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Abstract: Breakout is one of the major accidents that often arise in the continuous casting shops
of steel slabs in Bokaro Steel Plant, Jharkhand, India. Breakouts cause huge capital loss, reduced
productivity, and create safety hazards. The existing system is not capable of predicting breakout
accurately, as it considers only one process parameter, i.e., thermocouple temperature. The system
also generates false alarms. Several other process parameters must also be considered to predict
breakout accurately. This work has considered multiple process parameters (casting speed, mold
level, thermocouple temperature, and taper/mold) and developed a breakout prediction system
(BOPS) for continuous casting of steel slabs. The BOPS is modeled using an artificial neural network
with a backpropagation algorithm, which further has been validated by using the Keras format and
TensorFlow-based machine learning platforms. This work used the Adam optimizer and binary cross-
entropy loss function to predict the liquid breakout in the caster and avoid operator intervention.
The experimental results show that the developed model has 100% accuracy for generating an
alarm during the actual breakout and thus, completely reduces the false alarm. Apart from the
simulation-based validation findings, the investigators have also carried out the field application-
based validation test results. This validation further unveiled that this breakout prediction method
has a detection ratio of 100%, the frequency of false alarms is 0.113%, and a prediction accuracy ratio
of 100%, which was found to be more effective than the existing system used in continuous casting
of steel slab. Hence, this methodology enhanced the productivity and quality of the steel slabs and
reduced substantial capital loss during the continuous casting of steel slabs. As a result, the presented
hybrid algorithm of artificial neural network with backpropagation in breakout prediction does seem
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to be a more viable, efficient, and cost-effective method, which could also be utilized in the more
advanced automated steel-manufacturing plants.

Keywords: continuous casting; steel slab; mold breakout; artificial neural network; breakout
prediction system

1. Introduction

Continuous casting of steel is a process in which liquid steel is continuously solidified
into a strand of metal [1]. Depending on the dimensions of the strand, these semi-finished
products are called slabs, blooms, or billets. Presently, most steel manufacturing industries
worldwide use a continuous casting process, and more than 90% of the steel is produced
by continuous casting [2,3]. Mold is the caster’s heart where the solidification process
starts [4,5]. A slight difference in the mold may affect the productivity or quality of cast
slabs [6,7]. At Bokaro Steel Plant (BSP), Bokaro, Jharkhand, India, straight mold is used
and is made of copper, with a 900-mm length, a thickness of 200–225 mm, and a width of
2000 mm as shown in Figure 1.
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Figure 1. Copper mold for continuous casting at Bokaro Steel Plant.

Of all the problems present in slab caster, mold breakout of liquid steel is the most
dangerous and hazardous problem. The liquid steel in the mold is slowly cooled and
solidified to be drawn out from a lower portion of the mold as a strand. When the liquid
steel is cooled within the mold, which is made of copper, a solidified portion is called a
shell which is formed on the surface of the liquid steel. Sometimes semi-solidified slab
sticks to the copper plate and forms cracks due to various factors. When a crack portion of
the semi-solidified slab reaches the bottom of the mold, the liquid steel in the shell leaks out
from the mold. This incident is called breakout, as shown in Figure 2. During a breakout,
liquid steel is splashed, which leads to machinery damage, productivity, capital loss, safety
hazards, and a temporary shutdown of continuous casting machines [8–10].

The last five-year mold breakout data is collected from the operational logbook of BSP.
From the data, it is clear that mold breakout can occur due to many reasons, but from the
Pareto chart, it is clear that the first four causes of breakout cover 83.9% among all, i.e.,
sticker, taper/mold, casting speed, and mold level [11–13] as shown in Figure 3. More than
70–80% breakout occurs due to sticker breakout [14,15].
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The total capital loss caused by the loss of liquid steel due to breakout per year is
shown in Table 1. Approximately 31.15 million INR loss per year and an average delay due
to liquid steel breakout are 94.4 h per year.

Table 1. Loss due to breakout.

Particular Value

Number of breakouts 23.6 per year
After the breakout, an average of 3 to 4 h is required to restart the Caster. Average delay due to
breakout = (4 × 23.6) = 94.4 h/year

The average weight of liquid steel loss 3 ton per breakout
Total liquid steel loss 3 × 23.6 = 70.80 tons per year

Cost of one ton of liquid steel 44,000 INR
Loss of liquid steel per year 31.15 million INR/year

Mainly there are two types of breakout prediction systems based on thermocouple
temperature or mold friction: Logical judgment method [16–20] and artificial intelligence
method [21–24]. In BSP, a logical-based breakout prediction system is used to predict the
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breakout by using variation in multiple thermocouple temperatures. Logical judgment-
based systems totally depend on thermocouple temperature, caster equipment, casting
speed, mold friction, etc. [25,26] and generate false alarms or even fail to generate alarms
before the breakout.

A literature survey shows that a diverse category of neural networks has been used
to predict the breakout. Such as a data-driven multilayer perceptron-based artificial neu-
ral network model has been developed by using various casting process parameters [2].
Genetic algorithm-back propagation neural network has been used to construct a ther-
mocouple temperature time series model [8]. A multilevel neural network based on the
Takagi–Sugeno model [26], quantum wavelet neural network with multi-resolution based
on the wavelet analysis theory, and the theory of quantum superposition [27], and a con-
volutional neural network by using sticker pattern in a mold heat-map [28], has also been
used to predict the breakout. Support vector machine learning approach was also used to
predict breakout [29]; it is based on the Vapnik–Chervonenkis theory and structural risk
minimization principle. Nowadays, the breakout prediction system is based on K-mean
clustering and dynamic time warping using a temperature change rate [30].

All the above-discussed methodology either used a thermocouple temperature or
mold friction to predict the breakout. However, operational logbook data and Pareto chart
show that mold breakout depends on various casting process parameters like casting speed,
mold level, and mold/taper.

For the first time, this work considered various parameters simultaneously; all of
these parameters play an indispensable role in the production of steel slabs. Literature
was not found in which all the parameters like casting speed [31–33], mold level [34–36],
and taper/mold were used simultaneously to predict the breakout. The investigators of
the prior studies have considered mainly one parameter in their study while simulating
the casting result to predict the sticker-type breakout. In the current study, several process
parameters like casting speed, mold level, thermocouple temperature, and taper/mold were
considered during the manufacturing of steel slabs to predict different types of breakouts
with the variation in the process parameters. For example, suppose the casting speed
is too high during the continuous casting process of steel slabs. In that case, the liquid
steel does not have enough time to solidify within the mold, thus causing another type
of breakout. The authors have noticed a different kind of breakout that happens when
the liquid steel level in the mold is less than 20% during processing, which ultimately
causes mold-level breakout. Taper/mold is also an important parameter in continuous
casting of steel slab [37–41]. Properly tapered mold compensates for shrinkage of the
solidifying liquid steel to maintain good contact and heat transfer between the mold wall
and semi-solidify steel slab. Improper mold taper provides an air gap between the mold
wall and semi-solidify steel slab, which leads to breakout. Thus, properly tapering the
mold before the casting process has been started is essential.

Thus, the authors have deeply analyzed all the breakouts as mentioned earlier during
continuous casting of the steel slabs in this current work. The researchers of the previous
studies have not used the hybrid optimization algorithm technique such as the integra-
tion of a hybrid neural network and artificial intelligence to simulate the casting result.
Mostly, the researcher of the past studies has carried out their simulation results by using
conventional approaches only.

Therefore, a breakout prediction has been developed in this work by considering
all 10 parameters, as shown in Table 2. This work has developed an artificial neural
network with a backpropagation algorithm using Python to write the code and using
the Keras format and TensorFlow as a backend. Keras is a deep learning application
programming interface written in Python, running on top of the machine learning platform
TensorFlow, focusing on enabling fast experimentation. The ANN-BP model is trained by
using thermocouples temperature of a copper mold (T1, T2, T3 . . . T8), casting speed (CS),
and mold level (ML) as an input. The output of this model is either 0 (for no breakout) or
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1 (for breakout). Whenever the breakout alarm is generated, casting speed will be reduced,
and in case of a teeming interrupt, casting speed is reduced to creep’s speed.

Table 2. Basic parameters of the model.

Input Parameters Maximum Value Minimum Value

Thermocouple’s temperature
(T1, T2 . . . T8) 250 ◦C 50 ◦C

Casting speed 0.70 m/min 0.50 m/min
Speed setpoint 00 m/min 00 m/min

Mold level Always greater than or equal to 20%
Default upper thermocouple’s temperature always shows = 300 ◦C

Default lower thermocouple’s temperature always shows = 0 ◦C

Output parameter: Output of this model is either ‘1’ for breakout and generate
alarm or ‘0’ for no breakout and not generate any alarm

2. Process Description

This study was performed at BSP, located at Bokaro, Jharkhand, India. Regarding
materials and the processing method, the investigation study was carried on steel slab
(materials) and correspondently the manufacturing method employed for the production of
the steel slab in the production line of BSP was a continuous casting method. The structural
layout of the specific shop floor where the manufacturing of steel slab was carried out using
a continuous casting process is shown in Figure 4.
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The desired product produced on this shop floor is a steel slab, which is proceeded
by a continuous casting method whose schematic diagram shown in Figure 5. The ladle,
which carries liquid steel, is usually delivered by crane and positioned into a ladle turret,
which subsequently rotates the ladle into the casting position. A slide gate in the bottom of
the ladle is opened to allow the liquid steel to flow via a protective shroud into a tundish,
a vessel that acts as a buffer between the ladle and mold. As the tundish fills, stopper
rods are raised to allow the casting of steel into a water-cooled copper mold below the
tundish. Solidification begins at the mold, and the steel is withdrawn as a metal strand.
Throughout the entire casting process, the mold oscillates vertically in order to separate
the semi-solidified steel from the copper mold. As the steel leaves the mold, it has only a
thin solidified shell that needs further cooling to complete the solidification process. This
is achieved in the so-called secondary cooling zone, in which a system of water sprays
situated between the rolls are used to deliver a fine water mist onto the steel surface. Once
it has completely solidified, the strand can be divided by a torch cutting machine and
formed steel slab, as shown in Figure 6. These are either discharged to a storage area or to
the hot rolling mill.
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3. Methodology
3.1. Design Flow Chart of Breakout Prediction Model

This paper has developed an intelligence-based breakout prediction model, as shown
in Figure 7. The model consists of three major parts: Exploratory data analysis (EDA),
ANN-BP, and programmable logic controller (PLC) trigger. The first part is EDA, used
better to understand data, their relationships, and pattern. The second part is ANN-BP,
used to generate mold breakout alarm by using thermocouple temperature, casting speed,
and mold level and sending a signal to strands PLC. The third part uses PLC to reduce
casting speed whenever strands receive a breakout alarm signal. PLC automatically reduces
the casting speed to 0.1 m/min through the withdrawal drive casting speed controller.
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3.2. Exploratory Data Analysis (EDA)

EDA describes the data through statistical and visualization techniques better to
understand the data, their relationships, and patterns. This is very important, primarily
when data sets are used in deep learning, machine learning, neural network, etc. Here EDA
is performed by using a correlation matrix and histogram.

3.2.1. Correlation Matrix

The correlation between all the dataset variables is found using a correlation matrix, as
shown in Figure 8. In the correlation matrix, the rows and columns represent the different
variables of the dataset. Each cell of the matrix also contains the value of the correlation
coefficient of the elements described by that particular row and column. If the value is near
+1, there is a strong positive linear interdependency between the variables. In contrast, if it
is nearer to −1, it indicates a strong negative linear correlation between the two parts. If
the value is zero or near zero, there is no correlation between the two variables.

Calculation of the Correlation Coefficient

Calculation of correlation between two variables A and B. Standardized forms of A and
B are PA and PB, respectively. PA and PB both have means equal to 0 and standard deviations
(S.D.) equal to 1. Standardized schemes are obtained by using Equations (1) and (2) [35]:

PAi = [Ai −mean(A)]/S.D.(A) (1)

PBi = [Bi −mean(B)]/S.D.(B). (2)

The correlation coefficient is calculated as the mean product of the paired standardized
scores (PAi, PBi) as expressed in Equation (3) [42]:

RA,B = Sum o f [PAi × PBi]/(n− 1) (3)

n = sample size.
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From the above Figure 8, it is deduced that the relationship of alarm with T7 and T1 is
positive and with CS, T8, T6, T4, T3, T2, and ML is negative and with T5 is almost equal
to zero.
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3.2.2. Histogram

The histogram represents the frequency distribution of all the variables. Now data
analysis is done with the histogram and creates a frequency distribution of all the variables
like thermocouple temperatures (T1, T2 . . . T8) and the other two were casting speed (CS)
and the mold level (ML), as shown in Figure 9.

From the histogram plots (Figure 9), it can be inferred that the distribution does not
follow a normal distribution, and the data is slightly skewed, but as the dataset is quite
smaller, a small amount cannot also be afforded to be lost. To remove skewness, the most
often used function is the Box–Cox power transform [43]. Box–Cox transformations hλ(x)
are given by Equation (4):

ha(x) = f (x) =



⌊
(1+x)λ−1

⌋
λ , i f λ 6= 0 and x ≥ 0

log(1 + x), i f λ = 0 and x ≥ 0
−
⌊
(1−x)2−λ−1

⌋
(2−λ)

, i f λ 6= 2 and x < 0
− log(1− x), i f λ = 2 and x < 0

(4)

Now skewness is removed from data with the help of Box–Cox transformations. After
correlation and histogram, data is ready for training the neural network.



Materials 2022, 15, 670 9 of 19Materials 2022, 15, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 9. Histogram plots of the frequency distribution of all the variables (thermocouple tempera-
tures (T1, T2 … T8), casting speed (CS), and mold level (ML). 

From the histogram plots (Figure 9), it can be inferred that the distribution does not 
follow a normal distribution, and the data is slightly skewed, but as the dataset is quite 
smaller, a small amount cannot also be afforded to be lost. To remove skewness, the most 
often used function is the Box–Cox power transform [43]. Box–Cox transformations hλ(x) 
are given by Equation (4): 

ℎሺ𝑥ሻ ൌ 𝑓ሺ𝑥ሻ ൌ
⎩⎪⎪⎨
⎪⎪⎧ උሺ1  𝑥ሻఒ െ 1ඏ𝜆 , 𝑖𝑓 𝜆 ് 0 𝑎𝑛𝑑 𝑥  0logሺ1  𝑥ሻ , 𝑖𝑓 𝜆 ൌ 0 𝑎𝑛𝑑 𝑥  0െඋሺ1 െ 𝑥ሻଶିఒ െ 1ඏሺ2 െ 𝜆ሻ , 𝑖𝑓 𝜆 ് 2 𝑎𝑛𝑑 𝑥 ൏ 0െ logሺ1 െ 𝑥ሻ , 𝑖𝑓 𝜆 ൌ 2 𝑎𝑛𝑑 𝑥 ൏ 0

  (4)

Now skewness is removed from data with the help of Box–Cox transformations. Af-
ter correlation and histogram, data is ready for training the neural network. 

3.3. Data Pre-Processing 
The following describes the process of making the raw data suitable for training pur-

poses. A total of 786 sets of raw data were collected from the BSP. As there were variations 
within the data, it was normalized so that the total data was in the range of 0 to 1 before 
training the neural network. 

  

Figure 9. Histogram plots of the frequency distribution of all the variables (thermocouple tempera-
tures (T1, T2 . . . T8), casting speed (CS), and mold level (ML).

3.3. Data Pre-Processing

The following describes the process of making the raw data suitable for training
purposes. A total of 786 sets of raw data were collected from the BSP. As there were
variations within the data, it was normalized so that the total data was in the range of 0 to 1
before training the neural network.

3.3.1. Train Test Split

Before standardizing data, the dataset was split into train and test sets, respectively,
using the train-test-split function of the sklearn library. The train and test sets were
standardized separately to obtain better accuracy.

3.3.2. Standardizing the Data

Standardizing the data means transforming the data such that the mean and standard
deviation of the distribution becomes 0 and 1, respectively. To achieve this, the mean value
was subtracted from each value of the dataset and then divided by the standard deviation
of the whole dataset. Since our dataset has multivariate data, this was done variables-wise,
i.e., independently for each column and using the standard scaler from the sklearn.

The comparison between the accuracy curves of the model without and with standard-
ization is given below. The accuracy curve shows that the model with a standardized data
test accuracy of 1.0000 is found out to be higher compared to without, i.e., 0.9722 as shown
in above Figure 10. After standardization, 505 sets of data were ready to train the neural
network. A total 70% of data was used for neural network training, 15% of data was used
for network validation, and 15% of data was used for model testing. Out of 505 samples of
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data, 100 sets of data samples belonged to breakout and pending 405 sets of data samples
showed no breakout.
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3.4. Neural Network Architecture
Hidden and Output Layers and Activation Function

In artificial neural networks, the first layer is called the input layer; it consists of the
10 inputs, which are the different features of every dataset observation. The last layer
is called the output layer, which contains one neuron as it is a binary classification task,
and the layers present between the input and output layer are called the hidden layers.
This neural network has two hidden layers, the first and second hidden layer have 16 and
12 neurons each, respectively, as shown in Figure 11. For the first and second hidden layer,
the rectified linear unit (ReLu) activation function is used, and for the output layer, the
sigmoid activation function is used.

The sigmoid activation function is used majorly in the output layers of binary classifi-
cation problems. It gives a value between 0 to 1, which is the probability prediction of the
output, while the ReLu function is one of the most important frequently used activation
functions in the hidden layers. It gives a better performance than the sigmoid activation
function in the neural networks. Therefore, the sigmoid function is mainly used for the
output layer and the ReLu function is used for the other two hidden layers for better
performance. As the sigmoid function is used in the output layer, the predicted probability
of mold breakout, which will be between 0 and 1, is calculated by the ANN. For the final
values, these probabilities have to be converted to either 0 or 1 depending on the threshold
value, which is 0.5 by default.

The similar research has been documented in the previous study where the author
calculated the predicted out by using neural network with the output layer compresses of
one node [8,20,21].

3.5. Dropout and Batch-Normalization

The Dropout and Batch-Normalization technique has been used to improve the model
performance after each of the two hidden layers. The dropout technique is used to pre-
vent neural network models from overfitting. The dropout parameter is set to 0.3 for
this model [44]. Batch-Normalization is one of the techniques which standardizes the
input, which is fed to the layers for each of the mini-batch during the training of neural
networks [45]. This helps stabilize the learning process and reduce the number of training
epochs required during the training of the neural networks.
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The comparison between the accuracy curves of the model without and with dropout
and batch normalization is given below in Figure 12.
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From the accuracy curve of the model without dropout and batch normalization, it
can be deduced that the model is overfitted if dropout and batch normalization is not used.

3.6. Selection of Optimizer and Loss Function

Optimizers are the algorithms used to adjust the attributes of neural networks, such as
weights and learning rates, to reduce the losses during the training process. In this model,
the Adam optimizer is used as it efficiently combines the properties of the RMSProp and
AdaGrad algorithms [46–50]. It is one of the most used optimizers in deep learning as its
default parameters work well for most of the classification problems, and also, the sparse
gradient for problems with noise can be easily handled by it. It is therefore efficient and
comparatively faster. The binary cross-entropy loss function is used since our problem is a
classification problem. In earlier research papers, MSE (mean squared error loss) was used,
but it is used for regression tasks, not for classification tasks because the decision boundary
in a classification task is significant (in comparison with regression). Setting the epochs to
100 and the batch size as 16 after implementing the above model, we gained a maximum
of 100% accuracy in our training and testing sets. The binary cross-entropy loss function
calculates the loss of a single output by using the following formula given by Equation (5).

Loss = − 1
output size

output size

∑
i=1

yi log yi + (1− yi) (5)

where yi is the ith scalar value in the model output, yi is the corresponding target value,
and the output size is the number of scalar values in the model output.

4. Results and Discussions
4.1. Accuracy Curve

It has been seen that the accuracy of the model is increasing as we are increasing the
number of epochs. Both the train and validation accuracy are rising to 100%, as shown in
Figure 13.
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4.2. Loss Curve

The loss curve of the model decreases with the number of epochs, as shown in
Figure 14. Both train loss curve and validation loss curve of the model approaches to-
wards zero with the number of epochs.
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The loss curve clearly shows that loss decreases with the number of epochs and the
model having minimum train loss (0.0204) and minimum test loss (0.0227). The loss curve
also indicates that both the train and test accuracy have become 100%, with the highest
train accuracy (1.0000) and highest test accuracy (1.0000). The testing result shows that the
model accurately predicts the breakout.

The developed system will automatically control the casting speed whenever the
BOPS alarms or teeming interrupt commands are generated.

An artificial neural network with a backpropagation algorithm has been developed
using Python to write the Keras format and TensorFlow as a backend. The model is
trained by code using the thermocouples temperature of the copper mold, casting speed,
mold/taper, and mold level. The test results in Figure 12 show that the accuracy curve of
the model with dropout and batch normalization is more accurate than that of the model
without dropout and batch normalization. The accuracy curve in Figure 13 shows that
the accuracy increases with an increase in the number of epochs; then, the training loss
and test accuracy become 100% accurate with the highest train accuracy (1.0000) and test
accuracy (1.0000). At the same time, it is clear from the loss curve that model loss decreases
with the number of epochs, and the model having a minimum train loss (0.0204) and
minimum test loss (0.0227) is achieved in Figure 14. The experimental results show that the
developed model has 100% accuracy for generating an alarm during the true breakout and
thus, ultimately reduces the false alarm.

4.3. Representative Field Application-Based Validation Test

The developed BOPS is implemented for field trials from April 2021 to September
2021 to access the model’s performance and to check the accuracy. The data are collected
for field tests from April 2021 to September 2021, with an average of 29.11 heat per day,
i.e., 5299.02 casting heat in 6 months. There are 13 breakouts during this period, as shown
in Table 3. Field application result shows that the developed BOPS can timely detect all
13 breakouts, and only 6 false alarms are generated.
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Table 3. Breakout in continuous casting shop (CCS) from 1 April 2021 to 31 September 2021.

Breakout
S.No. Date and Time

Heat
Number

Strand
Number

Slab Size
(mm)

Heat of
Sequence

Ladle
Number

Steel
Grade

Casting
Speed

(m/min)

Mold
Level
(%)

T1(◦C) T2(◦C) T3(◦C) T4(◦C) T5(◦C) T6(◦C) T7(◦C) T8(◦C)

01 11 May 2021
06:30:30

53,969 02 1045 1st 14 CR2B 0.77 0
186 8 146 9 10 76 −5 6

02 31 May 2021
04:10:02

54,335 02 1090 1st 21 GR-II 0.90 0
188 12 132 3 −2 95 2 2

03
09 September

2021
03:17:56

57,263 04 1045 5th 13 GR-II 1.22 60
13 130 20 14 −11 60 22 10

04
27 September

2021
22:50:31

57,803 4 1090 4th 9 CR 1.01 62
15 6 15 10 21 46 4 −11

05 07 October 2021
06:17:59

58,132 1 & 2 1470/1320 8th 18 GR-II
Patton 1.32 64

178 32 178 14 −15 169 31 30

06 28 October 2021
23:17:38

58,898 2 1045 8th 23 CR2 1.09 54
194 0 125 −12 −8 125 −3 -3

07 31 October 2021
06:30:30

58,974 4 1320 6th 17 GR-I 1.02 60
4 10 −13 5 4 210 −12 5

08
09 September

2021
20:47:33

57,263 4 1045 5th 13 GR-II 0.78 0
2 −1 1 0 −6 1 −13 7

09
27 September

2021
02:44:48

57,803 4 1090 4th 9 CR 0.50 1
54 −14 55 −13 −17 63 −16 −18

10 07 October 2021
03:47:49

58,132 1 & 2 1470/1320 8th 18 GR-II
Patton 0.38 0

−38 −6 93 −5 −9 49 −4 −5

11 28 October 2021
12:49:60

58,898 2 1045 8th 23 CR2 1.08 39
−1 −1 −5 −17 −15 208 −12 1

12 31 October 2021
20:55:03

58,974 4 1320 6th 17 GR-I 1.22 60
19 133 21 10 −11 51 18 14

13
03 November

2021
13:51:14

59,060 3 1320 5th 25 GR-II 0.77 0
189 8 146 9 10 79 −5 6

In other words, the detection ratio (detection ratio = number of true alarms/(number
of missed alarms + number true alarms) for breakout, frequency of false alarms for pre-
sented model, and prediction accuracy ratio (prediction accuracy ratio = correct alarm
times/(missed alarm times + true alarm times + false alarm times)) are 100%, 0.113%,
and 100% respectively as shown in Table 4. The breakouts could be prevented because
of timely alarm, thereby effectively reducing the casting speed and maintaining the mold
level by opening and closing the tundish slide gate. Reducing the casting speed provides
enough time for healing the sticker. The healing rate of the sticker has reached 100%. In
the prevalent BOPS, there are 195 false alarms. The actual BOPS not only has a lot of false
alarms, but that 13 breakouts were not detected, and thus the breakouts happened. A
total loss of 31.15 million INR/year could be prevented in monetary terms. Therefore,
the developed BOPS can be used effectively in the caster. The developed BOPS model
can achieve better performance for breakout prediction and prevention and prevent huge
financial loss.
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Table 4. Prediction results new and actual breakout prediction system (BOPS).

Parameters New Model Actual BOPS

Total number of heats 5299 5299
Total number of true breakout alarms 13 13

Total number of missed breakout alarms 00 13
Total numbers of false breakout alarms 06 21

Frequency of false alarms (%) 0.113 0.396
Breakout detection ratio (%) 100 50

Breakout prediction accuracy ratio (%) 100 27

Similar observations have been reported in prior studies, as shown in Table 5 for
evaluating the breakout detection ratio (%), breakout prediction accuracy ratio (%), false
alarm-time, and several false alarms [8,15,51]. Thus, our findings proved more reliable
and substantial to prevent any breakout in steel industries as compare with the data of
other researchers.

Table 5. Compare the results obtained by the new model with the data of other researchers.

Authors Breakout Detection Ratio Breakout Prediction Accuracy Ratio Frequency of False Alarm

New model 100% 100% 0.113
Liu, Yu, et al. [51] 98.73% 98.7% 0.126
He, Fei, et al. [15] 100% 78.26% 0.150
He, Fei, et al. [8] 100% 82.60% 0.1365

A graphical illustration is shown in Figure 15, how the developed BOPS effectively
prevents the breakout as an example of sample 7. The graphical illustration is shown in
Figure 15 is of a single heat data. Here, the difference between the upper thermocouple
temperature and lower thermocouple temperature exceeds the pre-defined value (40 ◦C),
and hence, there is the formation of sticker-type breakout. Thereby, this condition releases a
breakout alarm at 06:30:30. After the alarm, a breakout is prevented by reducing the casting
speed, providing enough time to heal the sticker, and preventing the breakout. Thus, the
sticker shell will be healed. Within 30 s, the sticker shell is completely healed. Therefore,
there is a recovery of the sticker, which is shown in Figure 15.
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5. Conclusions

In this work, an artificial neural network with backpropagation mold breakout predic-
tion was developed using the Keras format and TensorFlow as a backend. The currently
used breakout prediction system was developed using the thermocouple temperature or
mold friction. This system uses the thermocouple temperature, mold level, and casting
speed to predict the breakout. The accuracy curve, loss curve, and testing result show that
this system successfully predicts all types of breakouts and even reduces to generate false
alarm during casting compared to the existing BOPS system in the Bokaro Steel Plant. At
the time of a breakout alarm, the casting speed will reduce to 0.8 m/min, and in case the
teeming interrupt casting speed is reduced to creep’s speed, i.e., 0.1 m/min. The simulation
results showed that the developed model had 100% accuracy for generating an alarm
during the true breakout and thus, completely reduced the false alarm. Furthermore, field
trials results showed that the developed BOPS had a detection ratio of 100%, the frequency
of false alarm was 0.113%, and the prediction accuracy ratio was 100%, which is better than
the existing system used in the continuous casting of steel slab at Bokaro Steel Plant. The
developed BOPS could successfully prevent losses, with a monetary valuation of maybe
31.15 million INR/year. Therefore, it could be easily concluded that the developed BOPS
is much more effective than the already installed BOPS and is highly recommended for
deployment at the continuous casting shop at Bokara Steel Plant.

6. Future Outlook: Development of a Framework for Automatic Reduction of
Casting Speed

The proposed model will automatically control the casting speed whenever there is a
breakout alarm or teeming interrupt (when liquid steel level is increased within the mold,
then the tundish slide gate is closed automatically and vice-versa. The tundish slide gate’s
standard opening is a maximum of 78%, and a minimum is 48%. Whenever a tundish slide
gate crossed this range, an interrupt command is generated by automatic mold level control
(AMLC)) is generated. This model also controls the casting according to the grade of steel.
When a teeming interrupt is generated, the casting speed range is reduced to creep’s rate,
i.e., 0.1 m/min. In case of breakout alarm, the casting speed will reduce to 0.8 m/min, as
shown in Figure 16.
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gate’s standard opening is a maximum of 78%, and a minimum is 48%. Whenever a tun-
dish slide gate crossed this range, an interrupt command is generated by automatic mold 
level control (AMLC)) is generated. This model also controls the casting according to the 
grade of steel. When a teeming interrupt is generated, the casting speed range is reduced 
to creep’s rate, i.e., 0.1 m/min. In case of breakout alarm, the casting speed will reduce to 
0.8 m/min, as shown in Figure 16. 

 
Figure 16. Proposed modem to reduce casting speed automatically. 

In this proposed model, both the breakout alarm and teeming interrupt control the 
casting speed. Whenever teeming interrupt is generated simultaneously, TSG (tundish 
slide gate) control sends a command to the strands PLC (programmable logic controller). 
This strands PLC control the casting with the help of a withdrawal drive speed controller. 
In case of teeming interrupt casting speed, we will reduce it to 0.1 m/min. At the time of 
the breakout alarm, strands PLC well generates a signal to control the casting speed with 
the help of a withdrawal drive. In this case, a casting speed well reduces to 0.8 m/min. 
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In this proposed model, both the breakout alarm and teeming interrupt control the
casting speed. Whenever teeming interrupt is generated simultaneously, TSG (tundish
slide gate) control sends a command to the strands PLC (programmable logic controller).
This strands PLC control the casting with the help of a withdrawal drive speed controller.
In case of teeming interrupt casting speed, we will reduce it to 0.1 m/min. At the time of
the breakout alarm, strands PLC well generates a signal to control the casting speed with
the help of a withdrawal drive. In this case, a casting speed well reduces to 0.8 m/min.
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