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Abstract: In the present research, the AZ31 alloy is machined by wire-cut electric discharge machining
(WEDM). The experiments were designed according to the Box-Behnken design (BBD) of response
surface methodology (RSM). The input process variables, namely servo feed (SF), pulse on-time
(Ton), servo voltage (SV), and pulse off-time (Toff), were planned by BBD, and experiments were
performed to investigate the cutting rate (CR) and recast layer thickness (RCL). The analysis of
variance (ANOVA) was performed to determine the influence of machining variables on response
characteristics. The empirical models developed for CR and RCL were solved using Multi-Objective
Particle Swarm Optimization (MOPSO). Pareto optimal front is used for the collective optimization
of CR and RCL. The optimal solution suggested by the hybrid approach of RSM-MOPSO is further
verified using a confirmation test on the random setting indicated by the hybrid algorithm. It is
found that the minimum RCL (6.34 µm) is obtained at SF: 1700; SV: 51 V; Toff: 10.5 µs; and Ton: 0.5 µs.
However, maximum CR (3.18 m/min) is predicted at SF: 1900; SV: 40 V; Toff: 7 µs; and Ton: 0.9 µs.
The error percentage of ±5.3% between the experimental results and predicted solutions confirms
the suitability of the proposed hybrid approach for WEDM of AZ31.

Keywords: AZ31 alloy; hybrid approach; Multi-Objective Particle Swarm Optimization (MOPSO);
recast layer; response surface methodology (RSM); wire-cut electric discharge machining (WEDM)

1. Introduction

WEDM is a non-traditional machining technique that can effectively generate intricate
shapes from conductive materials [1]. WEDM is a thermal-erosion process [2], where
localized heating is utilized to remove the material, which is caused due to plasma channel.
Plasma is produced between the workpiece and electrode [3]. Only a fraction of the heat
from the total produced is transferred to the workpiece to melt the material and evaporate
it, which is further fleshed out while utilizing de-ionized fluid flowing. After that, a carter
is left on the machined surface [4]. In WEDM, a discharge cycle with very short Toff and
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Ton causes a quick quenching and heating effect on the machined surface [5]. This process
became suitable for the processing of difficult to machine and conductive material. The
superalloy Monel K-500 is processed by Agarwal et al. [6] on WEDM varying the Toff,
Ton, SV, and wire feed. It was found from their research that Toff, Ton, and SV have a
significant influence on cutting speed and SR, while wire feed has a negligible effect on
the responses. Another research to process nickel-based superalloy (Inconel 800) was done
by Sen et al. [7] using WEDM. The process parameters are optimized using an Analytical
Hierarchy Process integrated with Additive Ratio Assessment. It has been found from
their research that the optimized setting suggested by the proposed method shows an
excellent result reproducibility. One research has been conducted on the hybrid composite
(LM25/fly ash/B4C) by optimizing the process parameters of WEDM. It was observed
that grass hopper optimization outperformed other optimization techniques such as par-
ticle swarm optimization and moth-flame optimization [8]. WEDM is also successfully
used for the machining of biomedical alloys [9]. Another category for the processing of
biomedical alloys by WEDM includes biodegradable material. The potential materials
for the biodegradable implants are magnesium and its alloys because of their mechanical
properties, which are biocompatible [10]. Mg and its alloys have good mechanical char-
acteristics (100–250 MPa) that are suitable for an implant, Young’s modulus (41–45 GPa)
equivalent to that of human bone, and low density (1.74–2.0 g/cm3) [11]. In the last few
years, different biodegradable implants have been developed using Mg alloys, which
showed great resistance toward corrosion and mechanical strength [12–17]. However, in
the physiological environment, the high corrosion rate of such alloys is the chief obstacle
to developing degradable implants [15,16]. To decrease the corrosion rate, surface coat-
ings [13,14] can be considered to reduce the chances of implant failure [12]. Xu et al. [18]
studied the effect of WEDM on the corrosion rate and surface morphology of AZ91D. Wire
EDMed resulted in micro-pits, high surface roughness, and micro-cracks, decreasing as the
power tube number increases. The Energy-Dispersive X-ray (EDX) analysis demonstrated
that AZ91D alloy expressed excellent adhesion strength and better corrosion resistance
when the carbonaceous layer formed on it. Sun et al. [19] developed a protective layer by
micro-EDM, which enhances the corrosion resistance.

Along with developing a protective layer, the optimization of WEDM reduces the
micro-pits and micro-cracks [20]. Yoo et al. [21] established the relation between the
corrosion resistance and mean surface roughness (Ra) of AZ91 Mg alloy. It has been found
that the value of Ra increases with the current leakage. Walter et al. [22] machined AZ91
alloy and analyzed the effect of Ra on polarization resistance. At a high value of Ra, the
polarization resistance decreases by 30%. Song and Xu [23] investigated that polishing
of grinded AZ31 alloy ameliorates corrosion resistance. Yue et al. [24] worked on four
processes: WEDM, single-point diamond grinding, polishing operation, and grinding.
The corrosion potential and surface quality of the Mg composite are investigated for all
processes. Another research study carried by Siddiqui and Ramkumar [25] worked on AZ31
alloy by micro-WEDM to investigate kerf width and material removal rate. They found
that voltage and capacitance play a major role rather than wire tension and wire feed for
the processing of biomedical alloy. In another work, the researcher evaluated the corrosion
rate [26] after the WEDM of AZ31 alloy and observed that the surface processed at high
discharge energy parameters developed micro-cracks and a recast layer. This surface was
very prone to corrosion, which decreased the corrosion resistance of the material.

In the last few years, several researchers made attempts to optimize the process pa-
rameters of WEDM considering multiple performance characteristics using gray relational
analysis [27], utility concept [28], desirability [29], and artificial intelligence (AI) [30] tech-
niques. Out of those mentioned above, AI techniques are preferred due to their quick
response with a near-optimal solution. The statistical approaches were used for the plan-
ning of experiments and analysis of results by simple mathematical processes. However,
the results obtained by these methods require the proper selection of weights and other
constants. The AI techniques used for the optimization of process parameters need a large
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database to solve the problems. Once a significant number of experiments were performed
for some response variables, the prediction of the solution became easy and fast by AI intel-
ligence techniques. Here, in the present work, the experiments were planned by statistical
approach, and solutions were predicted by MOPSO. The results obtained by MOPSO are
quick compared to genetic algorithms and non-dominated genetic algorithm.

Only a little amount of research has been done on the WEDM machining of magne-
sium alloys. This WEDM can be considered an effective route to develop an Mg-based
implant. To ensure that WEDM is the best technique for establishing implants (Mg alloy),
researchers are working on the WEDM of magnesium alloys for corrosion behavior and
other characteristics. Optimal settings of WEDM parameters are needed to be ensured for
the minimum corrosion rate and better surface properties. Therefore, the effect of WEDM
on the response variables of AZ21 alloy is explored. In the literature review regarding the
machining of Mg alloys and their parametric optimization, there has been more significant
research in the open literature on the optimization of machining process variables of AZ31
using a statistical approach. However, limited research was published on the hybrid opti-
mization (combination of statistical and AI approaches) of AZ31 alloys using RSM-MOPSO
for WEDM: especially, a combination of CR (larger than the better) and RCL (smaller the
better). Therefore, in the present work, AZ31 alloy is machined by WEDM, considering CR
and RCL as response characteristics.

The rest of the paper is organized after reviewing the significant literature in Section 1.
Section 2 consists of Materials and Methods, including the research steps followed, ex-
perimental setup, materials utilized, and experimental array. Section 3 describes the
methodologies used, such as RSM, MOO, PSO, and the implementation procedure of the
proposed MOPSO. Section 4 consists of Results and Discussion, including analysis of CR
and RCL and confirmation of experiments to verify the attained optimal results. Finally,
Section 5 depicts the morphological analysis of machined surfaces, which is followed by
conclusions based on the achieved results in Section 6.

2. Materials and Methods

In the present research, AZ31 Mg alloy of the biomedical grade was used for the
experimentation. The workpiece has the dimensions of 200 mm × 200 mm × 6 mm, and
the specimen size extracted from this plate is 10 mm × 10 mm × 6 mm. The physical
and mechanical characteristics of the work material used in the present work are given in
Table 1 [31]. In addition, Table 2 depicts the chemical composition of the material used in
the current research [31].

Table 1. Properties of work material.

Characteristics Value

Density (g/cm3) 1.77
Thermal conductivity (W/mK) 96

Elastic modulus (GPa) 45
Co-efficient of thermal expansion (µm/m◦C) 26

Tensile strength (MPa) 260
Poisson’s ratio 0.35

Hardness (HRB) 49

Table 2. AZ31 alloy, chemical composition.

Element Al Zn Mn Cu Si Fe Ca Ni Mg

Percentage 3.4 1.2 0.20 0.05 0.1 0.005 0.04 0.005 Balance

The current research progresses as per the following steps:

I. The SF, SV, Ton, and Toff are input machining variables planned per the RSM-based
BBD to develop one experimental array.
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II. The response characteristics (i.e., CR and RCL) are measured corresponding to the
experimental array.

III. The analysis is to be carried out for each response, and the mathematical models are
to be developed for the response characteristics.

IV. Hybrid optimization is to be processed by the MOPSO on the mathematical models
developed by RSM.

V. Validation experiments are to be performed on the random predicted solution sug-
gested by the optimal Pareto front.

VI. The surface morphology of the machined part (machined at the optimal setting
suggested by the hybrid approach) is also studied for its features.

2.1. Experimental Setup

The Electronica (Pune, India) make Ecocut (model: Elpuls15) WEDM was used to
conduct the current research on AZ31 alloy. The machine tool has several input process
variables, and out of all the available variables, SF, SV, Ton, and Toff were selected after the
preliminary study. All the experiments were conducted in the presence of dielectric. In
the present research, de-ionized water was utilized as a dielectric to eliminate the micro-
chips of material from the spark gap. The brass wire (diameter 0.25 mm) is being used
as an electrode. Some weight terms minimized the deflections in the traveling wire as
wire tension. Some parameters during the experiments were kept fixed: wire tension:
7 N, flushing pressure: 6 kg/cm2, conductivity: 20 mho, temperature: 23 ◦C; wire feed:
9 m/min; peak current: 10 machine units. The complete research process in the current
work is presented in Figure 1.
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Figure 1. Process of research adopted in present work.

The cutting rate (CR) and recast layer (RCL) were measured during the machining of
AZ31 alloy. The cutting rate was observed (from the display screen of the WEDM) when
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the wire travels some distance (5 mm) during machining so that machining becomes stable
and the machining rate is at its peak. The cutting rate becomes low; consequently, the CR
is not recorded near the corners. The RCL value was measured using Jeol (Model: JSM
IT500, Japan) make scanning electron microscope. Before the measurement of RCL, the
surface of the specimen is prepared with abrasive paper and diamond paste. The abrasive
paper of different grades is used for polishing (SETEST, model: SE 1813, India), starting
from 1600 mesh to 2400 mesh size. Finally, the diamond paste of 1 µm is used for polishing.
The etchant was applied on the surface to observe the microstructure.

2.2. Experimental Array

The experimental array is the combination of input process variables according to
which the experiments were performed. This experimental array depends upon the various
process variables and their setting. In the current research, four process variables, namely
SF, SV, Toff, and Ton, are used for experimental purposes. The range of the input machining
variables is given in Table 3. The process variables, their ranges, and levels are selected
after preliminary experiments.

Table 3. Range and levels of process variables.

Sr. No. Process Variable
(Notation)

Units
Range of Parameters Levels

Lower Limit Upper Limit 1 2 3

1 Servo feed (SF) - 1500 1900 1500 1700 1900
2 Servo voltage (SV) V 40 60 40 50 60
3 Pulse off-time (Toff) µs 7 14 10.5 7 14
4 Pulse on-time (Ton) µs 0.5 0.9 0.5 0.7 0.9

A Box–Behnken-based experimental array is used in the present research with an
identified search space (α = 1). This is considered due to the fact of wire rupture during
WEDM. If the input process parameters are extrapolated outside the search space (α > 1),
WEDM loses its quality and productivity. Therefore, a preliminary study was initially
conducted to keep the input process variables within the operating range. After envisaging
the operating range, the designing of experiments be carried out, as depicted in Table 4. All
the experiments were performed as per the run order rather than the standard order. This
is due to the principle of randomness and checks the machine tool results reproducibility.
A total of 29 experiments were performed, and each experiment was replicated twice to
maintain the statistical accuracy of the results.

Table 4. Experimental design and corresponding results.

Std Order Run Order SF SV Toff Ton RCL (µm) CR (m/min)

1 24 1500 40 10.5 0.7 15.79 1.56
2 5 1900 40 10.5 0.7 14.98 1.61
3 26 1500 60 10.5 0.7 14.92 1.5
4 17 1900 60 10.5 0.7 14.71 1.53
5 19 1700 50 7 0.5 8.56 0.73
6 11 1700 50 14 0.5 9.82 0.63
7 29 1700 50 7 0.9 23.36 2.81
8 23 1700 50 14 0.9 19.02 2.17
9 28 1500 50 10.5 0.5 8.12 0.69
10 16 1900 50 10.5 0.5 8.23 0.71
11 15 1500 50 10.5 0.9 19.75 2.32
12 6 1900 50 10.5 0.9 19.86 2.4
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Table 4. Cont.

Std Order Run Order SF SV Toff Ton RCL (µm) CR (m/min)

13 22 1700 40 7 0.7 19.08 1.94
14 2 1700 60 7 0.7 18.39 1.83
15 27 1700 40 14 0.7 17.17 1.76
16 25 1700 60 14 0.7 17.16 1.7
17 7 1500 50 7 0.7 18.15 1.88
18 8 1900 50 7 0.7 18.87 1.91
19 20 1500 50 14 0.7 13.84 1.3
20 21 1900 50 14 0.7 13.97 1.43
21 14 1700 40 10.5 0.5 9.31 0.82
22 1 1700 60 10.5 0.5 8.79 0.74
23 3 1700 40 10.5 0.9 20.61 2.53
24 13 1700 60 10.5 0.9 19.81 2.43
25 9 1700 50 10.5 0.7 11.01 1.3
26 18 1700 50 10.5 0.7 11.22 1.34
27 12 1700 50 10.5 0.7 11.77 1.29
28 10 1700 50 10.5 0.7 11.48 1.21
29 4 1700 50 10.5 0.7 12.04 1.24

3. Methodologies
3.1. Response Surface Methodology (RSM)

Box and Wilson developed RSM in 1951 to optimize responses evaluated after the
experiments [32]. It is a statistical technique in which experiments are primarily planned;
then, according to the setting, experiments were performed and then analyzed to improve
the services and processes [33,34]. The current work shows the response characteristics,
namely CR and RCL, as functions of process variables in Equations (1) and (2).

CR = ∅ (A1, A2, A3, A4) (1)

RCL = ϕ(A1, A2, A3, A4) (2)

Equations (1) and (2) in the first of the higher-order model can explain the nature
of response characteristics. The drawback in the first order is that the lack of fit exists
because of interaction terms and surface curvature. However, in the second-order model,
this drawback can be eliminated with a significant improvement in optimization of the
process. Finally, after neglecting the higher terms, the second-order model is represented in
Equation (3).

Response =∈0 +
m

∑
k=1
∈k Ak +

m

∑
k=1
∈kk A2

k +
m

∑
n<k=2

∈kn Ak An (3)

where ε0, εk, εkk, and εkn are regression coefficients;
m: total number of process variables.
Ak: kth Process variables.

3.2. Implementing Multi-Objective Particle Swarm Optimization (MOPSO)
3.2.1. Multiple Objective Optimization (MOO)

Most real-world problems generally include the concurrent optimization of many
responses, which are usually conflicting in nature and non-commensurable. No single
alternative can be better than all other alternatives in the MOO problem, considering all
the objectives [35–37]. A general multiple objective optimization problem consists of two
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or more objective functions and some inequality and equality restraints. The mathematical
model of a widespread MOO problem can be represented as follows [38]:

Max/Min fi(x1, x2, . . . , xm)i = 1, 2, . . . , n
Subject to

gj(x) ≤ 0j = 1, 2, . . . , J
hk(x) = 0k = 1, 2, . . . , K

(4)

where x represents the decision variable vector of length m, the problem deals with n
number of objectives, J represents the number of inequalities, and K represents the equality
restraints. The solution to the MOO problem occurs in terms of different trade-offs termed
a Pareto front [39]. For assigning fitness in such a case, the concept of non-domination was
introduced by Vilfredo Pareto in 1896 [40].

The following two conditions are mandatory for establishing the fact that a solution
X1 leads to solution X2:

1. In all the objectives, solution X1 should not be worse than X2.
2. In at least one of the objectives, the solution X1should be better than X2.

All the non-dominated solutions (NDS) together generate a Pareto front, i.e., the set
of alternatives representing the trade-off values of various competing objective functions.
Achieving a uniformly distributed true Pareto front is the primary goal of an MOO al-
gorithm. Thus, the NDS that seem equally important can further be assigned a value
of importance, i.e., the quality index to maximize the distance from NDS available in
the immediate neighborhood along all the objectives to ascertain a uniformly distributed
Pareto front.

In various classical optimization techniques, the multiple goals are combined into a
composite objective function assigning weights to different competing objectives suggested
by the experts. However, such a methodology results in subjectiveness in the decision-
making process. Moreover, the management may also be deprived of the complete set of
alternatives that might be important in final decision making considering various probable
scenarios. In the traditional mathematical programming approaches such as ε-constraint
and weighting methods, MOO problems are converted to a single-objective problem. As a
result, only one solution can be achieved per optimization effort.

In contrast, the evolutionary algorithms have many benefits over the classical tech-
niques (optimization) [41], which use a group of solutions in every run and result in a set
of near-optimal solutions after each run. Such heuristics are based on random initialization
and stochastic search to locate the global optima. Therefore, population-based stochastic
search techniques are a better choice to solve MOO problems in which numerous NDS
increase drastically with the increase in several objectives.

3.2.2. Particle Swarm Optimization (PSO)

Kennedy and Eberhart [42] proposed the PSO algorithm. In PSO, the potential solution
is a school of fishes or flock of birds termed a swarm of particles. Each particle has two
parameters: velocity and position. Instead of evolution in genetic algorithms, the identical
particles keep flying in the search space throughout the iterations by changing their position.
Each particle settles its position during the flight as per its own, and its neighboring particles
direct the search in the promising region. The best experience of the ith particle achieved
so far is represented by Pbesti: the global best position attained among all the particles
described by Gbest.

Suppose an optimization problem consists of D decision variables formally known as
D dimensions of the search space and M number of objectives formally known as fitness
functions. Let x represent the particle coordinates, i.e., position, and v represent the flight
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speed, i.e., velocity in the space (search). The position of the ith particle in the swarm can
be presented as a D dimensional vector, i.e.,

Xi =
(

x1
i , x2

i , . . . , xd
i , . . . , xD

i

)
.

It embeds the relevant information regarding the D decision variables. Similarly, the
velocity of an ith particle can be represented as

Vi =
(

v1
i , v2

i , . . . , vd
i , . . . , vD

i

)
.

The position of each particle dictates the fitness value that provides a signal of its
execution in the objective space. The following two equations are used to update the
position and velocity of each particle during the iterations

vd
i,(t+1) = ω(t) ∗ vd

i,(t) + c1 ∗ rand1

[
Pbestd

i,(t) − xd
i,(t)]+c2 ∗ rand2[Gbestd

(t) − xd
i,(t)

]
(5)

xd
i,(t+1) = xd

i,(t) + vd
i,(t+1) (6)

where xd
i,(t) and xd

i,(t) are the position and velocity of the ith particle for the dth dimension

in tth iteration. c1 and c2 are coefficients (acceleration) and the rand1 and rand2 are the
uniform random numbers in the range (0–1). The ω(t) represents the inertia weight that
sets up a balance between exploitation and exploration. The linearly decreasing value of
the inertia weight factor gives better convergence properties.

w = wmax −
(wmax − wmin)t

tmax

where wmax and wmin represent a randomly chosen initial and the final value of the inertia
weight factor. tmax and t denote the maximum number of iterations and the current iteration.
Consequently, the inertia weight factor continuously decreases from maximum value to the
minimum to initially focus on exploration and slowly move toward exploitation for better
convergence. However, the velocity and position updates through Equations (5) and (6) are
liable to cause particles to cross the boundaries of the feasible regions. For handling this
problem, the location is truncated at the extreme of the boundary, and velocity is redefined
to move the particle away from the boundary in upcoming iterations. Various modified
versions of MOPSO, along with the selection of parameters and the potential applications,
have been discussed by Eberhart and Shi [43] and Shi and Eberhart [44,45].

3.2.3. Multi-Objective Particle Swarm Optimization (MOPSO)

Coello-Coello and Lechuga [46] are among the few pioneers who successfully extended
the concept of PSO to attempt MOO problems, and these methods are known as MOPSO.
In the latter study, they also compared MOPSO with micro-genetic algorithm [47], Pareto
archive evolutionary strategy [48], and non-dominated sorting genetic algorithm-II (NSGA-
II) [49] for various test functions. They concluded the strength of MOPSO in covering
the full Pareto front [50]. The extension of PSO to MOPSO poses a challenge to allocate
the guides to the individual particles; as in a MOO scenario, there is no single optimal
solution. Instead, a set of optimal solutions exist, i.e., multiple NDS are preserved after
each iteration. In most MOPSO approaches, a set of NDS is maintained in the external
repository or archive. The guide is allocated to every individual in the swarm based on
various algorithms.

The size of the external repository may be kept at a fixed size or unlimited, which also
has a major effect on the outcome of the MOPSO algorithm.

In the present work, the external repository of fixed size is considered to maintain
the NDS. After each iteration, the current NDS are stored in the repository. To keep the
repository domination free, the dominated solutions must be deleted from the repository.
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To select guides and handle the problem of a limited-size repository, the NDS is further
graded to assign higher significance to the solutions located in the less populated areas
of the objective space. The process is known as designating the crowding distance to the
Pareto frontiers, ensuring the uniform distribution of the Pareto front. Furthermore, the
global guide, i.e., Gbest, is assigned to each particle in the swarm through roulette wheel
selection based on the crowding distance of Pareto frontiers. Each particle’s local best
position is also maintained by preserving the best position of the particle achieved so far;
i.e., the Pbest of each particle is also updated after each iteration. If the particle’s current
position dominates the previous position, the current position is stored as the new Pbest.
When none of the particles dominates, the Pbest is selected randomly. After selecting
guides, each particle’s velocity and position is updated according to Equations (6) and (5).
The MOPSO algorithm [51,52] implemented in this study is briefly outlined in Figure 2.
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4. Results and Discussion

The results corresponding to the input process variable setting during the machining
of AZ31 alloy are given in Table 4. The attribute of response characteristics is decided
according to the quality control and productivity of manufacturing.

4.1. Analysis of Cutting Rate (CR)

The summary of analysis (Table 5) shows that the Toff and Ton exhibit p-values less
than 0.05, due to which these are categorized as influential process variables for CR. On
the other hand, the p-values in SF and SV are greater than 0.05. Still, these parameters are
assumed for the analysis purpose of CR. This is done to maintain the model’s hierarchy,
according to which the parameter itself is not significant. Still, its interaction term with
other parameters is significant, or its quadratic term is significant. In the present work, the
quadratic term of SF and SV shows a p-value less than 0.05. The higher the SS value and
F-value corresponding to a parameter, the more its percentage impact for the analysis of a
particular response will be. Ton shows the highest SS value and F-value [53]. Therefore, the
impact of Ton is maximum in the analysis of CR.

Table 5. Pooled ANOVA for CR.

Source SS * Df * MS * F-Value p-Value *

Model 10.04 9 1.12 150.82 <0.0001 significant
SF 9.63 × 10−3 1 9.63 × 10−3 1.3 0.2678
SV 0.02 1 0.02 2.71 0.1164
Toff 0.37 1 0.37 50.18 <0.0001
Ton 8.91 1 8.91 1205.12 <0.0001

Toff × Ton 0.073 1 0.073 9.86 0.0054
SF2 0.058 1 0.058 7.9 0.0111
SV2 0.35 1 0.35 47.9 <0.0001
Toff2 0.41 1 0.41 55.35 <0.0001
Ton2 0.082 1 0.082 11.09 0.0035

Residual 0.14 19 7.39 × 10−3

Lack of Fit 0.13 15 8.66 × 10−3 3.29 0.129 not significant
Pure Error 0.011 4 2.63 × 10−3

Cor Total 10.18 28

p-value—probability value; df—degree of freedom; MS—mean square; * SS—a sum of square.

The Box–Cox transformation recommends the value of lambda (λ) according to the
analysis. With the help of Box–Cox change, an appropriate value for λ is applied to the
response data. From Figure 3a, it is clear that the recommended value of λ is 1. Thus, in the
power transformation during the analysis, ‘1’ is used instead of any other value. Figure 3b
represents the predicted versus actual plot of residuals. It is evident from the plot that
all values fall on the straight line, which is a sign of a suitable ANOVA. The contour plot
depicted in Figure 3c is the interaction plot of Toff and Ton. The red color in the plot shows
a CR value equal to 2.81 m/min. However, the blue color indicates a 0.63 m/min CR value.
On the contour line, the CR value is also defined. It is clear from the plot that the maximum
CR is obtained when Toff is minimum and Ton is maximum (as red color found on the top
left corner of the plot) [54].
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Figure 3. (a) Box–Cox transformation for CR. (b) Predicted versus actual plot for CR. (c) Contour plot
for Toff and Ton in case of CR.

Similarly, minimum Ton and maximum Toff show blue color. Thus, the CR is nearby
0.63 m/min. The mathematical model developed after the analysis for CR is given in
Equation (7).

CR = +14.67050 − 7.92625E − 003 × SF − 0.23775 × SV − 0.34581 × Toff +

2.39875 × Ton − 0.19286×Toff ×Ton + 2.37292E − 006×SF2 +

2.33667E - 003 × SV2 + 0.020503 × Toff
2 + 2.81042 × Ton

2

(7)

Figure 4 depicts the variation of CR with respect to the process parameters. Figure 4a
shows that with the increase in SF, a slight rise in CR (from 2.34 to 2.39 mm/min) is
observed. This may be because the new wire comes in contact with the work material with
increased SF value. With the increase in SF, the new cutting characteristic wire removes the
extra material, which increases the CR. Figure 4b shows the variation of CR concerning the
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SV. It was found that with the increase in SV, the CR decreased from 2.55 to 2.46 mm/min.
Similar trends were observed while machining the Ti-6Al-4V by Gupta et al. [55]. At a low
value of SV, the gap between tool and workpiece is also low. At this point, when the current
is supplied, excessive material is removed.
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Figure 4. Graphs for CR analysis. (a) Variation of CR with SF; (b) Variation of CR with SV;
(c) Variation of CR with Toff; (d) Variation of CR with Ton.

Similarly, at a high value of SV, the same amount of current removes less material.
Figure 4c presents the plot between Toff and CR. It was observed that with the increase
in Toff value, the CR decreases from 2.7 to 2.35 mm/min. However, the research findings
are in line with the findings of Sharma et al. [56] while machining Ti-6Al-4V. The probable
reason is that with the increase in Toff value, the current off-time in the circuit increases,
which decreases the discharge energy in the circuit and hence decreases the CR.
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Similarly, with the rise in Ton value, the circuit’s current on-time increases, increasing
the discharge energy and CR, as shown in Figure 4d. Here, the CR was increased from 1.52
to 3.25 mm/min. A similar trend of the variation of CR concerning Ton was observed by
Sharma et al. [56].

4.2. Analysis of Recast Layer Thickness (RCL)

The summary of RCL (Table 6) shows that Toff, Ton, the interaction of Toff and Ton,
and the quadratic terms of SF, SV, Toff, and Ton significantly affect the model of RCL. The
developed model of RCL is significant; however, the lack of fit is not significant. Ton shows
the maximum influence on RCL, which is followed by Toff, SV, and SF [53].

Table 6. Pooled ANOVA for RCL.

Source SS df MS F-Value p-Value

Model 534.76 9 59.42 103.76 <0.0001 significant
SF 2.08 × 10−4 1 2.08 × 10−4 3.64 × 10−4 0.985
SV 0.83 1 0.83 1.45 0.2428
Toff 19.84 1 19.84 34.65 <0.0001
Ton 403.45 1 403.45 704.5 <0.0001

Toff × Ton 7.84 1 7.84 13.69 0.0015
SF2 12.45 1 12.45 21.74 0.0002
SV2 43.07 1 43.07 75.21 <0.0001
Toff2 75.45 1 75.45 131.75 <0.0001
Ton2 2.67 1 2.67 4.66 0.0438

Residual 10.88 19 0.57
Lack of Fit 10.2 15 0.68 3.98 0.0956 not significant
Pure Error 0.68 4 0.17
Cor Total 545.65 28

The Box–Cox plot of power transformation shows that the recommended value of λ is
1 (Figure 5a). Thus, during the analysis of RCL, ‘1’ is used as the power of response data.
Figure 5b represents the predicted versus actual plot for RCL. The clustering of values near
the straight line exhibits a sign of good ANOVA, which is desired for the analysis. Figure 6c
depicts the contour plot of RCL for the interaction of Toff and Ton. For RCL, the lower, the
better type quality attribute is followed. The minimum RCL (8.12 µm) is obtained in the
blue region of Figure 5c. Thus, high Toff and low Ton is desired for low RCL. However,
with the increase on Ton value up to maximum (0.9 µs), keeping Toff (7 µs) at its lowest
value, the maximum RCL of 23.36 µm is obtained (left top corner shows the red color with
23.36 µm value) [54]. The mathematical model developed after the analysis of RCL is given
in Equation (8).

RCL = + 184.72565 − 0.11775 × SF − 2.60308 × SV − 4.81395 × Toff +

27.53042 × Ton − 2.00000 × Toff × Ton + 3.46375E - 005 × SF2 +

0.025767 × SV2 + 0.27841 × Toff
2 + 16.04375 × Ton

2

(8)
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Figure 5. (a) Box–Cox transformation for RCL; (b) Predicted versus actual plot for RCL; (c) Contour
plot for Toff and Ton in case of RCL.
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Figure 6. Graphs for RCL analysis. (a) Variation of RCL with SF; (b) Variation of RCL with SV;
(c) Variation of RCL with Toff; (d) Variation of RCL with Ton.

Figure 6a,b shows the variation of RCL concerning the SF and SV. It was observed
from the figures that a negligible variation was found with these two parameters. The
P-value of these two parameters is greater than 0.05, which reveals its non-significance. The
research work done by Manjaiah et al. [57] shows a similar pattern while machining the
D2 tool steel on WEDM. Due to low discharge energy, an increase in Toff value decreases
the RCL (From 16.2 to 13.6 µm). Therefore, less material is melted and solidified at low
discharge energy, which is the main reason for the recast layer. The results obtained in the
present research work are very similar to the machining of NiTi smart alloy by Shandilya
et al. [58]. Therefore, less material is deposited on the machined surface at low discharge
energy, and small RCL is observed. Figure 6d depicts the variation of RCL with Ton, and it
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was found that with the increase in Ton value, the discharge energy in the circuit increases.
This high discharge energy increases the molten material. Consequently, the RCL value
increases from 6.34 to 17.94 µm with the re-solidified material [58].

4.3. Multiple Performance Measure Optimization by MOPSO

In the present investigation, machining variables for WEDM are optimized for the ma-
chining of AZ31 alloy. The multiple objectives considered in the present study include the
cutting rate (CR) and recast layer thickness (RCL). The second-order regression equations
for both the objectives obtained from the response surface methodology are the objective
function equations in the MOPSO algorithm. The bounds on the process variables are
implemented as per Table 3. The Pareto optimal front is shown in Figure 7. Numerous
trials were performed to finalize the MOPSO control factors. The selected values of the
factors include the following:

• Swarm size = 100;
• Number of iterations = 150;
• Size of external repository = 200;
• Acceleration coefficients C1 = 1 and C2 = 1; and
• The minimum and maximum values of inertia are 0.1 and 0.4, respectively.
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Figure 7. Pareto optimal front suggested by MOPSO.

The experiments are performed on an Intel(R) Pentium(R) machine with processor I-7,
2.6 GHz, and the execution time is less than one minute.

4.4. Confirmation Experiments

The experiments (confirmation) are conducted on the predicted setting of the process
variables suggested by MOPSO. From Table 7, a random set of experiments are selected
for validation. Table 8 gives the setting of process variables for four different sets of
experiments with the predicted solutions. The machine tool is set on these process variable
values with nearly feasible values due to machine adjustments. For example, the suggested
experimental set according to the first set is as follows:

SF: 183; SV: 42.163; Toff: 7.349; and Ton: 0.896.
However, due to machine tool limitation, experiments are performed on:



Materials 2022, 15, 635 17 of 22

SF: 183; SV: 42 V; Toff: 7; and Ton: 0.9.
The experimental results provide a close agreement with the predicted solution. There-

fore, the hybrid approach of RSM-MOPSO can be applied successfully to optimize the
process variable of WEDM during the machining of AZ31 alloy.

Table 7. Predicted solutions suggested by MOPSO.

Sr.
No. SF SV Toff Ton CR

(m/min)
RCL
(µm)

1 1833.07 42.163 7.349 0.896 3.950 25.389
2 1675.35 57.909 7 0.896 3.905 25.329
3 1687.75 57.298 7.015 0.9 3.901 25.175
4 1869.28 58.411 7.562 0.897 3.896 25.092
5 1669.8 56.698 7 0.9 3.887 25.044
6 1709.22 56.313 7 0.9 3.880 24.897
7 1680.79 57.691 7.215 0.9 3.867 24.794
8 1825.64 42.057 7.436 0.886 3.866 24.710
9 1712.67 55.944 7.067 0.9 3.857 24.612

10 1695.54 57.587 7.246 0.897 3.843 24.556
11 1720.82 51.415 10.497 0.5 1.529 6.370
12 1741.25 51.724 10.491 0.503 1.546 6.502
13 1716.89 51.625 10.875 0.510 1.561 6.664
14 1699.84 52.306 10.692 0.512 1.568 6.714
15 1728.42 52.182 9.860 0.510 1.584 6.768
16 1725.1 50.518 10.791 0.522 1.601 6.897
17 1725.51 50.968 10.259 0.525 1.619 6.980
18 1742.24 50.201 10.034 0.525 1.631 7.056
19 1729.07 49.213 10.739 0.533 1.642 7.178
20 1734.12 48.986 10.729 0.537 1.662 7.318
21 1696.5 48.736 10.457 0.815 2.820 15.148
22 1701.08 49.841 10.813 0.824 2.837 15.209
23 1728.06 51.389 10.704 0.823 2.841 15.252
24 1740.52 49.286 11.286 0.831 2.859 15.360
25 1704.67 49.741 11.024 0.833 2.869 15.408
26 1734.02 49.703 10.731 0.833 2.895 15.587
27 1750.68 53.258 9.2744 0.9 3.414 19.573
28 1716.78 51.684 9.0931 0.9 3.418 19.606
29 1741.18 49.572 10.446 0.681 2.210 11.054
30 1736.91 50.399 10.530 0.686 2.223 11.137

Table 8. Confirmation experiments performed at random settings suggested by MOPSO.

Sr. No. SF SV Toff Ton
Predicted Solution Experimental Results

CR (m/min) RCL (µm) CR (m/min) RCL (µm)

1 1833.07 42.163 7.349 0.896 3.950 25.389 3.92 24.67
11 1720.82 51.415 10.497 0.5 1.529 6.370 1.61 6.45
18 1742.24 50.201 10.034 0.525 1.631 7.056 1.68 7.18
23 1728.06 51.389 10.704 0.823 2.841 15.252 2.92 15.11

5. Morphological Analysis of Machined Surface

The surface morphology of AZ31 alloy machined at WEDM (SF: 1830; SV: 42 V; Toff:
7 µs; Ton: 0.9 µs) is studied by Jeol make SEM. Figure 8a shows the micro-cracks, deposited
lumps, and debris. During machining at WEDM, the temperature increases to 10,000 ◦C,
which is adequate to melt and vaporize the conductive material. However, due to the
whole dielectric material not being flushed away, the remaining metal is deposited on the
surface (machined) in the form of deposited lumps. Some of the air bubbles also become
impacted and become the reason for debris [59]. The recast layer (Figure 8b) is induced
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due to molten metal’s rapid heating and cooling. The reason for the surface cracks and
large-size debris is the high value of applied erosive power [60].
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6. Conclusions

The AZ31alloy was machined successfully by wire-cut electric discharge machining.
The cutting rate and recast layer thickness were investigated while designing the servo
feed, pulse on-time, servo voltage, and pulse off-time with the BBD of RSM. The ANOVA
was performed to determine the influence of machining variables and the empirical models
developed for CR and RCL using MOPSO. The following finding can be drawn from the
present research:

• The proposed hybrid approach of optimization is a reliable method to predict the
WEDM responses. ANOVA results show that the Ton is the most significant process
variable for CR and RCL. Furthermore, an improvement in the response characteristics
value is obtained after the confirmation test.

• The hybrid approach suggested different solutions for various response characteristics
selection. Based on that, SF: 1830; SV: 42 V; Toff: 7 µs; Ton: 0.9 µs are suggested
for maximum CR (3.18 m/min), and SF: 1720; SV: 51 V; Toff:10.5 µs; Ton: 0.5 µs are
suggested for minimum RCL (6.37 µm).

• The proposed approach can help the decision-maker select process variables de-
pending upon their requirement of response characteristics during the machining of
AZ31 alloy.

• The SEM micrograph shows the debris, deposited lumps, and micro-cracks at the
optimized process variables.

The accuracy of the results obtained from the hybrid approach of RSM-MOPSO is
restricted due to the limited range of process parameters. However, more experiments
can eliminate this limitation after widening the scope of process variables and selecting
more machining variables and machining environments. In addition, this hybrid approach
can optimize other responses, namely surface quality, residual stresses, microhardness, a
circularity of intricate profiles, etc. Therefore, this approach can be used for traditional and
other non-traditional manufacturing processes.
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Nomenclature

Analysis of variance—ANOVA Pulse on-time—Ton
Box–Behnken design—BBD Recast layer—RCL
Cutting rate—CR Response surface methodology—RSM
Multi-Objective Optimization—MOO Servo feed—SF
Multi-Objective Particle Swarm Optimization—MOPSO Servo voltage—SV



Materials 2022, 15, 635 20 of 22

ε0, εk, εkk, and εkn—Regression coefficients m—Number of process variables
A—Process variables k—Level of process variables
Gbest—Global Best Pbest—Particle best
x—Position of particle v—Velocity of particle
c1 and c2—Coefficients w—Inertia weight

Pulse off-time—Toff
Wire-cut Electric Discharge
Machining—WEDM
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