperatures, the phase transition conclusion is consistent with
the above analysis.
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Figure 2. (a) Diagram of the experimental installation; (b–g) HRTEM images of the MoO3 NP by
heating in H2 (0.6 mbar) at different temperatures.

In addition to the study of Moire fringes, this work mainly demonstrates the following:
(1) The splitting and growth of NPs reflect the shape changes; (2) Changes in oxygen
content cause Deoxidation resulting in structural and compositional changes; (3) The phase
change is mainly reflected by diffraction; (4) The relationship between position and non-
synchronous reaction. The following sections will discuss the detailed analysis of these
aspects in detail.

2.1.3. Morphology and Phase Evolution during Deoxidation

The splitting and growth of the samples were revealed, and phase transition was
analyzed by diffraction patterns and HRTEM. The images in Figure 2b–g show the splitting
and growth process for a MoO3 NP. As the temperature increases to 450 ◦C, the overall
shape of the NP splits into small fragments of ~10 nanometers. As the temperature rises
to 550 ◦C, the NP regrows into 50 nm (Figure 3j) like the original structure before heating.
Figure 3i shows the overall morphology of the reaction of the ~50 nm NP (the splitting and
growth trends are consistent whether the size of NPs is different). From the changes in
Figure 3a–h, the Moire fringe analysis in Figure 2 is also applicable under 0.1 mbar, except
that the reaction temperature changes due to air pressure, and the overall trend remains
unchanged. The fracture analysis may be driven by temperature or caused by structural
recombination after the loss of oxygen.
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(0.1 mbar).

The diffraction pattern at 400 ◦C, shows that the nanoparticle gradually changed
into a mixed state of MoO3 and MoO2. When it reached 600 ◦C, MoO2 was present. At
800 ◦C, the presence of Mo simple substance could be confirmed, combined with the
thermogravimetric experiment and the diffraction pattern analysis [29]. The Figure 3h and
Figure S2 indicates the diffraction spots corresponding to MoO3, MoO2, and Mo materials,
and Figure S3 proved the location of Mo by filtering analysis. The following comparative
experiments were performed to discover whether the above changes are related to the H2
atmosphere or mainly dominated by temperature.

2.2. Compositional Evolution of MoO3

To verify the effect of the atmosphere on MoO3 NPs size change, in situ control
experiments with heating from 25 ◦C to 900 ◦C were performed in a vacuum (Figure 4).

2.2.1. Non-Deoxidation Sublimation of MoO3

Firstly, simultaneous splitting behavior and a large amount of sublimation occurred [30,31],
and the molybdenum oxide sample sublimated at 600 ◦C. However, the splitting is irre-
versible, unlike the deoxidation process under hydrogen atmospheres. In addition, the
diffraction pattern does not change, proving that the orthonormal MoO3 is stable, and no
deoxidation and phase transformation has taken place. However, sublimation greatly re-
duces the quality of the nanoparticle. Therefore, the splitting of the nanoparticle is directly
related to temperature. To the contrary, phase transition and regrowth are mainly caused by
hydrogen-induced deoxidation, which is expected by the controlled experimental design.
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Figure 4. (a–e) TEM images of the MoO3 NP by only heating at different temperatures (in (d,e),
the corresponding stable diffraction images and label are given respectively); (f) The element scale
diagram changes of the NP in (a–e) at different temperatures.

2.2.2. Composition Changes under Different Conditions

Combined with the analyses in Figures 2–4, statistical analysis on the element propor-
tion in sample evolution under the three conditions was conducts, as shown in Figure 4f.
Hydrogen is the leading cause of deoxidation, and temperature is the condition to pro-
mote the reaction. Furthermore, a difference in air pressure will cause a change in the
temperature at which the reaction occurs.

2.3. Evolution and Characterization of the Position

Figure 5 shows the structure, phase, and composition related to location evolution.
Figure 5a is the TEM analysis of MoO3 NPs in the deoxidation process, and Figure 5b–g is
the EELS mapping evolution in the red rectangular area at different temperatures. The EELS
mapping gives a visual representation of the elemental processes, where the evolution
of the oxygen content is evident, confirming the different oxidation states at different
temperatures during the deoxygenation process. However, this process is accompanied
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by sublimation, as seen from the Mo region reduction, although the sublimation process
under hydrogen is weak for pure heating (Figure 4).
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changes of the NP in (a) at different temperatures.

Different phenomena will occur at different locations for the deoxidation reaction
sample under the same conditions. The deoxidation processes at the edge (position 1)
and inside (position 2) of the sample are asynchronous, where the deoxidation in the
interior is much slower than that in the edge, shown by the EELS Mapping. In Figure 5,
the deoxidation process at position 1 is performed rapidly compared with that at position
2. The reaction is violent because the edge is exposed first to theH2 atmosphere, and its
thickness is relatively thin. The contact zone affects the internal deoxidation process and
is related to the complex phase transition and mechanical structure changes. Notably, the
deoxidation site is associated with the active site of the catalytic process [11], which needs
to be further explored.

3. Discussion

The H2 pressure impacts the temperature at which the morphology changes, reflected
by the splitting and growth of NPs, take place, as shown in Figures 2 and 3 under different
air pressures. This agrees well with the result of other studies [32]. The structure and
composition changes caused by the oxygen content induced by the deoxidation were
mainly analyzed by EELS. Temperature causes sublimation and splitting behavior. H2
atmosphere is the main factor determining the deoxidation conditions and the driving force
of subsequent growth. When the reaction is at the nanometer scale, subtle position changes
will also bring different reaction conditions, such as different deoxidation phenomena
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occurring at different positions with an area of a few nanometers. This behavior cannot be
noticed in the macroscopic experiment, even if other means of exploration cannot directly
explore the local phenomenon. The study of active sites is also an important aspect of
catalytic reaction. In situ TEM could continue a complete experiment for MoC/MoO3
catalysts using methane reforming [33]. The detailed analysis of these aspects, which we
will study in future research, is very important for studying the active sites of catalysts.
The real-time information brought by in situ electron microscopy allows us to observe the
direction of sample evolution in real-time during the experiment and directly corresponds
to the nano-scale visual images to explain the structure-activity relationship.

4. Conclusions

In this work, in situ environmental TEM was used to reveal the deoxidation process of
MoO3 at atomic scale in terms of structure and composition. The results show the sample
underwent a deoxidation process with the increase of temperature in the H2 atmosphere.
While in the absence of H2, MoO3 underwent sublimation only. In addition, it is also found
that the H2 atmosphere in difference pressure leads to different deoxidation and phase
transformation rates, suggesting that H2 is the main inducing condition for deoxidation.
Besides, the deoxidation process is different at different locations of the same NPs; the
edges tend to show more active reactions than the inside of the sample. The results
have significant guidance for understanding the evolution process of molybdenum base
materials and the relationship between the properties and structure of materials. The local
evolution of samples is explored from a broader perspective, which provides a reliable
experimental means for the future study of gas-solid catalysis, especially catalyst behavior.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma15010056/s1. Figure S1. XRD patterns of MoO3 nanosheets. Figure S2. Diffraction
calibration of the sample in Figure 3 at 800 ◦C; Figure S3. Filtering analysis of the sample in Figure 3
at 800 ◦C.
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