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Abstract: The impact of the pantograph of a rail vehicle on the overhead contact line depends on
many factors. Among other things, the type of pantograph, i.e., the material of the sliding strip,
influences the wear and possible damage to the sliding strip. The possibility of predicting pantograph
failures may make it possible to reduce the number of these kinds of failures. This article presents a
method for predicting the technical state of the pantograph by using artificial neural networks. The
presented method enables the prediction of the wear and damage of the pantograph, with particular
emphasis on carbon sliding strips. The paper compares 12 predictive models based on regression
algorithms, where different training algorithms and activation functions were used. Two different
types of training data were also used. Such a distinction made it possible to determine the optimal
structure of the input and output data teaching the neural network, as well as the determination of
the best structure and parameters of the model enabling the prediction of the technical condition of
the current collector.

Keywords: pantograph sliding strip; AI for prediction; artificial neural network; damage prevention;
predictive maintenance

1. Introduction

Reliability and safety of railway vehicles is strongly connected with the correct power
reception from the overhead contact line.

Direct contact of the rail vehicle and catenary system is possible thanks to carbon
sliding strips placed on the current collector’s slider.

This can be a replaceable element attached to the base of the slider or it can be
integrated with the base of the slider. Failure of this rail part may result in damages to
the catenary line. The cost of this kind of incident is very high, and the result could be
dangerous.

In case of replacement caused by damage while the vehicle is running, steps are taken
to assess criteria, such as:

• material of sliding strips melting in case of arcing and damages caused by an electric
arc (not proper contact force);

• tearing off of a piece of carbon sliding strip;
• cracks on the surface penetrating a sliding strip;
• peeling off the top layer of a sliding strip in direct contact with the catenary.

The cause of damage to the sliding strips depends on many factors related to regu-
lations of the pantograph, such as contact force between current collector and catenary,
but also the conditions of rail vehicle operation play a huge role. Because of this, the air
temperature and humidity, as well as ice on the catenary lines during the winter season,
should be taken into account. The additional factors related to the production, such as ma-
terial defects of the sliding strips, and related with the quality of the railway infrastructure
should also be covered.
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On the technical review the technical condition of the pantograph is checked, but on
the primary review, P1 is not measured, and the visual analyses of the technical state are
carried out. On the P2 the pantograph and carbon strip is measured and noticed in the
paper card.

Due to the impact of many factors on the failures of the current collector, typical
mathematical modelling or linear programming cannot be used to predict the technical state
of the sliding strip. To solve this problem the heuristics method and Artificial Intelligence
method may be used for making the model.

In Poland, until 2011, copper sliding strips were mainly used, after which the obligation
to use carbon sliding strips on current collectors of traction vehicles was introduced for
carriers using the Polish traction network. This was due to the necessity to adapt to the
provisions contained in the Technical Specifications for Interoperability (TSI) [1–4].

The contact strip material should be mechanically and electrically adjusted to the
physicochemical properties of the contact wire material (in accordance with clause 4.2.18 of
TSI [3]). This avoids, among other things, excessive abrasion of the contact wire surfaces
and the contact strips themselves.

Replacing copper sliding strips with carbon was used to limit the occurrence of
unfavourable phenomena such as [5]:

• intense abrasive wear and peeling of the contact wire and the sliding strip surface;
• spot erosion;
• the extraction and transfer of material particles or the deposition of molten me-

tal condensate.

In the case of using copper sliding strips, the phenomenon of the accumulation of wear
products in the grease contained in the slider and the grease residues remaining on the
contact wire was also observed. This had a negative effect on the wear rate of the sliding
strips and the contact wire.

The materials that conduct electricity and have the best lubricating properties include
suitable mixtures of graphite (carbon). As a result of the strong adhesion of graphite
particles to the metal surface, and as a result of the cooperation of the sliding strip made of
carbon-based material, a graphite layer is applied to the contact wire surface. It reduces the
friction coefficient between the sliding strip and the contact wire, increasing resistance to
higher temperatures, improving the conductivity at the contact point and in a visibly way
reducing the wear of both the contact strip and the contact wire. For these reasons, carbon
sliding strips have been used in Poland since 2011.

Many factors contribute to the characteristics of the wear process. These are, among
others, the operating conditions (temperature, humidity, wind), features of the means of
transport (stiffness of wheelsets, speed of movement), features of the current collector
(stiffness, dynamics, dirt, force difference when lifting and lowering, contact force, current
value, condition of contact strips), overhead contact line (line tension, icing, mechanical
damage). Hence, many interrelated factors need to be analysed. Such cases are called
NP-hard problems, unable to be solved by typical linear optimization. To solve this type of
problem, it is indispensable to use tools that can take into account many parameters related
to each other.

1.1. Wear Pantograph Sliding Strips

The problem of interaction between the overhead contact line and the current collector
is related to numerous scientific works, the selected list of which from recent years has
been included in items [6–15] of the attached bibliography. In many of them, attention is
drawn to the fact that to maintain an uninterrupted contact of the slider with the catenary,
maintenance of appropriate pressure force of the current collector is necessary.

In the case of too much contact force, the intensity of abrasive wear increases and this
may lead to mechanical damage of the current collector or its parts or the overhead contact
line. In the case of too low force, favourable conditions are created for the formation of an
electric arc, which causes the burning of the carbon sliding strip.
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During the regular use of the current collector, the contact strip wears out naturally.
If the thickness of the sliding strip is smaller than the value assumed in the measurement
card, the sliding strip should be replaced with a new one. Many companies prefer to replace
the strips a little earlier to protect against the situation in which such an exceeding of the
limit value may occur and cause costly damage to the current collector and the overhead
contact line. Such a replacement of the sliding strip without obvious signs of damage is
a sanctioned practice in the system of rail vehicle operation. There are no specific clear
criteria for making such a decision. Otherwise, the cause of replacement is various types
of damage. The most frequent types of damage to carbon overlays includes cracks in the
overlay, detachment of a fragment of the overlay, peeling off the top layer of a strip, material
melting as a result of arcing and cracking of the strip.

1.2. State of the Art

At the turn of the 20th and 21st centuries, scientists began research on the railway pan-
tograph and overhead catenary system. One of the first papers presenting the basic mathe-
matical model of contact between sliding strips and overhead contact line was published
by Abbot [16] in 1970. A more detailed model was presented in 2015 by Wilk et al. [17,18].
Abdullach et al. [6,7] paid attention in their research to the integration of two separated
models: the catenary model and the pantograph model. Pisano and Usai [19] analysed
problems in the high speed train transportation systems connected to the quality of panto-
graph. Tao et al. [20] and Ding et al. [21] researched tribology behaviours of a carbon strip
and copper wire under electric currents. Many of the presented studies work mainly on
the mathematical methods of simulation of dynamic [16–18,22–25] and analysis of contact
force [6,7,9,19,26–29], as well as on the wear of sliding strip material [20,21,30–36]. The
papers focus on material properties and the interaction between sliding strips and catenary.
This research was hard to implement for companies because of a lack of data—with their
services data being stored in the paper form and having low computing force—and lack
of tools. The situation has changed with the advancement of computing technology and
digitization. One of the most important pieces of research was published by Bruni et al. [37].
In this research, 10 of the simulation models were used for the study of the interaction
between pantograph and catenary. One static and three dynamic simulation examples were
presented for a high-speed couple (pantograph and catenary). The impact of regulation
on the quality of the current collector is presented by Song Y. et al. [38]. The authors
proposed preprocessing procedure to eliminate unnecessary information in measurements
irregularities based on the EEMD (ensemble empirical mode decomposition); then, they
analyzed the information on the position of the dropper on the contact line. The presented
results show that random irregularities have a direct impact on the pantograph–overhead
contact line, including the contact force statistics. Zhang et al. [39] made the review of the
previous works focuses on the dynamic characteristics of the pantograph and catenary
parts, the dynamic system properties, and the environmental influences on the pantograph-
catenary interaction. The newest research, presented in 2021 by Song et al. [40], proves the
importance of taking into account for simulation both models: pantograph–catenary and
vehicle–track. The quality of the presented models was done by experimental test and the
world benchmark.

In the last 20 years, the popularity of using neural networks in engineering and techni-
cal diagnostics and maintenance has rapidly grown. Scientists deal with the optimization of
resources to reduce wastes and costs and increase reliability. Gajewski and Vališ [41] in their
research focus on prolonging the operation time of the engine. They investigated data using
the synergistic method combining the computing powers of enhanced decision trees and
artificial neural networks. Moreover, Kuzhagaliyeva et al. [42] focused their work on the
effectiveness of engines. For modern engines, there is a trend of downsizing and boosting it,
but it is important at least keep it running efficiently or also increase it. To do this, detecting
pre-ignition is very important. This is performed by using in-cylinder pressure sensors with
high sensitivity and precision, but is also expensive. Authors propose the convolutional
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neural networks (CNNs) in object detection combined with recurrent neural networks
(RNNs). The authors present developed models for pre-ignition detection based on lambda
sensors (the lower cost than typical sensors with high precision). Other research [43] used
an Artificial Neural Network to modify the values output signals for prompt maintenance
and current repairs as well as the safe operation of the vehicle. This solution has self-
diagnostic solutions. Furthermore, similar methods can be used for the analysis of the
technical state of the vehicle part. Borecki et al. [44] proposed using Multi-layer Perceptron
(MLP) and Kohonen Self-Organizing Maps (SOM) for analyses of the technical condition of
the wheel rim. For a different technical object—batteries—Khaleghi S. et al. [45] proposed
recurrent neural networks for online systems for analyses filling the battery.

The rapid growth of technology, artificial intelligence tools, sensors, Big Data analysis
and cloud computing contributed to the development of the idea of predictive mainte-
nance. Predictive maintenance is used to find a solution to predict and prevent the faults
in the different machines. Salini et al. [46] developed the methodology for predicting the
occurrence of critical Diagnostic Trouble codes. Their model is also based on the Convolu-
tional Neural Network (CNN) and Fully Connected (FC) layer framework. The method
enables the achievement of the average accuracy of 72% cases. Also, predictive mainte-
nance is used for the condition of the technical equipment of vehicles. Wen Y. et al. [47]
used statistical and artificial intelligence methods for machine prognostics for predictive
maintenance. In this area, Bhat J. et al. [48] proposed using DR ferrography predictive
maintenance of worm gearbox. Also for engines, similar research can be found—[49] used
PREPIPE to predict oxygen sensor clogging conditions, to control combustion efficiency
and pollutant emissions.

In the area of predictive maintenance, Cao Q. et al. [50] developed software to enhance
production efficiency and reliability. They used, for the core of this software, Artificial Intel-
ligence technologies—machine learning and data mining—to predict potential anomalies
within manufacturing processes.

2. Materials and Methods

The data for this research was acquired from one of the biggest rail carriers in Poland.
The data from the technical review are put into a measurement card. As part of the
preliminary research, data was collected from measurement cards (written manually by
employees of entities responsible for the operation of rail vehicles) and information was
collected from field experts regarding the types of damage to the current collectors. This
allowed for a certain assessment of the scale of the problem of replacing carbon contact
strips in relation to the entire current collector. The following information was recorded in
the measurement card:

• time of raising the current collector to the rated value;
• fall time of the current collector;
• correct control of the collectors from both cabins, correct movement of the collector;
• average static pressure;
• force difference when lifting and lowering;
• holding force measurement (folded);
• checking the degree of wear of the contact inserts of the slider;
• insulation resistance measurement.

A total of about 750 cards with over 1500 measurements of current collectors made
over a period of 2 years were analyzed. The measurements concerned 62 locomotives
types EP09 and EU07. These cards show that during the P2/P3 maintenance (at the P2/P3
“maintenance level” according to DSU), 8.3% of the current collectors were replaced in
full (127 cases), while in 273 cases the sliding block was replaced, which accounts for as
much as 17.8% of all cases. The analysis of the collected data shows that in the enterprise,
the most serviced were vehicles with AKP-4E collectors (56.6%), and vehicles with 5ZL
collectors constituted 29.9%. It follows that 86.5% of the serviced current collectors were
four-arm collectors, and only 13.5% were single-arm DSA 150 collectors.



Materials 2022, 15, 98 5 of 23

2.1. Causes of the Replacement of the Sliding Strip and Its Thickness

The information about the causes of the replacement of the sliding strip is not noted on
the measurement cards, so we created algorithms to identify the reasons for the replacement.
These pre-analyzed data were used for developing the prediction model.

Reliability assessment and knowledge of experts allowed us to prepare identification
algorithms for technical conditions and for replacement causes. The exemplary algorithms
are shown below [51]:

Wop = 1⇔ Nli+1 = Nli ∧ (Topi+1 6= Topi ∨ Nopi+1 6= Nopi) (1)

Wn = 1⇔ (Nli+1 = Nli) ∧ (Topi+1 = Topi) ∧ (Wopi 6= 1) ∧ ((Gn1i−
Gn1i+1 < 0) ∨ (Gn2i − Gn2i+1 < 0))

(2)

N1 = 1⇔Wn = 1 ∧ N3 = 0 ∧ (Gn1 < 32∨ Gn2 < 32) (3)

N2 = 1⇔Wn = 1 ∧ (N1 + N3 = 0) ∧ ((Gn1 > 33) ∨ (Gn2 > 33)) (4)

N3 = 1⇔ Nop = 1∧ (|Gn1− Gn2| ≥ 2) (5)

where:

Wop replacement of the pantograph
Wn replacement of the pantograph sliding strip
Nl the locomotive number
Nop the pantograph number
Top the type of pantograph
Gn1 thickness of the first carbon sliding strip
Gn2 thickness of the second carbon sliding strip
N1 replacement of the sliding strip due to even wear of the sliders
N2 replacement of the sliding strip due to detachment of a fragment of the sliding strip,
material extraction or burning of the sliding strip
N3 replacement of the sliding strip due to uneven wear of the sliders
i the measure number

The results of the analysis of the relationship between the causes of the replacement of
the sliding strip and its thickness are presented below. The tests were carried out for two
current collectors, each with two sliding strips.

Figures 1 and 2 show the reason for replacing the first and second sliding strip of
pantograph A, considering the thickness of the strip during replacement. Wear of the
sliding strip is the most common cause of strip replacement when it is less than 31 mm
thick. However, the minimum value of the cover thickness is 23 mm for the AKP-4E and
5ZL current collector and 25 mm for the DSA 150 collector. The analysis clearly shows that
the replacement of the cover is carried out too early. For strip thickness above 31 mm, the
most common reason for replacing the sliding strip turns out to be damage. The concept
of damage in this analysis includes damage caused by detachment of a fragment of the
sliding strip, peeling off the top layer of a strip, material melting as a result of arcing
and cracking of the strip. In this range of thicknesses, the entire current collector is also
frequently replaced.

Figures 3 and 4 show the same analysis of the dependence of the cause of replacement
of the sliding strip on the strip thickness, but in this case, they concern the pantograph B.
Both for collectors A and B, the most frequent replacement occurs when the thickness of
the sliding strip is in the range of 30 to 32 mm.

Based on Figure 1, it was noticed that for the sliding strips with a thickness lower than
37 mm, unexpected damage could occur. Because of this, many sliding strips are replaced
near this value of thickness. That is the reason why the number of damages grows for
strips with a thickness over 39 mm. It was also noticed that for thicknesses from 38 mm
the number of pantograph damages grows. For thicknesses lower than 32 mm, the sliding
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strips are always replaced, which is the reason why the number of damages was reduced
to zero.

For sliding strip number 2 of pantograph A, the conclusion could be very similar those
for sliding strip number 1. Up to the 32 mm thickness, there is a growing risk of damaging
the sliding strip, which means there is also a risk of damage the pantograph. Because of
this, the service procedure requires the replacement of the sliding strips with lower than
32 mm thickness.

The analysis of pantograph B (Figures 3 and 4) confirm the conclusions from panto-
graph A. As pantograph A and B are used alternately, this depends on the driving direction
of the rail vehicle. For the thickness, anything lower than 36 or 37 mm to 32 mm, the
number of damages of sliding strips and also pantograph grows. After 32 mm, the sliding
strips are always replaced and so the reason for damage (if unexpected damages did not
occur before) is always wear.
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2.2. Wear and Damage Prediction Method

To select a model to identify the technical condition of the current collector sliding strip,
which takes into account the degree of wear of the strip and the reason for its replacement,
prediction models were developed and tested with the use of artificial neural networks.

Several combinations of training datasets were also tested. Table 1 shows se-
lected sets of input data (Input), while Table 2 presents the structure of the output data
(Target/Output).
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Table 1. Input data for a prediction model.

Type of Input Data
Input Data Structure Number

1 2 3

The number of input data sin 14 12 10
1 Review number X X X
2 New measuring cycle X X X

3 The number of days since the
exchange X X X

4 Quarter of the year X X X
5 Average temperature in the month [◦C] X X
6 Average wind speed for the month [km/h] X X
7 Total rainfall for the month [mm] X X
8 Pantograph type X X X
9 Front/rear pantograph X X X

10 The difference in thickness of the strip N1
between inspections X X X

11 The difference in thickness of the strip N2
between inspections X X X

12 Sliding strip thickness N1 X
13 Sliding strip thickness N2 X

14 Reason for replacement during the previous
measurement X X

15 Earlier technical condition X
16 Reason for replacement X

In Table 2 we present three technical conditions (able to further use, limited ability of
further use, not able to further use). Typically there are just two states (able to further use,
not able to further use). We propose a prediction model which predicts the three technical
states. State three means that pantograph cannot be used and the cause of this could be
connected with wear or with damage. The model can predict the wear but the damage is
occasionally caused by accidents, so it is not predicted by the model. In these cases, the
pantograph damage is in state three—not able to be further used.

Table 2. Output data.

The Type of Output
The Output Data

Structure Number

1 2

The number of outputs sout
3

vector T
1

value z3(t)

1 First technical condition—able to further use
(S1 = 0 lub S1 = 1) X

2
Second technical condition—the limited ability of

further use, it will be necessary to replace the sliding
strip for the next inspection (S2 = 0 or S2 = 1)

X

3
Third technical condition—not able to further use—it is

necessary to replace the sliding strip/pantograph
(S3 = 0 lub S3 = 1)

X

4

Technical condition z3(t) specified as value:
z3(t) = 1 First technical condition

z3(t) = 2 Second technical condition
z3(t) = 3 Third technical condition

X

To prepare the input and output data, data from the measurement cards were orga-
nized, analyzed and then the final set of data had to be determined. As the season and the



Materials 2022, 15, 98 9 of 23

type of collector affect the frequency of replacements in preliminary studies, this informa-
tion has been included in the dataset. The final structure of the database was established
based on establishing the relationship between the collected data and the technical condi-
tion and reasons for replacing the sliding strips. Based on the knowledge of the destructive
processes operating during the use of the current collector, preliminary research and the
knowledge of experts in the field of current collectors, decision-making rules have been
developed to identify the causes of replacement of the sliding strips. Statistical analysis was
performed to determine the relationship between the data from monthly measurements
and the reasons for the replacement.

The sets of input and output training data have been differentiated not only due to
the search for the best structure of such data but also due to the prediction methods that
require a slightly different approach. It was decided to use an artificial neural network as
a supervised machine learning method to build predictive models. For machine learning
classification methods, there can be only one answer which is called a Response, while
for regression methods, there can be multiple answers—in this case, multiple Outputs.
The presented sets of input and output data are applicable with the use of regression
methods, i.e., with the use of artificial neural networks used in the article. In the case of
the classification method, there must be only one answer in the case of the output data,
while in the case of the regression method (i.e., the artificial neural networks used in the
article), both single and multiple responses can be used. As part of this article, research was
carried out only on regression models based on artificial neural networks. The classification
method using decision trees was described in the article [51].

2.3. Summary of Predictive Models

Due to the large number of studies conducted, it was decided to include only repre-
sentative models. This article compares 12 predictive models based on artificial neural
networks. Figure 5 shows schematically the process of creating a model during train-
ing and the process of predicting results based on the developed model. Table 3 lists 12
predictive models.
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The predictive models presented in Table 3 shows the main models from conducted
research to achieve the final model—number 12. The final model gave the best results of
prediction. The models presented in the table are based on the previous one but in the
upgraded version. Changes between models based on the experience of authors in the
fields of neural networks, data processing and simulation. Conducted research enabled the
achievement of the neural network structure with good prediction results.



Materials 2022, 15, 98 10 of 23

Table 3. List of selected predictive models.
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1 (1) ANN
F-T-Lm 1 1 Number of hidden layers: 5

(14-14-14-14-14-3)

2 (1) ANN
F-T-Lm 2 1 Number of hidden layers: 5

(12-12-12-12-12-3)

3 (1) ANN
F-T-Lm 2 1 Number of hidden layers: 5

(12-12-12-12-12-3)

4 (2) ANN
F-TP-Lm 2 1 Number of hidden layers: 1

(12-3)

5 (3) ANN
F-TP-Lm 2 1 Number of hidden layers: 1

(6-3)

6 (2) ANN
F-TP-Lm 3 1 Number of hidden layers: 1

(10-3)

7 (3) ANN
F-TP-Br 3 1 Number of hidden layers: 1

(10-3)

8 (4) ANN
F-TP-Lm/Br 3 1 Number of hidden layers: 1

(10-3)

9 (5) ANN
Ft-T-Br 3 1 Number of hidden layers: 1

(10-3)

10 (5) ANN
Ft-T-Br 3 1 Number of hidden layers: 1

(10-3)

11 (6) ANN
Ft-T-C 3 2 Number of hidden layers: 1

(10-3)

12 (2) ANN
F-TP-Lm 3 2 Number of hidden layers: 1

(10-3)

In Table 3, for each of the models, the type of the applied machine learning method
is presented, in accordance with Table 4. The given input data (Input/Predictors) were
consistent with Table 1, while the output data (Output/Response) were consistent with
Table 2.

Table 4. List of selected types of artificial intelligence methods.

No. Name Type of Model/Neural Network Properties

1 ANN
F-T-Lm

Feed forward artificial neural network
with backpropagation

Activation function:
TANSIG

Learning algorithm:
TRAINLM

2 ANN
F-TP-Lm

Feed forward artificial neural network
with backpropagation

Activation function:
TANSIG/PURELIN

Learning algorithm:
TRAINLM

3 ANN
F-TP-Br

Feed forward artificial neural network
with backpropagation

Activation function:
TANSIG/PURELIN

Learning algorithm:
TRAINBR

4 ANN
F-TP-Lm/Br

Feed forward artificial neural network
with backpropagation

Activation function:
TANSIG/PURELIN

Learning algorithm:
TRAINLM/TRAINBR

5 ANN
Ft-T-Br

Feed forward artificial neural network
with backpropagation distributed

time-delay

Activation function:
TANSIG

Learning algorithm:
TRAINBR

6 ANN
Ft-T-C

Feed forward artificial neural network
with backpropagation distributed

time-delay

Activation function:
TANSIG

Learning algorithm:
TRAINCGB
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The sets of input and output training data have been differentiated not only due to the
search for the best structure of such data but also due to individual prediction methods
that require a slightly different approach.

Table 4 summarizes the tested types of artificial neural networks. This compilation
includes models with the use of regression algorithms and supervised learning. These
models were compiled in tabular form with assigned appropriate names, so as not to
duplicate information about the type of learning, learning category, type of neural net-
work and properties such as activation function or training algorithm when describing
predictive models.

The first type of training was supervised by the regression method with the help
of artificial neural networks of the feed-forward type, where the tangensoid activation
function was used for all network layers. The Levemberg–Marquardt training algorithm
was used in this case.

The second of the neural networks presented in the table differs from the first in the
activation function—both tangensoidal and linear activation functions were used in this
case. A linear activation function was applied to the output layer in this case.

The third type of artificial neural network is also the feed-forward type with backward
propagation, where, similarly to network number 2, tangensoidal and linear activation
functions are used. In this case, however, Bayesian regularization was used as the train-
ing algorithm.

In the fourth of the presented types of networks, two different training algorithms
were used. The Levemberg–Marquardt training algorithm was used in the first step of the
training, while the Bayesian regularization was used in the second step.

The fifth tested method of artificial intelligence, like the previous ones, belongs to the
regression of supervised learning. In this case, the applied neural network of the feed-
forward type contained a time delay (Feed-forward distributed time delay). The tangensoid
activation function was used herein all layers, while Bayesian regularization was adopted
as the training algorithm.

The sixth method was also a time-delayed feed-forward neural network, but in this
case, the training algorithm was based on the method of gradients coupled with the Powell–
Beale algorithm.

The remaining tested models, developed on the basis of regression algorithms, did not
give satisfactory results, therefore they were not included in the table. Nevertheless, it is
worth noting that artificial neural networks were tested for such training algorithms as:

• Levenberg–Marquardt training algorithm (Levenberg–Marquardt back-propaga-
tion TRAINLM);

• Bayesian Regularization back-propagation TRAINBR;
• Riedmiller and Braun algorithm RPROP (Resilient Backpropagation -TRAINRP);
• Steepest Descent Algorithm (TRAINGD);
• Gradient Descent Algorithm with Moment—TRAINGDM;
• The method of gradients coupled with the Powell-Beale algorithm (TRAINCGB);
• The method of gradients coupled with the Polak-Ribier algorithm (TRAINCGP).

The next chapter discusses the process of selecting the appropriate neural network
structure, while Figure 6 shows a diagram of the process of teaching a predictive model
(artificial neural network), based on which the technical condition of the current collector
was predicted.
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3. Results
3.1. Examined Prediction Models

To develop the final predictive model, in the next steps, artificial neural networks
were modified in terms of training algorithms, activation functions in individual layers,
the number of layers and the structure of input and output data. The purpose of these
modifications was to develop a model based on artificial neural networks that would enable
the best results of the prediction of technical states of the current collector.

In the beginning, the training data sets were divided into two groups—Data set
A and Data set B, where set A contained at least three instances of maintenance in the
cycle (i.e., from replacement to the next replacement of the sliding pad), while data set B
contained all technical reviews.

Model 1 was a feed-forward artificial neural network with backpropagation. Accord-
ing to Table 3, it contained five hidden layers, with 14 neurons in each layer. In this case,
the Tangensoidal activation function and the Levenberg–Marqardt training algorithm were
used. During the training and simulation of dataset A, the correct classification of state 2
for this model was only 4.3%. During the training and simulation of the data set with all
technical inspections (data set B), the correctness of the classification increased to 20.5%,
however, the correctness of the classification of state 3 decreased significantly, from 83.0%
to 57.8%.

Model 1 did not meet the expectations related to the correct determination of individ-
ual technical conditions. Therefore, several studies have been carried out, which changed,
inter alia, learning algorithm, activation functions or the number of hidden layers. None of
the models made it possible to exceed the 30% correctness of state 2 predictions. Therefore,
it was decided to check a different structure of the input data. Another prediction model
presented was developed based on the second set of input data in accordance with Table 1.

In the case of model 2, despite a significant improvement in the prediction of state 2,
the tested model did not meet the expectations related to the correct determination of
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individual technical states. During the training and simulation of the data set, where the
cycle included at least three reviews (Data A), the correct classification of state 2 was 31.9%,
but the correctness of the classification of state 3 was 0%. In this case, it was decided not
to conduct research on the second data set—Data B—because previous studies showed a
reduction in the correctness of the state 3 classification for Data B against Data A.

In the next step, the same network was retrained to see how it would affect the results.
The maximum number of steps for the learning algorithm was changed from six to five.

Despite the re-training of Model 2, as well as the change in the maximum number of
steps of the learning algorithm, the tested Model 3 did not meet the expectations related to
the correct determination of individual technical conditions. For the training and simulation
process, a data set where there were at least three reviews per cycle (Data set A), the correct
classification of state 3 was greater than that of Model 2, however, the correctness of the
classification of state 2 decreased to 10.6%. For the analogous ANN structure, research was
carried out by changing individual training parameters, as well as changing the network
learning algorithms and activation functions, but no better results were obtained.

Therefore, it was decided to change the structure of the neural network under study.
In the next step, the neural network available in the “Neural Fitting app” was exam-

ined. It is a Feed-forward Artificial Neural Network with backpropagation implemented in
the Matlab Machine Learning module.

Model 4 used the Levenberg–Marqardt training algorithm. This model had only one
hidden layer with 12 neurons, where the Tangensoidal activation function was used, while
the output layer used a linear activation function. The change in the ANN structure, as well
as the activation function in the output layer, increased the correctness of the classification
of state 2 and state 3. However, a decrease in the correctness of the classification of state 1
was noted. Therefore, in the next step, the number of neurons in the hidden layer was
changed from 12 to 6.

In the case of Model 5, where the number of neurons in the hidden layer was reduced
compared to Model 4, an increase in incorrect classification for states 2 and 3 was noticed.
State 1 was correctly classified in 92.7%. Nevertheless, the tested model did not meet the
expectations related to the correct determination of individual technical conditions. In the
next step, it was decided to change the structure of the input data for the third set of data
presented in Table 1, and change the number of neurons in the hidden layer to be equal to
the number of input data.

The change in the structure of both the Artificial Neural Network and the input data
resulted in a significant improvement in learning outcomes. In the case of model 6, as much
as 76.7% of all technical conditions were classified correctly. The second condition was
correctly classified in 38.8%. Due to a significant improvement in the results, in the next
model it was decided to keep the network structure, but to change the training algorithm
to Bayesian regularization.

The results of the correctness of the classification of technical conditions in the case
of Model 7 turned out to be the same as in the case of Model 6, in which the Levenberg–
Marqardt training algorithm was used. The model learner time in the case of model 7 was,
however, much longer than in the case of model 6.

Despite the similar results of both models, it was decided to re-test the same network
structure by combining both learning methods. In Model 8, due to the speed of training,
in the first step, it was decided to use the Levenberg–Marqardt algorithm. Then Bayesian
regularization was used because it is a modified Levenberg–Marqardt algorithm that has
better generalization properties. Due to the properties of both training algorithms, different
results were expected than in the case of training the models 6 and 7.

Testing model 8 had a positive effect. The correct classification of state 2, in this case,
was 42.6%. In the next step, it was therefore decided to examine a neural network with a
similar structure, but a different type—Feed-forward time-delay.

Distributed delay networks are similar to feed-forward with backpropagation except
that each input and layer weight has a delay line associated with it. As a result, the network
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has a finite dynamic response to the input of the time series. This network is also similar to
a time-delayed neural network (timedelaynet) which only has delays on the input weight.

Model 9, being a feed-forward neural network with distributed time-delay, turned
out to give better results both during training and simulation, compared to the analogous
network with backpropagation. This shows that the sequence and continuity of measure-
ments during technical inspections is important for the prediction of technical conditions.
To check whether the network was overtrained, the tested number of epochs was reduced
from 1000 in Model 9 to 100 in Model 10.

Reducing the number of epochs resulted in a slight difference in the parameters for
evaluating the correctness of the network training process in relation to the network with
a greater number of epochs. Nevertheless, reducing the number of epochs significantly
shortened the training time, and also increased the accuracy of the classification of state 3,
which was 100%.

In the next step, an analogous network with a time delay was tested, but with a
different structure of the input data. In subsequent models, the output data of the 1 × 1
structure was used, where the value in the range [1–3] determined the technical condition
(the second set of outputs from Table 2 was used). Among the networks tested, the best one
was the one in which the method of gradients coupled with the Powell–Beale algorithm
was implemented. Model 11 was developed on this basis.

This model turned out to perform better than model 10 in both training and simulation.
This shows that not only the sequence and continuity of measurements during technical
inspections is important for the prediction of technical conditions, but also the structure of
the output data.

To check the significance of the time delay in the case of such a defined output data
structure, in the next step, the network implemented in the Matlab “Neural Fitting app”
module was examined.

Thus, in Model 12, a feed-forward network with backpropagation was used, and a
linear activation function was used for the output layer. As a result, the correctness of the
classification of state 2 was as high as 85.1%. Among all tested predictive models, Model 12
turned out to be the best in terms of the correct classification of technical conditions.

Further ANN research, so the modifications to, inter alia, structure and parameters of
the network, did not allow us to obtain better results both during training and simulation.
The results obtained from model 12 were considered satisfactory due to the high correctness
of the classification of state 2, allowing for appropriate maintenance activities to minimize
damage to the sliding strips and current collectors.

3.2. Results of the Prediction Model

Table 5 provides information on the evaluation of individual predictive models. To
evaluate the learning process of artificial neural networks, the Mean Square Error (MSE)
and the R correlation coefficient (standard Persona correlation coefficient for the set value
and the value obtained at the network output) were used.

To evaluate the simulation process, a method was developed to determine the correct-
ness of the classification of technical conditions. For this purpose, the prediction results of
each of the technical conditions were compared and the final technical condition obtained
as a result of the prediction was considered to be most likely to occur. Outputs from
regression methods returned in this case by neural network occur as a decimal value (in a
continues form). The expected result, so the technical condition, have to be presented in
a district form (whole value). Because we tested various types of neural networks as an
example of the regression method, it was necessary to convert the data from continuous to
discrete form. Results obtained from the simulations carried out using neural networks
were divided into appropriate three classes. Thanks to this procedure, the simulation
results, which were in a continuous form, obtained a discrete form and could be compared
to a real technical condition which was divided into three classes. Equations (1)–(3) show
the ranges of values that enable assigning a given continuous value to one of the three
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classes. This example is presented for model 12, but for other models the transformation
between continuous and discrete form was similar—it was based on the determination of
appropriate intervals for belonging to a given class.

Table 5. Summary of the results of selected predictive models.
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1 (1) ANN
F-T-Lm 1 1

0.12497
(A)

0.12485
(B)

0.75943
0.64552

59.8
54.7

4.3
20.5

2 (1) ANN
F-T-Lm 2 1 0.13384 0.67901 41.2 31.9

3 (1) ANN
F-T-Lm 2 1 0.11970 0.71918 48.1 10.6

4 (2) ANN
F-TP-Lm 2 1 0.11913 0.72838 53.2 17.0

5 (2) ANN
F-TP-Lm 2 1 0.11669 0.71501 49.3 12.8

6 (2) ANN
F-TP-Lm 3 1 0.069108 0.84538 76.5 38.3

7 (3) ANN
F-TP-Br 3 1 0.043195 0.87944 76.2 38.3

8
(4) ANN

F-TP-
Lm/Br

3 1 0.038862 0.88206 78.1 42.6

9 (5) ANN
Ft-T-Br 3 1 0.014731 0.9222 78.6 61.7

10 (5) ANN
Ft-T-Br 3 1 0.020364 0.92088 82.0 61.7

11 (6) ANN
Ft-T-C 3 2 0.064105 0.8938 81.5 80.9

12 (2) ANN
F-TP-Lm 3 2 0.15974 0.90966 82.5 85.1

The designations presented in Table 5 are: MSE—Mean Square Error; R—Persona correlation coefficient.

In the next step, the simulation results transformed into discrete forms were compared
with the real ones. As a result, the percentage correctness of the classification of each techni-
cal condition was obtained. Table 5 presents the results of the assessment of the correctness
of the classification of all technical conditions and the correctness of the classification of the
second technical condition S2 as the key condition for the possibility of preventing damage
to the sliding cover of the current collector.

Among the tested predictive models, the highest correctness of the classification
of second technical condition S2 was achieved for Model 12. It was as much as 85.1%.
Moreover, the correctness of classification of all technical conditions turned out to be the
highest for this model (82.5%). In this case, however, relatively low correctness of the
classification of state 1 was obtained, which amounted to 62.4%.
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In terms of learning results, Model 9 turned out to be the best. In this case, the mean
square error MSE was only 0.014731, and the correlation coefficient was as high as 0.9222.
The results obtained for the training process turned out to be the best for Model 9. The
correctness of the classification of technical conditions, in this case, was, however, lower
than for Model 12 and amounted to 78.6% for all technical conditions and 61.7% for the
second technical condition S2.

In the case of simulations, with the use of models based on regression algorithms,
a histogram of errors was presented, which defines the differences between the values
obtained from prediction and the actual values of the technical condition, and a graph of
the correctness of the classification of technical conditions.

The results of the prediction using model 12 give the result as one value in the range from
0 to 3.5. For this model, thresholds for the technical conditions were defined experimentally:

S1 ⇔ [0 ≤ y12 < 1.25] (6)

S2 ⇔ [1.3 ≤ y12 ≤ 2.5] (7)

S3 ⇔ [2.5 < y12 ≤ 3.5] (8)

where:

S1—First technical condition—able to further use
S2—Second technical condition—the limited ability of further use, it will be necessary to
replace the sliding strip for the next inspection
S3—Third technical condition—not able to further use—it is necessary to replace the sliding
strip/pantograph
y12—the value obtained during the prediction thanks to the use of themodel 12.

Due to the determination of the presented ranges of limit values determining the ex-
pected technical condition, it was possible to determine the correctness of the classification
of technical conditions. For this purpose, the percentage share of y12 values correctly classi-
fied to technical conditions were calculated. Therefore, the correctness of the classification
means the number of cases classified to the same technical condition as in reality.

Figure 7 shows model 12 consisting of two layers, where the tangensoidal activation
function was used in the first layer, and the linear activation function was used in the more
expensive layer. The Levemberg–Marquardt training algorithm was used in this model.
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Figures 8–11 concern the training process of the artificial neural network constituting
model 12. The regression function fit for all processes during training an ANN (training,
validation and test) was R = 0.90966 (Figure 8). This function for the entire network training
process took the form of:

Output = 0.83 · Target + 0.28 (9)
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The regression function for training was R = 0.91632, for Validation R = 0.84508, while
for the test process it was R = 0.94019. The mean square error in this model was 0.15974
and was reached in the 12th epoch (Figure 9).

Figure 10 presents selected ANN error parameters for subsequent learning epochs.
As you can see, the gradient for the learning epoch 18 is 0.1293. The Mu-factor for this
epoch was 0.0001. Figure 11 is an error histogram for the training process showing the
difference between the targets and the output values from the network. The chart shows
errors for the neural network training, testing and validation process. Most cases oscillate
in the range from −0.1778 to 0.07845.
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Figures 12 and 13 relate directly to the simulation process. Figure 12 shows a histogram
of errors, where most cases fluctuate in the range from −0.3068 to 0.01282. Figure 13 shows
the correctness of the classification of all three technical conditions. The correctness of the
classification is presented in percentage terms, and it is based on formulas (1)–(3).
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The correctness of the classification of technical conditions was as follows:

• for technical condition S1: 62.4%;
• for technical condition S2: 85.1%;
• for technical condition S3: 100%.

To reduce the damages of the current collectors, the most important factor is to identify
technical state “2”. This state means that the analysed object need to be soon replaced by a
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new one. Therefore, it means that for identifying this state with a high probability—85.1%
it will be possible to detect low-quality parts before damage occurs or the minimum value
of the thickness of the sliding strip will be exceeded. Practically speaking, these results are
very useful for the railway carrier because, as of now, the internal company rules to decide
on the replacement of sliding strips are based just on the thickness of the sliding strips and
the experience of service staff. In many cases, this replacement was too fast and caused the
additional cost and waste of the components that could be used for longer. What is more,
in some cases, replacement is too late and causes the damage of the whole current collector,
so the costs of a new one are major. The service companies do not have a similar prediction
system to help decide about the optimal time of sliding strips replacement.

4. Discussion

By analysing the results of both training and simulation, it can be concluded that
Model 12 best meets the expectations related to the correct classification of the second
technical condition S2.

Model 12 uses the same input and output data structure as in Model 11. However, in
the case of Model 12, a feed-forward network with backward propagation was used, and a
linear activation function was used for the output layer. As a result, the correctness of the
classification of state 2 was as high as 85.1%.

Among the tested predictive models, Model 12 turned out to be the best in terms of
the correct classification of technical conditions. Further ANN studies did not allow to
obtain better results both during training and simulation.

The main drawback of the presented model is a classification of the 37.6% of cases
from technical condition S1 to S2. This situation does not have a negative effect on the
unpredicted wear or damage of sliding strips, but causes the earlier replacement of the
sliding strips—the predicted state is S2, so it suggests the high possibility of wear before the
next service. Because of this, the model suggests a replacement. It does not cause additional
costs in current maintenance services, because now the sliding strips are generally replaced
earlier than they could be. So, savings are not able to be made. It is obvious that future
research and development of better models to enable to prediction of the correct state 1
with a higher probability will increase savings and reduce costs.

5. Conclusions

Based on the conducted research, it can be concluded that artificial neural networks
can be successfully used to predict the wear and damage of carbon sliding strips. The best
prediction results were obtained for the input data set, which included parameters such
as review number, information about a new measuring cycle, number of days since the
exchange, a quarter of the year, pantograph type, information about pantograph position
(front/rear pantograph), difference in thickness of the strip N1 and N2 between inspections,
information about the earlier technical condition, and if there was pantograph replacement
information about the reason. There was no information in this dataset regarding average
temperature in the month, average wind speed for the month and total rainfall for the
month. It can be concluded that these data were too general for the prediction of the
technical condition of the pantograph, but the introduction of more accurate weather data
would probably increase the correctness of the classification of technical conditions. Such
a conclusion can be made due to the significant improvement of the prediction results
after adding to the input data the quarter of the month in which the technical inspection
was performed.

The form of the output data is also important for predicting the technical condition of
the pantograph. It should be noted that presenting the output data as values (z3(t)), and
not as a vector T, significantly increased the correctness of the classification of the second
technical condition S2.

The best learning algorithm turned out to be the Levemberg–Marquardt algorithm,
where both tangensoidal and linear activation functions were used. Further research on
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the influence of the learning algorithm and the activation functions did not show any
improvement in the correctness of the classification of technical conditions.

In subsequent studies, it should be assumed that the correctness of the classification
may be influenced by such factors as more accurate weather conditions, data on the route.
Based on the currently available data, an increase in the correctness of the classification
of technical conditions may occur as a result of combining several predictive models and
adjusting the appropriate threshold values for individual classes of technical conditions.
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