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Abstract: This work deals with the kinetic aspects of bainite formation during isothermal holding
above and below the martensite start (Ms~275 ◦C) temperature using a low-alloy, high-silicon DIN
1.5025 steel in a range suitable for achieving ultrafine/nanostructured bainite. Dilatation measure-
ments were conducted to study transformation behaviour and kinetics, while the microstructural
features were examined using laser scanning confocal microscopy and electron backscatter diffraction
(EBSD) techniques combined with hardness measurements. The results showed that for isothermal
holding above the Ms temperature, the maximum bainitic transformation rate decreased with the
decrease in isothermal holding temperature between 450 and 300 ◦C. On the other hand, for isother-
mal holding below the Ms temperature at 250 and 200 ◦C, the maximum rate of transformation was
achieved corresponding to region I due to the partitioning of carbon and also possibly because of
the ledged growth of isothermal martensite soon after the start of isothermal holding. In addition, a
second peak was obvious at about 100 and 500 s, respectively, during holding at 250 and 200 ◦C due
to the occurrence of bainitic transformation, marking the beginning of region II.

Keywords: AHSS steel; dilatometric analysis; bainitic transformation; transformation kinetics; martensite

1. Introduction

In the last few decades, advanced high-strength steels (AHSSs) with multiphase mi-
crostructures, essentially comprising fine phase mixtures of bainite (B), martensite (M) and
retained austenite (RA), have attracted renewed interest due to their superb combinations
of high strength and good ductility as well as high strain hardening capacity, and are being
considered as potential candidates for use in automobile and industrial applications [1–3].
Steels processed at a temperature close to Ms temperature via the quenching and parti-
tioning (Q&P) route with essentially finely divided martensite–austenite–nanostructured
bainite structures, as well as quenching and bainititizing (Q&B) treatment with mainly
ultrafine/nanostructured bainite–austenite structures, are two such groups of multiphase
third-generation AHSSs that show greatly improved mechanical property combinations,
including good ductility imparted by transformation-induced plasticity (TRIP), an effect
of the finely divided retained austenite (RA) in the steels [2,4,5]. In order to achieve a
mixture of ultrafine bainite and finely distributed, carbon-enriched retained austenite,
isothermal heat treatment procedures close to (both above and below) the Ms temperature
have been suggested [6,7]. These isothermal heat treatments have been shown to impart ex-
cellent mechanical properties to the steel, including ultrahigh strength, adequate toughness,
reasonable ductility and good wear resistance [7,8].

In general, AHSSs contain bainite as an important strengthening constituent with or
without the presence of an RA phase as an interspersed minor constituent. Customarily, the
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bainite microstructure has been broadly classified into upper and lower bainites, due to the
difference in distribution of carbide precipitates. In upper bainite, most of the carbides are
normally distributed within the interfaces of the ferritic sheaves, whereas in lower bainite,
carbides are known to form inside the ferritic platelets without significant transfer of carbon
to the austenite in the interfaces [9,10]. In contrast, the quenching and partitioning (Q&P)
process has been proposed as a potential means of improving the balance of elongation to
fracture and tensile strength for AHSSs, wherein the steel is austenitised, quenched to a
temperature between the Ms and Mf temperatures and held at an appropriate temperature
for a proper time to enable partitioning of carbon from supersaturated martensite to
untransformed austenite, which can then be partially or fully stabilized on cooling to room
temperature [11,12].

In the achievement of a multiphase microstructure, including a desired bainite fraction,
by isothermal holding around the Ms temperature, the previous study clearly showed that
selection of austempering temperature was more effective than manipulating holding time
in the course of isothermal heat treatment [13]. To design the control of the heat treatment,
prior knowledge of phase transformation kinetics is of paramount significance. Among
the existing computational models that are used to calculate the decomposition fraction
of the austenite phase, the Kirkaldy–Venugopalan model, e.g., [14], and the JMAK type
(Johnson–Mehl–Avrami–Kolmogorov) model, are quite common, e.g., [15–17]. Based on
the JMAK equation combined with the additivity rule, some mathematical models were
developed using the phase transformation data and proposed for different multiphase
steels, including dual-phase (DP), TRIP and complex-phase (CP) steels [18–20]. For heat
treatments promoting the formation of phase mixtures, including bainite and martensite, it
is imperative that we be able to model the process, particularly when all the austenite phase
may not transform into bainite. Therefore, the JMAK equation in differential form [16,21]
still remains a useful and practical tool that includes a description of the maximum bainite
fraction transformed at different temperatures.

Previous investigations have shown that the characteristic features of different phases,
including the amount, size, morphology and orientation, are important factors that influ-
ence the final mechanical properties of bainitic steels [22,23]. Both the carbon content as well
as austempering temperature were important parameters influencing the kinetics of phase
transformation [24,25]. As the theory of T0 curve suggests [26], in high-C bainitic steels,
more supercooled, carbon-enriched, untransformed austenite will be realized following
isothermal heat treatment at an austempering temperature, as the incompleteness of bainitic
phase transformation increases. Besides, more carbon atoms are available in high-carbon
steels to partition from the transformed bainitic ferrite to the remaining untransformed
austenite and, accordingly, the thermal stability of austenite increases. Consequently, more
austenite will be retained at room temperature, mostly in large blocks depending on the
experimental parameters [6,22,27].

In previous investigations, researchers have correlated the mechanical properties of
AHSSs with the characteristics and fractions of bainitic microstructures obtained after
different isothermal holding treatments above and below the Ms [28–30]. However, only a
few researchers studied thoroughly the kinetics of bainitic phase transformation in low-
alloyed, high-silicon, medium-carbon steels, which not only clarifies the importance of
various mechanisms operating during phase transformation under different heat-treatment
conditions, but also allows the prediction of final microstructures and properties of heat-
treated low-alloy steel and helps with the design of the process. Therefore, this study
presents the characteristics and kinetics of ultrafine (nanostructured) bainite transformation
during isothermal holding for 1 h at different isothermal temperatures in the vicinity of
Ms temperature. The bainitic transformation behaviour and kinetics were characterized
using the dilatation measurements made with a Gleeble thermomechanical simulator
using a JMAK-type of analysis [31]. The results were further corroborated by Vickers
macrohardness measurements and detailed microstructural investigations of multiphase
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microstructures conducted using laser scanning confocal microscopy, EBSD characterization
and XRD measurements.

2. Materials and Methods
2.1. Experimental Material

A high-silicon, medium-carbon steel sheet (DIN1.5025 grade) of 1 mm thickness with
the chemical composition (all concentrations in wt.%) Fe-0.529C-1.670Si-0.720Mn-0.120Cr
was used in this research. A high amount of Si is beneficial because of its influence in
preventing (or at least delaying) carbide formation and/or its growth during the phase
transformation and finally promoting carbon partitioning to the adjacent remaining austen-
ite phase. However, the Mn content (0.72 wt.%) was lower than normally desired to
promote the stabilization of an austenite phase during carbon partitioning.

2.2. Heat-Treatment Cycles

Suitable heat-treatment schedules above and below the Ms temperature were planned
for conducting typical quenching and bainitizing (Q&B) and Q&P processes, respectively,
in a thermomechanical simulator (Gleeble 3800 (New York, NY, USA)) to investigate the
transformation behaviour and/or evolving microstructural mechanisms. The determi-
nation of critical temperatures, viz., the start (Ac1) and finish (Ac3) austenite formation
temperatures, Ms temperature, as well as the bainite start temperature (Bs), were therefore
considered necessary to design proper heat-treatment processes. Accordingly, Ac1 (765 ◦C),
Ac3 (835 ◦C) and Ms (275 ◦C) temperatures were determined via dilatometry measurements
by choosing the heating and cooling rates of 0.2 ◦C/s and 150 ◦C/s, respectively (detailed
discussion presented elsewhere [32]), while the Bs temperature (471 ◦C) was estimated
using the empirical equation proposed in [33]. These measurements enabled the design of
experimental cycles for Q&B and Q&P heat treatments on the thermomechanical simulator
using specimens of dimensions 30 × 9 × 1 mm3, resulting in the formation of a uniform
central hot zone of ~4 mm width in the specimens.

Various steps in heat-treatment cycles included heating to the austenitization tem-
perature of 900 ◦C at 50 ◦C/s, holding for 5 min, then cooling at 50 ◦C/s to different
temperatures for bainitization treatment between 450 and 200 ◦C in steps of 50 ◦C and hold-
ing for 1 h at the selected temperatures. This was followed by cooling to room temperature
at 50 ◦C/s (schematically shown in Figure 1). The isothermal holding temperatures selected
for Q&B experiments above the Ms temperature were 450, 400, 350 and 300 ◦C, and those
for Q&P experiments were 250 and 200 ◦C below the Ms. Quenching to 250 and 200 ◦C
facilitated initial martensite fractions of about 20 and 57%, respectively. The martensite
fractions on quenching to different temperatures (250 and 200 ◦C) were estimated from the
dilatation curves using the lever rule and more details are given in our previous work [5].
Dilatation measurements were performed for all steps during the quenching and isothermal
holding processes, as well as final cooling to room temperature.

2.3. Microstructural Observation and Hardness Measurement

In order to reveal the microstructural details of the Gleeble-simulated specimens, the
specimens were prepared according to the ASTM E3 standard and etched with a 2% nital
solution. An initial investigation into microstructure was made using a 3D laser scanning
confocal microscope (model Keyence VK-X200 (Itasca, IL 60143, USA)). The specimen
preparation for electron backscatter diffraction (EBSD) involved a final step of polishing
with colloidal silica (0.04 µm) suspension in methanol. Later, the specimens were subjected
to detailed microstructural investigation using the EBSD facility equipped with a Zeiss
Ultra Plus field emission scanning electron microscope (FESEM (Zeiss, Germany)). The
EBSD analysis was performed with the help of HKL Channel 5 system software. Select
specimens were subjected to thorough metallographic examination using a 200 kV Jeol
JEM-2200FS (Peabody, MA, USA) transmission electron microscope (TEM). Thin slices
(100 µm) of samples were cut to prepare the thin foils for the TEM study. The samples were
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thinned up to 50 µm by mechanical polishing and 3 mm discs were punched to conduct
twin-jet electropolishing in an electrolyte composed of 10% perchloric acid and 90% acetic
acid, maintained at 10 ◦C.
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Figure 1. Schematic of the typical heat-treatment processes.

For conducting hardness measurements, the samples were polished to mirror-finish
flat surfaces. Vickers hardness tests were conducted on all heat-treated samples using a
load of 30 kg. An average of five different measurements was reported for the hardness
evaluation.

2.4. Microphase Analysis

The presence of different phases in the specimens was determined using X-ray diffrac-
tion (XRD) analysis (Rigaku SmartLab 9 kW) (Rigaku Corp., Tokyo, Japan). The mea-
surements were made using a CoKα radiation source at 135 mA and 40 kV conditions in
2θ range between 45 to 130◦ and the rotation was performed at 7.2◦/min. The volume
fraction and also the lattice parameter of retained austenite were calculated using a direct
comparison method, thus comparing the integrated intensities of diffracted planes for FCC
(face-centred cubic), including (111), (200), (220) and (311) planes and diffracted planes of
BCC (body-centred cubic), including (101), (002), (112) and (202) planes, respectively. Then,
the carbon contents were determined according to the following equation [34]:

aγ [oA] = 3.572 + 0.033xC + 0.0012xMn + 0.0056xAl + 0.00157xSi (1)

where aγ is the austenite phase lattice parameter in angstroms and xC, xMn, xAl, xSi are the
mass fractions of carbon, manganese, aluminium and silicon contents (in wt.%), respectively.

2.5. Kinetics Data Collection

The Avrami-type function (Equation (2)) [35] was used to describe the relationship
between the progress of bainite formation with a specific holding time at each isothermal
holding temperature.

x = 1 − exp(−ktn) (2)
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where x is the phase fraction which transformed after a specific time t, n is the Avrami
exponent and k is a temperature-dependent rate coefficient of the transformation reaction.
The Avrami exponent n depends on the nucleation mechanism and growth of the bainite
phase. Equation (1) can be reorganized as given below in Equation (3) in order to be able to
determine the k and n values:

ln [−ln (1 − x)] = lnk + nlnt (3)

The values of k and n were achieved by plotting the organized “Avrami” relationship.
The k and n values were the intercepts of the best fit lines on the y-axis and the slopes of
the corresponding regression equations, respectively.

3. Results
3.1. Progress of Bainite Formation

Figure 2 depicts the dilatation temperature measurements made on Q&B and Q&P
specimens quenched and held both above and below the Ms temperature in the range
450–200 ◦C for 1 h. The small scatter in the initial slope during cooling (Figure 2) may be due
to minor variation in the course of dilatometry tests. The curves in Figure 2a show a percent
change in width (contraction) during cooling from 900 ◦C to a particular temperature above
the Ms, then expansion during subsequent isothermal holding at these temperatures as a
result of conventional bainite transformation. Figure 2b shows the dilatation measurements
made on Q&P specimens held at 250 and 200 ◦C for 1 h. Prior to holding, the occurrence
of dilatation as a consequence of the decrease in temperature below Ms resulted in an
appreciable expansion, obviously due to the athermal martensite formation giving the
initial martensite fractions of about 20 and 57% at 250 and 200 ◦C, respectively. In addition,
referring to the plots shown in Figure 2b, the expansion for the Q&P specimen held at 250 ◦C
is several times greater than the dilatation that occurred in athermal martensite formation,
revealing that the austenite-to-bainite transformation continues during isothermal holding.
Prior martensite is known to accelerate the subsequent bainitic transformation [36,37]. So,
the presence of initial martensite precisely after quenching to 250 and 200 ◦C (as marked
in Figure 2b) might have accelerated subsequent bainite transformation and caused a
noticeable expansion that was significantly higher than that predicted for partitioning of
carbon, as can be discerned from the dilatation curves.

Figure 3 reveals the dilatation measurements conducted on Q&B and Q&P specimens
held for 1 h at different temperatures, both above and below the Ms temperature, respec-
tively. To assist interpretation, both logarithmic (Figure 3a,c) and linear (Figure 3b,d) time
scales have been used. Referring to Q&B heat-treatment conditions (Figure 3a,b), the occur-
rence of bainite transformation during isothermal holding can be expediently described
by Avrami-type functions (typical S-type curves on logarithmic time scales; Figure 3a), as
the transformations appeared near completion at about 1 h regardless of maximum bainite
fractions that formed at different isothermal holding temperatures between 450 and 300 ◦C.
Moreover, the dilatation curves of samples isothermally held at 450 and 400 ◦C displayed
contraction beyond about 100 and 470 s, which can be attributed to the occurrence of
extensive tempering of martensitic/bainitic laths, besides the possible carbide formation,
despite the high silicon content [29]. A quick comparison of the dilatation curves in the
temperature range of 300–450 ◦C (Figure 3a) showed that the time at which the bainitic
transformation started increased continuously with the decreasing isothermal holding
temperature. The shape of the initial part (up to about 10 s) of the dilation curve at 450 ◦C,
however, is unreliable and is attributed to the error in dilatometer data acquisition during
Gleeble simulation. On the other hand, the dilatation measurements (Figure 3c,d) made
during Q&P treatments at 250 and 200 ◦C showed expansions far greater than those pre-
dicted for carbon partitioning alone, revealing that the austenite-to-bainite transformation
occurs during holding for 1 h (ignoring the possibility of isothermal martensite formation),
thus indicating the conventional time–temperature dependence of bainite transformation,
though influenced by the presence of prior martensitic laths. As Gong et al. [37] reported,
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the prior martensite present in the microstructure is hermal martensite phase following
initial quenching to 250 and 200 ◦C (20 and 57 vol.%, rean accelerating parameter for
subsequent bainite transformation. So, the presence of an atspectively) should have also
accelerated bainitic transformation, thus shortening the incubation period and finally accel-
erating the bainite transformation rate, too [38–40]. The width of the specimen increases
with time (region I) and then more rapidly on a logarithmic scale (actually at a decreased
transformation rate in absolute scale) at about 60 s and 200 s for holding at 250 and 200 ◦C,
respectively, as shown by the arrows (region II). During cooling to a particular temperature
below Ms, carbon partitioning begins immediately and continues thereafter (region I), with
the possible formation and migration of ledges leading the martensite laths to grow into
the austenite. During long holding, some austenite pools can transform to ultrafine lower
bainite (region II). In the literature, a third region (region III) has also been reported, in
which the sample contracts because of extensive martensite tempering [29,41].
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mal holding for 1 h at different temperatures: (a,b) Q&B and (c,d) Q&P treatments shown in both
logarithmic (a,c) and linear (b,d) scales.

By comparing the dilatation curves in Figure 3 regardless of experimental type, i.e.,
Q&B or Q&P process, it is obvious that the incubation time to start the bainite transforma-
tion increased continuously as isothermal holding temperature decreased from 450 ◦C to
200 ◦C. The bainite fractions at different isothermal holding temperatures estimated from
the dilatation curves in Figure 3a,c are reproduced in Figure 3b,d, respectively, as a function
of holding time in linear absolute scale. In Figure 3b, the transformation rate increased as
holding temperatures increased between 300 and 450 ◦C. Figure 3d reveals that the volume
fraction of the bainite phase decreased as the holding temperature below the Ms decreased
from 250 to 200 ◦C, and this is due to the formation of significant initial martensite before
the start of isothermal holding. A large amount of initial athermal martensite renders a
significantly lower amount of untransformed austenite prior to the start of bainite transfor-
mation and hence has a low driving force as well at a relatively low holding temperature of
200 ◦C. A detailed account is presented in our previous work [5].

3.2. Kinetic Data of Bainite Phase Transformation

The linear regression equations describing the dilatation behaviour corresponding
to each isothermal holding temperature plotted as ln [−ln (1 − x)] vs. lnt in accord with
Avrami-type functions (Equation (3)), both above and below the Ms temperature, are
presented in Figures 4 and 5, respectively. The linear regression equations corresponding
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to all isothermal holding temperatures between 450 and 200 ◦C and the associated values
of k and n are tabulated in Tables 1 and 2, respectively. According to Table 2, a systematic
change in n and k values occurred, as the temperature decreased below the Ms. For better
understanding, the variations of n and k as a function of isothermal holding temperature
are displayed in Figure 6. The value of n varied between 1.0 and 1.8 for the isothermal Q&B
treatments (above Ms) and less than 0.4 for Q&P treatments (below Ms) [31]. Referring to
Figure 6, above Ms temperature, the Avrami exponent n increased continuously from 1.0
to 1.8 with the bainitizing temperature (Table 2), though the temperature dependent rate
coefficient k varied only in a narrow range (0.002–0.004 s−1), showing its weak dependence
in the bainitic regime. On the other hand, below Ms temperature, the rate coefficient k
corresponding to bainite reaction for Q&P samples (0.03–0.04 s−1) was more than 10 times
greater than that seen for Q&B samples (Figure 6), though the Avrami exponent n dropped
significantly, showing a weak dependence on temperature. The decrease in the Avrami
exponent during isothermal holding below the Ms temperature indicates that bainite
formation became site-saturated because of the presence of numerous nucleation sites at
prior austenite–martensite interfaces. Additionally, the lower values of k for Q&B samples
(0.0019–0.0040) compared to those of Q&P specimens (0.392–0.283) (Table 2) are consistent
with those reported by other research groups [23,42]. According to the investigation carried
out by Zhou et al. [43], a high k value signifies a faster growth process of isothermal
bainite formation.
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Table 1. Linear regression equations describing the dilatation behaviours at various isothermal hold-
ing temperatures based on Avrami-type functions applied to the dilatation results in the temperature
range 450–200 ◦C.

Isothermal Holding Temperature (◦C) Linear Regression Equations

450 ◦C y = 1.7855x − 6.2659 R2 = 0.9433
400 ◦C y = 1.4251x − 6.205 R2 = 0.9634
350 ◦C y = 1.2862x − 5.9329 R2 = 0.9701
300 ◦C y = 1.0029x − 5.6968 R2 = 0.9157
250 ◦C y = 0.3665x − 3.2404 R2 = 0.9611
200 ◦C y = 0.1622x − 3.5651 R2 = 0.9188

Table 2. Parameters n and k derived from linear regression equations describing the dilatation
behaviours at various isothermal holding temperatures in the range 450–200 ◦C.

Isothermal Holding Temperature (◦C) n k (1/s)

450 ◦C 1.7855 0.0019
400 ◦C 1.4251 0.0021
350 ◦C 1.2862 0.0027
300 ◦C 1.0029 0.0040
250 ◦C 0.3665 0.0392
200 ◦C 0.1622 0.0283

3.3. Rate of Bainite Phase Transformation

The dilatation rate curves of various specimens held above and below the Ms, derived
from the dilatation test results, are shown in Figure 7. In the case of Q&B specimens,
with isothermal hold above the Ms temperature (Figure 7a), a peak in the dilatation rate
(0.54 µm s−1) corresponding to the maximum transformation rate is reached in the short-
est time (10 s) for the specimen isothermally held at 450 ◦C. As can be seen in Figure 7,
a further decrease in holding temperature results in a drop in maximum transformation
rate with a consequent increase in the time taken to reach the peak. In sharp contrast, for
Q&P specimens held at temperatures below Ms temperature (Figure 7b), the maximum
dilatation rate occurred at the very start of holding owing to the occurrence of various
mechanisms, including partitioning of carbon and isothermal martensite formation. A high
transformation rate below Ms is due to the presence of prior martensite, which is supersatu-
rated from carbon, thus leading to rapid carbon partitioning from martensite to the adjacent
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untransformed austenite. On the other hand, the second increase in transformation rate
during continuous holding relates to the bainite formation that can occur even at these
low temperatures below Ms. This is due to the performed initial martensite enabling more
heterogeneous nucleation sites for bainitic transformation and also promoting a higher
fraction of dislocations in the remaining austenite (dislocation structures are favorable sites
for bainite formation) [44]. In addition, the formation of initial martensite increases the
interior stress in the remaining austenite and so prepares additional mechanical driving
force for isothermal bainitic transformation [37,45].
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3.4. Microstructural Features and Hardness Measurements

Typical examples of microstructures of Q&B samples subjected to various isothermal
holding treatments between 450 and 300 ◦C (above the Ms temperature) for 1 h, as prepared
using laser scanning microscopy, are shown in Figure 8. Referring to Figure 8a, the presence
of bainitic ferrite (relatively large bright regions) with a distribution of carbides (grey, small
particles) between the sheaves shows that after isothermal holding at 450 ◦C for 1 h, the
microstructure essentially consisted of bainite–carbide aggregates typical of upper bainite
microstructure. A decrease in isothermal bainitizing temperature to 400 ◦C (Figure 8b)
resulted in the refinement of the transformed phase in comparison to that at 450 ◦C, though
a fine distribution of carbides between the sheaves still persisted. A further lowering of
bainitizing temperature at 350 and 300 ◦C, however, resulted in a significant fraction of
extremely fine bainitic laths (grey regions) after 1 h holding, as depicted in Figure 8c,d,
respectively. Carbon-enriched retained austenite–martensite (RA/M) islands (bright) can
be seen distributed throughout the bainitic matrix. Carbides formation, if any, was not
discernible from the laser scanning micrographs, Figure 8c,d.
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So far as 1 h holding in the Q&P regime at 250 ◦C is concerned, the structure is a
mixture of martensitic packets in association with an ultrafine distribution of bainitic laths
(Figure 9a). As stated above, carbon partitioning began immediately below Ms (region I),
with possible ledged growth of martensite laths into adjacent austenite isothermally, though
this could not be detected in the microstructure and needs further investigation. With con-
tinued holding, some austenite pools transformed to ultrafine lower bainite (region II). It is
obvious that the interstitial carbon atoms preferentially diffuse to prior austenite soon after
quenching below the Ms temperature [46–48]. The octahedral interstitial positions in face-
centered cubic (FCC) austenite are larger in comparison to those in body-centered tetragonal
(BCT) martensite, resulting in swift carbon partitioning from the carbon-supersaturated
martensite to the untransformed austenite. Carbon content enriching the untransformed
austenite causes a further decrease in bainite transformation temperature, even though the
bainite transformation rate increased significantly due to the presence of prior martensitic
laths. By further decreasing the holding temperature to 200 ◦C, a significant amount (~57%)
of athermal martensite laths already formed in the microstructure and only a tiny fraction
of ultrafine (nanostructured) bainite formed following holding for 1 h (Figure 9b), as the
bainite formation kinetics at this low temperature were quite slow despite the presence of a
high martensite phase fraction in the microstructure (see Figure 3d). Carbides formation, if
any, was not discernible in this sample, similar to a specimen held at 250 ◦C.
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Figure 9. Micrographs recorded on Q&P samples were quenched at (a) 250 ◦C and (b) 200 ◦C and
held for 1 h isothermal holding time. TM, B and M/RA represent tempered martensite, bainite and
martensite–retained austenite islands, respectively.

For further investigation into the presence of the RA phase and also the possibility of
carbide formation, select samples from different heat-treatment conditions were examined
in a TEM. Typical examples of microstructures for specimens held at different temperatures
both above (350 ◦C) and below (200 ◦C) the Ms after 1 h isothermal holding are shown in
Figure 10. A bright field (BF) image of the specimen held at 350 ◦C (Figure 10a) revealed
that the specimen displayed bainitic laths with a high density of dislocations. The TEM
observations, including dark field (DF) imaging (Figure 10b) and selected area diffraction
pattern (SAED) analysis, revealed the presence of finely divided interlath films of the RA
phase in the Q&B samples held at 350 ◦C for 1 h. By decreasing the holding temperature
below the Ms (200 ◦C), the TEM image clearly depicted highly dislocated martensite and
fine bainitic laths in the microstructure (Figure 10c). The SAED pattern analysis (inset in
BF image; Figure 10c) and DF imaging (Figure 10d) of the relevant spots in SAED patterns
appeared to show the presence of a finely divided austenite phase a few tens of nanometers
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in width. These results seemed to suggest that carbon atom diffusion in the austenite phase
at such low temperatures happens in less than about 10 nm after 1 h isothermal holding,
so a significant part of the core of the untransformed austenite is not adequately enriched
with carbon to be stabilized at RT during final cooling.
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Figure 10. TEM images of specimens held at 350 ◦C (a,b) and 200 ◦C (c,d)) for 1 h. The BF images with
inset SAED patterns and the DF images from the diffraction spots are shown for RA phase detection.

Furthermore, the presence of carbides for different processing conditions at 350 and
200 ◦C were investigated by TEM examination and the typical examples of TEM images
are shown in Figure 11. Carbides in the samples held for 1 h above (Figure 11a,b) and
below (Figure 11c,d) the Ms temperature can be identified with DF imaging (Figure 11b,d),
using carbide diffraction spots in the concerned SAED patterns (shown as insets in the
corresponding BF images presented in Figure 11a,c, respectively). The evidence of carbide
formation suggests that alloying with a high Si content can delay carbide formation but
cannot completely prevent it. The results confirmed that despite the low temperature of
200 ◦C, there was still a strong driving force for carbides formation during 1 h holding.
DF images presented in Figure 11b,d show fine precipitation of interlath carbides at the
nanometer scale in both Q&B and Q&P conditions.
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Figure 11. TEM images of specimens held at 350 ◦C (a,b) and 200 ◦C (c,d) for 1 h. The BF images with
inset SAED patterns and the DF images from the diffraction spots are shown for carbide detection.

Vickers hardness measurements were conducted on all the Q&B and Q&P samples
and the data are presented in Table 3. As isothermal holding temperature decreased from
450 to 200 ◦C, macrohardness increased continually from 350 to 655 HV30, corroborat-
ing the notable microstructural evolution, right from the formation of upper bainite at
450 ◦C (Figure 8a) to extremely refined microstructures at lower temperature Q&B treat-
ments (400–300 ◦C; Figure 8b–d) and subsequent multiphase microstructures realized in
specimens held at 250 and 200 ◦C (Figure 9a,b, respectively), comprising ultrafine (nanos-
tructured) martensite, bainite and finely divided retained austenite phase constituents. This
is because the rate of carbon diffusion was significantly higher at high isothermal holding
temperatures. Accordingly, the bainite transformation reaction rate was accelerated due
to the faster diffusion of carbon at high temperatures for Q&B samples. The increase in
hardness with the lowering of the isothermal bainitizing temperature just above the Ms tem-
perature is attributed to the realization of extensively refined ultrafine bainite (Figure 8c–d,
for instance). The high hardness of Q&P samples is due to the presence of a significant prior
martensite fraction, in addition to bainite and/or untempered, high-carbon martensite
formation during final cooling.
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Table 3. Macrohardness measurements (HV30) of Q&B and Q&P specimens.

Isothermal Holding Temperature (◦C) Macrohardness (HV30)

450 ◦C 350
400 ◦C 430
350 ◦C 530
300 ◦C 584
250 ◦C 600
200 ◦C 655

3.5. EBSD Imaging and XRD Confirmations

Examples of EBSD images, which are combinations of image quality (IQ) and phase
(PM) maps of heat-treated specimens, are shown in Figures 12 and 13. These EBSD images
can provide much more information about the location, distribution and morphological
features of different phase constituents in multiphase microstructures, though they are
limited by the resolution of the technique (about 0.08 µm). Samples held at 450 ◦C for 1 h
(Figure 12a) displayed a microstructure comprising ferritic bainite (red color) and a very
small amount of RA (green color). By decreasing the isothermal holding temperature in
the range of 400–300 ◦C (Figure 12b–d), the bainite phase (red color) becomes finer and
the presence of small amounts of finely divided retained austenite phase in the bainitic
matrix is also discernible, though some fractions of very fine austenite (<0.08 µm) cannot
be identified and can be detected only by XRD. Furthermore, a comparison of EBSD images
shows that with a decrease in the temperature from 450 to 300 ◦C, the volume fractions
of retained austenite increased slightly from 2 to 5 vol.%. This can be explained with the
theory of T0 curve which suggests that in high-carbon bainitic steels more supercooled
untransformed austenite will be available at the end of isothermal treatment due to the
increased incubation time delaying the start of bainitic transformation [26]. By decreasing
the holding temperature below Ms temperature to 250 and 200 ◦C and holding for 1 h
(Figure 13a,b), the EBSD images revealed the formation of multiphase microstructures
consisting of ultrafine bainite, martensite and RA phases, but with a much finer division in
comparison to those seen in Q&B specimens (Figure 12). These EBSD images also show that
the bainitic areas are revealed as bright red regions because of a higher confidence indexing
of bainitic ferrite laths, while fresh martensitic regions have relatively poor confidence
indexing due to a higher intensity of internal strains and dislocations. These EBSD images
confirm that by decreasing the isothermal holding temperature below the Ms temperature,
bainite formation could not be completed and both tempered and fresh martensite phases
were present in the final micrographs, in agreement with the laser scanning microscopy
observations (Figure 13).

Typical X-ray diffraction (XRD) spectra recorded on differently heat-treated samples
both from Q&B and Q&P experiments are presented in Figure 14. The XRD patterns
presented in Figure 14 show that, with a decrease in holding temperature from 450 to 200 ◦C,
the peaks that relate to the FCC retained austenite phase are clearly revealed in combination
with BCC ferrite peaks. These XRD patterns also corroborate the microstructures presented
in Figures 12 and 13, confirming the stabilization of increased retained austenite at room
temperature as the holding temperature decreased from 450 to 200 ◦C. The RA contents were
calculated using the XRD analyses and the determination of average carbon contents in RA
fractions was based on the lattice parameter calculations using equation 1 and the results are
presented in Table 4. As revealed in the table, by decreasing the holding temperature from
450 to 200 ◦C, the RA volume fraction rose significantly from <3 to 17.2%. As mentioned
previously, during heat treatment below the Ms (250 and 200 ◦C), the nucleation sites for
bainitic transformation increased due to the presence of martensitic laths and consequently
increased the phase fraction of the bainite phase. A high bainite fraction may enhance
the shear resistance in the austenite–bainite interface regions, which can suppress the
displacive growth of bainite and finally increase the stability of austenite against bainitic
transformation [23]. According to the results shown in Table 4, the carbon content of the RA



Materials 2022, 15, 539 16 of 20

phase changed in a narrow range between 1.39 and 1.45% as the temperature dropped from
350 to 300 ◦C (above the Ms temperature), but dropped later to about 1.20 wt.% at both
temperatures below the Ms (250 and 200 ◦C) as a result of lower temperature partitioning
of carbon atoms from bainite (and also athermal martensite) to the untransformed austenite
during isothermal holding [3]. Unfortunately, the XRD measurements were not appropriate
to determine the carbon contents of the Q&B specimens held at the high partitioning
temperatures of 400 and 450 ◦C, as the RA contents were very low (<3%). Carbide formation
at temperatures as low as 200 ◦C, as observed in TEM images (Figure 11c,d), encourages
further study regarding the driving force and mechanisms behind such formations and
their types and morphologies. This forms the next phase of the work.

Table 4. The average RA phase fractions and their carbon contents in the case of Q&B (450, 400, 350,
300 ◦C) and Q&P (250, 200 ◦C) specimens held for 1 h.

Isothermal Holding Temperature (◦C) RA (vol.%) Carbon Content of RA (wt.%)

450 <3 -
400 <3 -
350 6.9 1.39
300 6 1.45
250 7.8 1.21
200 17.2 1.20
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Figure 14. XRD pattern recorded for both the Q&B and Q&P specimens at different temperatures
between 450 and 200 ◦C for 1 h isothermal holding.

4. Conclusions

In this study, the characteristics and kinetics of bainite transformation behaviour
during austenite phase decomposition in a high-Si, medium-carbon steel (DIN 1.5025 grade)
have been investigated in a thermomechanical simulator (Gleeble 3800) after quenching and
holding, both above and below the Ms. The dilatometer measurements and microstructural
investigation using various metallography techniques (e.g., EBSD, TEM, etc.) have been
carried out to understand the bainite transformation characteristics coinciding with the
operation of other microstructural mechanisms that may be occurring during Q&B and
Q&P processing, further confirmed by XRD and hardness measurements. The conclusions
can be summarized as follows:

1. Isothermal holding above the Ms temperature (275 ◦C) facilitated bainitic transfor-
mation, which was completed after 1 h isothermal holding regardless of fractions
transformed. In addition, a further decrease in holding temperature below the Ms
resulted in the formation of initial athermal martensite, which provided additional
nucleation sites for the accelerated formation of bainitic sheaves and enabled carbon
partitioning to the adjacent austenitic areas, thereby enhancing the bainite transforma-
tion rate.
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2. Avrami-type functions suitably predicted the progress of bainite transformation at
different isothermal holding temperatures as a function of elapsed times, above and
below the Ms (275 ◦C). The rate coefficients k corresponding to the bainite reactions
in Q&P samples (0.03–0.04 s−1) were more than 10 times greater than those for Q&B
samples (0.002–0.004 s−1), which showed a weak dependence in the bainitic regime.
The Avrami exponent n, on the other hand, varied in the range 1.0 and 1.8 for the
isothermal Q&B treatments (above Ms), increasing with the increasing bainitizing
temperature, but was significantly lower (<0.4) for Q&P treatments. The decrease
in the Avrami exponent (n) with holding below the Ms (250 and 200 ◦C) indicated
that the bainite formation became site-saturated because of the presence of numerous
nucleation sites at prior austenite–martensite interfaces.

3. Following Q&P processing (below Ms at 250 and 200 ◦C), a maximum rate of trans-
formation occurred at the start of isothermal holding owing to the occurrence of
such mechanisms as carbon partitioning and possible ledged growth of isothermal
martensite in region I. A second peak seen in region II subsequently marked the
decomposition of austenite to ultrafine bainite during longer holding.

4. Microstructural investigation confirmed the dilatation results and showed the exten-
sive formation of bainitic microstructures after isothermal holding at 450 ◦C, whereas
multiphase microstructures comprising complex martensite–bainite–retained austen-
ite phase constituents were realized by holding at temperatures below the Ms temper-
ature (200 and 250 ◦C). TEM images confirmed the presence of fine films of interlath
RA and carbides formed during different isothermal holding treatments for 1 h both
above and below the Ms temperature.

5. Hardness tests performed on the Q&B and Q&P heat-treated specimens corroborated
the results of the dilatation curves and phase transformation evolution. Vickers
hardness decreased continuously with increasing isothermal temperature between
200 and 450 ◦C due to the microstructural evolution from a multiphase microstructure
comprising martensite–bainite–retained austenite (isothermal holding at 200 ◦C) to
relatively complete bainitic structures at the isothermal holding temperature of 450 ◦C.
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