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Abstract: Arrhythmias are one of the leading causes of death in the United States, and their early
detection is essential for patient wellness. However, traditional arrhythmia diagnosis by expert
evaluation from intermittent clinical examinations is time-consuming and often lacks quantitative
data. Modern wearable sensors and machine learning algorithms have attempted to alleviate this
problem by providing continuous monitoring and real-time arrhythmia detection. However, current
devices are still largely limited by the fundamental mismatch between skin and sensor, giving
way to motion artifacts. Additionally, the desirable qualities of flexibility, robustness, breathability,
adhesiveness, stretchability, and durability cannot all be met at once. Flexible sensors have improved
upon the current clinical arrhythmia detection methods by following the topography of skin and
reducing the natural interface mismatch between cardiac monitoring sensors and human skin. Flexible
bioelectric, optoelectronic, ultrasonic, and mechanoelectrical sensors have been demonstrated to
provide essential information about heart-rate variability, which is crucial in detecting and classifying
arrhythmias. In this review, we analyze the current trends in flexible wearable sensors for cardiac
monitoring and the efficacy of these devices for arrhythmia detection.

Keywords: arrhythmia detection; cardiovascular monitoring; soft biosensors; wearable sensors;
flexible electronics

1. Introduction

Arrhythmia is the presence of abnormal cardiac rhythms. In 2018, more than 500,000
American deaths included arrhythmia as a contributing factor, demonstrating its deleterious
impact on patient health [1]. Furthermore, the lifetime risk of atrial fibrillation in the
United States is estimated to be one in three among Caucasians and one in five among
African Americans [2]. Arrhythmias occur when the electrical pulses of the heart are
not functioning properly, causing the heart to beat either too fast, too slow, or skip beats.
Impulse-production arrhythmias can be grouped into six categories: premature beats,
non-sinus rhythm, fibrillation, tachycardias, bradycardias, and flutter. Premature beats are
abnormally timed beats that occur before the sinus rhythm and are caused by the heart
being unable to fill with the appropriate amount of blood [3]. Atrial fibrillation, the most
common arrhythmia, occurs when the electrical pulses between the upper chambers of
the heart, the atria, do not sync with the pulses in the lower chambers of the heart, the
ventricles. Ventricular fibrillation, on the other hand, occurs when there is a mismatch
between the right and left atria, which makes the heart unable to pump blood to the
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body [3]. Tachycardias occur when the heart is beating too fast, generally more than
100 beats per minute, and bradycardias occur when the heart is beating too slow, generally
less than 40 beats per minute. In addition, impulse-conduction arrhythmia types include
atrioventricular block, bundle branch block, Wolff—Parkinson—White syndrome, and
escape beats [4]. An atrioventricular block occurs when the impulses between the atria and
ventricles become blocked due to a failure in the heart’s conduction system. Bundle branch
block occurs as a result of blockages in the pathways in the heart. Wolff—Parkinson—White
syndrome occurs when additional electrical pathways are made between the atria and
ventricles, resulting in a rapid heartbeat [5].

Despite the clear need for early arrythmia detection to avoid these serious complica-
tions, existing detection mechanisms have proven insufficient. Arrhythmias have tradition-
ally been diagnosed by medical professionals based on qualitative data, a patient’s medical
history, and clinical examinations. Electrocardiography (ECG) has proven instrumental in
identifying arrhythmias. The importance of continuous monitoring for specific arrhyth-
mias has been increasingly identified, as both asymptomatic arrhythmias and paroxysmal
diseases remain difficult to detect through intermittent clinical ECG recordings [6,7]. The
12-lead Holter monitor has long been the clinical standard for detection and diagnosis
of heart-rate diseases using long-term monitoring of ECG [8]. Though these devices are
widely used, they are prone to poor patient compliance because of their bulkiness and
reliance on wired leads [9]. In addition, these devices experience signal deterioration over
time due to the drying of the conductive gels [10]. The advent of miniaturized, one-lead
devices has offered an alternative to multi-lead ECG devices. However, they are susceptible
to motion artifacts that disrupt data collection [11].

Flexible devices have emerged as alternatives to these rigid devices, eliminating mo-
tion artifacts by increasing sensor-to-skin adhesion. Recently, new areas of research have
been developed to make these heart-rate monitoring devices cheaper and faster to manufac-
ture, expanding accessibility for these previously costly devices. Table 1 shows the currently
available flexible devices for arrhythmia monitoring. Additionally, new alternatives to
ECG can provide information that ECG alone cannot. For instance, photoplethysmography,
ultrasound, seismocardiography, and ballistocardiography can characterize the heart’s elec-
tromechanics. Figure 1 shows these soft-sensor types, along with the desirable qualities of
the devices. New arrhythmia-detection methodologies also offer more accurate, automatic
information to patients for a low cost. For example, deep neural networks, which are capa-
ble of learning important features and patterns without extensive preprocessing or feature
engineering, are becoming extremely accurate in predicting types of arrhythmia [12].

In this review, we summarize the types of sensors used to detec arrhythmias, with an
emphasis on non-implantable devices and recent advances in the flexibility of previously
rigid sensor types. Different sensing methods can offer low-cost alternatives to traditional
sensing or provide information that is unobtainable with other sensors. We explore the
materials needed to fabricate these flexible devices and discuss the mechanical, chemical,
and electrical properties of these materials, as well as the effect of these properties on the
detection of arrhythmias. Next, arrhythmia detection methodologies of various arrhythmia-
detection devices are explored, along with their limitations. Finally, we comment on the
current cutting-edge research in the field, the current problems and possible solutions, and
the future development of wearable sensors for arrhythmia detection.
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Figure 1. Examples of flexible sensors and functions for accurate arrhythmia detection [13–16].
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272, 92–101, Copyright 2019, Elsevier; (2) Proc. Natl. Acad. Sci. 2018, 115, E11015–E11024, Copyright
2018, National Academy of Sciences; (3) Creative Common License by MDPI; (4) Creative Common
License by Wiley.

Table 1. Comparison of flexible devices for heart-rate monitoring.

Reference Measured Signal Sensor Location Substrate
Material

Sensor
Material Flexibility

[14] PPG Wrist PEN PEDOT:PSS Flexible
[17] ECG Arm unknown Ag/AgCl Flexible

[18] ECG Chest PDMS Carbon black-PDMS
nanocomposite Stretchable

[19] PPG Finger PI Sb2Se3 Rigid

[20] ECG Wrist Polythiophene Polyvinyl alcohol/cellulose
/PEDOT:PSS Flexible

[21] ECG Forearm unknown PEDOT:PSS/WPU/D-sorbitol Flexible
[22] Ultrasound Neck PI 1–3 Piezoelectric composite Stretchable
[16] SCG, ECG Chest Tegaderm PVDF Stretchable

2. Bioelectric Signals
2.1. Mechanics of ECG

ECG is the practice of measuring the heart’s electrical activity using pairs of electrodes
on the skin. Clinically, this is achieved with 12 leads using 10 electrodes to measure cardiac
signals from many angles [23]. A healthy ECG cycle typically consists of five different
waves: P, Q, R, S, and T. The P-wave is the first positive wave and corresponds to atrial depo-
larization. The QRS complex, which consists of a negative Q-wave, a large positive R-wave,
and a negative S-wave, represents ventricular depolarization and ventricular contraction.
The T-wave represents ventricular repolarization and ventricular diastole [24]. Distortion
of these waves can indicate abnormalities in the heart rhythm [25]. The Pan-Tompkins
algorithm is commonly used to find the QRS complex in a regular ECG rhythm [26]. Al-
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though 12-lead ECGs provide the best clinical method for diagnosing arrhythmias, the
switch to 3-lead ECGs or single-lead ECGs offers many advantages [23]. Cardiovascular
patches that use adhesives have become increasingly popular due to their unobtrusiveness.
For example, the FDA-approved Zio patch (iRhythm Technologies, Inc., San Francisco,
CA, USA) has shown clinical suitability for detecting arrhythmias when compared with a
12-lead Holter monitor over 14 days [27].

2.2. Materials for Flexible ECG Devices

Many ECG electrodes currently used in clinics are made up of three parts: (1) a con-
ductive metal, traditionally Ag/AgCl electrodes; (2) a conductive gel; and (3) an adhesive
patch. Conductive gels reduce the impedance from the electrode to the skin. However, they
dry up over time, which causes signal quality to deteriorate during long-term monitoring.
Therefore, many materials have been explored as alternatives to traditional Ag/AgCl that
are conformal to the skin. Although they generally have higher impedances than wet
electrodes, flexible dry electrodes are quickly gaining in popularity. Electrodes can be
made from any conductive materials. Since metals have high Young’s moduli, ultra-thin
metal films can be arranged in serpentine or fractal geometries to provide flexibility or
stretchability, as shown in Figure 2a [28–31]. Chlaihawi et al. reported an electrode that
was screen printed with Ag flake ink [32]. The electrode with the largest area reported
a 0.95 correlation coefficient with traditional wet Ag/AgCl electrodes. In addition, the
study showed the feasibility of using the high-throughput process of screen printing for
the development of flexible dry electrodes.
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The stretchability of these thin-film metals can be increased by introducing conduc-
tive polymers. Polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS) are
commonly chosen as polymers due to their biocompatibility, wide availability, and low
Young’s modulus. To make these polymers conductive, materials such as activated carbon
or metal micro/nanoparticles are added to form networks of conductivity. For example,
Jung et al. showed a carbon nanotube (CNT)/PDMS composite-based dry electrode to com-
bat motion and sweat artifacts [33]. The performance of the electrode was able to be tuned
by adjusting the CNT concentration. This electrode showed no signal degradation over a
seven-day period of continuous monitoring, providing similar motion-artifact reduction as
wet electrodes and more motion-artifact reduction than other dry electrodes. Zhang et al.
showed an electrode that had stretchability up to 500% by combining Ag nanowires (NWs)
with polymers [34]. This sensor improved upon the CNT/PDMS structure, which is subject
to weak connection of conductive materials when stretched. This polymer/Ag NW sensor
also increased the durability over 1000 cycles and exhibited good fatigue resistance.

In recent years, the conductive polymer poly (3,4-ethylene dioxthiophene): polystyrene
trans acid (PEDOT:PSS) has been the most common polymer for textile-based electrodes
due to its high sensitivity to biological molecules and high response time [35]. Wang et al.
showed that PEDOT:PSS could be used to achieve even higher flexibility and lower skin
impedance by combining it with a flexible cellulose/polyvinyl alcohol substrate [20].
This process provides new ideas for low-cost manufacturing of environmentally friendly
ECG devices.

In addition to material advances, recent studies have decreased the impedance of sur-
face electrodes by changing the form factor. For example, semi-invasive strategies, such as
microneedle-based approaches, have been demonstrated to reduce motion artifacts [36,37].
Satti et al. reported a microneedle array electrode (MNE), as shown in Figure 2b, that
showed no mechanical failure under compression forces of 16 N and showed that while
the signal quality of wet Ag and AgCl electrodes decreased after 3 days and 1 week,
respectively, the MNE showed no signs of signal-quality deterioration [36].

Despite the many developments in electrode technology, there is still a lack of all-
in-one integration. To address these sensor-only systems, innovations in packaging have
become important as well. For example, the general impedance challenges of sweat buildup
on electrodes have been addressed by integrating hydrophilic poly(urethane-acrylate) into
Ag electrodes to increase conductivity during sweating and increasing the breathability
of the substrate, as shown in Figure 2c,d [37–41]. All-in-one systems featuring wireless
charging, wireless data communication, and onboard data analysis have been developed,
as in Figure 2e [42–45].

3. Optoelectronic Signals
3.1. Mechanics of PPG

Photoplethysmography (PPG) is emerging as an alternative to ECG for cardiovascular
monitoring due to its small size and ability to capture many different physiological param-
eters. The LED operates at red and near-infrared (NIR) frequencies, and the light intensity
reaching the photodiode changes depending on the volumetric changes in the veins and
arteries [46]. PPG sensors consist of two basic components: a light-emitting diode (LED)
and a photodiode. The PPG sensor can function in two main modes: (1) transmission,
where the LED and photodiode are placed on opposite sides of the medium; or (2) reflection,
where the LED and photodiode are placed on the same side of the medium [47]. Due to
the many factors affecting blood flow, including cardiac, neural, and respiratory factors, it
is possible to look at many physiological parameters. PPG is currently used to measure
several different aspects of heart health, including blood oxygen saturation (SpO2), blood
pressure, heart rate, and respiratory rate [48–52].

Because PPG sensors only require two simple components, an LED and photodiode,
they are commonly implemented in already-existing devices, such as watches and smart-
phones, at low cost. However, the fundamental mismatch between the shape and rigidity
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of these devices with the skin makes them prone to heavy motion-artifact noise. Thus,
flexible materials are essential for increasing the accuracy of optoelectronic sensors.

3.2. Materials for Flexible PPG Devices

Both flexible LEDs and flexible diodes have been developed to reduce the effects
of motion artifacts, which have been difficult to remove with filtering alone [53]. The
most common photodiodes currently in use are silicon photodiodes, as they are widely
available and flexible. Kim et al. used flexible (PIN) silicon diodes in combination with
near-field communication (NFC) to deliver power, eliminating the need for a battery [54].
The photodiodes were paired with red and infrared LEDs, and the signals were amplified to
coils and sent to a smartphone using the NFC platform. Li et al. offered an improvement on
the conventional optoelectronic architecture by designing an epidermal silicon-based device
by using a specific strain-isolation design, nanodiamond thinning, and hybrid transfer
printing [55]. Through the thinning process, the thickness of the LEDs and PD was reduced
to 20 µm. Mechanical deformation was addressed by adding a flexible island in a sandwich
structure, with PI and PDMS helping the device to show stable operation, even under a
strain of 35%. This device promised the possibility for functional optoelectronic devices
to be directly mounted on the skin. Gallium arsenide (GaAs) is a frequently used III-V
semiconductor material that can be used as an alternative to Si-based materials based on its
excellent charge-carrier mobility and high stability. Hong et al. demonstrated a GaAs-based
flexible photodetector array that was hetero-epitaxially grown on a Si wafer [56]. This
innovative manufacturing method showed promising results that could lower the cost of
inorganic photodiodes, which are normally expensive. This platform shows promising
possibilities for large-scale creation of flexible photodiodes.

Organic materials for PPG sensors have become increasingly attractive due to their
low fabrication cost and environmentally friendly footprint. For example, Yokota et al.
developed a flexible pulse oximeter consisting of a polymer LED (PLED) and an organic
photodiode (OPD) (Figure 3a,b) [57]. The device addressed a large barrier in organic opto-
electronics, which is the ability to form a high-quality passivation layer on an ultraflexible
substrate by making the passivation layers very thin using a low-temperature process. The
PLED was constructed using light-emitting polymers and indium tin oxide electrodes. The
OPD was constructed with a poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C61-butyric acid
methyl ester (PCBM) active layer, which was manufactured on a 1 µm Parylene substrate,
which was used as the passive layer. The lightweight device, which is only 3 µm thick,
showed robustness, even under repeated 60% compression. Khan et al. showed a flexible
oximeter array in which the active materials for the organic LED (OLED) and the OPD were
fabricated on polymer substrates and placed in a grid consisting of photodiodes, red LEDs,
and near-infrared LEDS [14]. The device offers a solution to the fundamental problem of
only being able to measure PPG signals at a single location by using a reflectance-based
array and is therefore capable of measuring blood oxygenation, even in the absence of
pulsatile arterial blood signal. The device was able to measure SpO2 with a mean error
of 1.1%.

Exciting new optoelectronic research on quantum and nano-based materials is emerg-
ing thanks to the ability to tune the performance due to the size of the particles. As shown
in Figure 3c, Polat et al. introduced a photodiode made with graphene sensitized with
semiconducting quantum dots [58]. Quantum-dot-based graphene photodetectors have
high responsivity due to their built-in photoconductive gain. Therefore, the readout elec-
tronics can be placed far from the sensor, preserving the form factor of the active sensing
area. In addition, the detector’s transparency can be changed by changing the thickness
of the quantum-dot layer, which alters the responsivity. This transparent device used
ambient light for low power consumption and communicated wirelessly using near-field
communication circuitry, as represented by a correlation coefficient of ρ = 0.98, with a
state-of-the-art clinical PPG sensor. Kim et al. demonstrated a spirally wrapped CNT-based
microelectrode, which is shown in Figure 3d [59]. A CNT-based solution was printed on an
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agarose hydrogel substrate, where it was then spirally wrapped around a microfiber surface,
such as nylon. The CNT electrodes demonstrated a current ratio of ~105 and a maximum
field-effect mobility of 0.68 cm2 V−1 s−1, which is comparable to similar flat devices.
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For arrhythmia detection, a high signal-to-noise ratio is essential. Thus, the specific
design and its optimization are crucial. Pribadi et al. optimized a flexible OLED-OPD patch
using an optical simulation [60]. The group optimized the AC/DC ratio of a square-type
and cross-type patch. Their results showed that the square-type OPD was the best patch
due to the wide area of the OPD, with an OLED drive current between 0.1 and 0.4 mA.
The flexibility of the resulting design was 130◦, and the heart-rate measurement accuracy
was 95%. Khan et al. optimized the geometry of OLEDs and OPDs by designing three
geometries: a rectangular geometry, a bracket geometry, and a circular geometry [61].
Both the bracket geometry and the circular geometry showed clear improvement over
the rectangular design, where the bracket geometry showed a 39.7% improvement in the
red PPG-signal magnitude and an 18.2% improvement in the NIR-channel magnitude,
while the circular geometry showed a 48.6% improvement in the red-channel magnitude
and a 9.2% improvement in the NI-channel magnitude. These results show promising
form-factor and geometry optimization that could increase sensor accuracy and reduce
power consumption in future wearable devices.

4. Other Signals
4.1. Ultrasonic Signals

Doppler ultrasound has been used to track changes in arterial diameter, which can
be used to track heart rate. However, commercially available ultrasound monitors are
handheld and rigid and therefore not suitable for continuous monitoring. The active layer
for ultrasonic transducers is most commonly lead zirconate titanate (PZT) or composites of
PZT, as it exhibits high piezoelectric properties and high electromechanical properties [62].
A conformal ultrasonic device was suggested by Wang et al. that could withstand strains
of up to 60% [22]. The device utilized a piezoelectric pillar that was hybridized with soft,
stretchable components. Liu et al. built on this concept by arranging stretchable ultrasound
sensors into a two-dimensional array based on row and column electrodes [63]. The design
consisted of PZT blocks, serving as the piezoelectric islands, connected with polyimide (PI)
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serpentine hinges, allowing for stretchability between the otherwise rigid blocks. Lee et al.
showed that a calcium-modified silk could be used as an interface layer between sensor
and skin for ultrasound transducer arrays and that it has a similar acoustic impedance to
human skin [64]. Hamelmann et al. also introduced an ultrasound array based on PZTs
(Figure 4a) [15]. Other materials for stretchable ultrasound substrates include polyethylene
naphthalate (PEN), PDMS, acrylic, and PET [60,64,65].
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4.2. Mechanoelectric Signals

Both ballistocardiography (BCG) and seismocardiography (SCG) have been used to
measure cardiac activity based on the heart’s displacement, velocity, and accelerations.
BCG measures entire body movement due to cardiac ejection, whereas SCG is a local chest
measurement that registers cardiac-induced vibrations. Both are measured in terms of
acceleration [65]. Since SCG is typically measured on the body, while BCG is measured
using non-contact sensors, SCG has been more commonly used in wearable platforms.
While the relationship between SCG and cardiac events is still being studied, the literature
has estimated the correlation between certain SCG waves and event timing. For example,
a low-frequency acceleration wave can be seen at the start of atrial systole [66]. How-
ever, the rigid mismatch between current accelerometers and human skin can introduce
whole-body inertia measurements into the SCG signal. Skin-compatible SCG sensors have
attempted to address this problem. Ha et al. showed a stretchable e-tattoo SCG based on
polyvinylidene fluoride (PVDF) [16]. The sensor also showed a great correlation between
the systolic time interval and blood-pressure measurements, and it can simultaneously
record ECG signals. Other studies have used PVDF for the SCG sensor while incorporating
elements essential for long-term monitoring, like wireless charging and communication
(Figure 4b,c) [61,67–69]. Wearable phonocardiography (PCG) sensors have also been used
to assess the heart. Accelerometer-based mechano-acoustic sensors function similarly to
SCG and can pick up auditory frequencies that the human ear cannot hear with a traditional
stethoscope. Flexible, wearable stethoscopes based on accelerometry have been developed
with flexible substrates and electrodes [67,68]. Kwak et al. also demonstrated a strain-
gauge-based heart-rate sensor that can detect not only the timing of the heart pulsation but
also the amplitude and shape of the pulse (Figure 4d) [69].

4.3. Electrochemical Signals

Metabolic factors, such as glucose level, have been linked to increased risk for ar-
rhythmias. However, monitoring of metabolite levels has traditionally been performed
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with invasive devices. Recently, wearable glucose-detection devices have allowed for
repeated measurement of glucose levels without the burden of an implantable device [70].
Bandodkar et al. reported a tattoo-based noninvasive glucose-monitoring system based
on Ag/AgCl ink electrodes and a reagent layer [71]. In vitro characterization proved the
system’s ability to detect micromolar levels of glucose, and on-body evaluation proved its
ability to detect a rise in glucose after a meal. Sempionatto et al. improved this by creating
a stretchable patch for both hemodynamic and metabolic monitoring by combining PZT
ultrasound transducers and printed polymer composites [72]. Blood pressure could be
monitored through the sensor array, while chemical sensing was realized through sweat
detection. This study showed the potential of the integration of acoustic and electrochemi-
cal sensing.

5. Arrhythmia Detection

Computer-aided ECG and PPG analysis has vastly improved the detection and classi-
fication of arrhythmias. The most current process for classification of arrhythmias consists
of: (1) pre-processing, where baseline wander and unwanted noises and frequencies are
filtered out; (2) feature extraction, where the most important features of a wave are iden-
tified, and (3) classification, where the most important features are input into a model to
predict the class of arrhythmia of a given signal [73]. For filtering ECG signals, the P- and
T-waves are typically found between 0.5 Hz and 10 Hz, while the QRS complex is found
between 4 Hz and 20 Hz. Discrete wavelet transforms (DWTs) can be used in combination
with low- and high-pass filters to remove unwanted frequencies [74,75]. For PPG signals,
wavelet decomposition has also been investigated. However, filtering of motion artifacts
for PPG signals has only been proven for weak noise, and very noisy PPG signals need to
be discarded [76].

Current arrhythmia-detection models are often based on machine learning, as their
accuracy is easily increased with large training datasets. These machine learning methods
require feature extraction in either the time domain, frequency domain, time-frequency
domain, or nonlinear domain. They are often based on physiological incidents. For ex-
ample, dimensionality-reduction techniques, such as principal component analysis (PCA),
have been used in the time domain, and Fourier transforms have been used in the fre-
quency domain [77,78]. Machine learning models for both ECG and PPG signals have
included support vector machine (SVM), multilayer perceptron (MLP), and decision tree
(DT) models [78–81]. The cutting-edge machine learning area is deep learning. Deep learn-
ing methods, such as convolutional neural network (CNN), deep belief network (DBN),
recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit
(GRU), have been applied to arrhythmia detection [82–86]. Table 2 shows these machine
learning methods for arrhythmia detection and classification.

Kaisti et al. were able to perfectly distinguish between 13 sinus-rhythm subjects and
seven subjects with atrial fibrillation using a k-means clustering-based approach [87]. The
input to the algorithm was time-frequency data derived from a soft, band-based MEMS
pressure-sensor array, showing the feasibility of combining flexible devices and current
arrhythmia detection algorithms to provide high detection accuracy. Improving on this
concept, Dong et al. used an arrhythmia-detection system consisting DWT and SVM
algorithms, with a novel acetylene carbon black/PDMS ECG recording patch as the input,
which achieved a high online classification accuracy of 98.7% [88].
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Table 2. Comparison of arrhythmia-detection methodologies using wearable devices.

Reference Device Target
Signal

Arrhythmia
Type

Detection
Methodology Accuracy

[12] iRhythm Zio monitor ECG 10 types Deep neural network ROC = 0.97
F1 = 0.837

[89] Apple watch PPG, ACC Atrial fibrillation Deep neural network Sens = 0.98
Spec = 0.90

[90] 2-lead Holter monitor ECG
Atrial fibrillation,
atrial flutter, AV

junctional rhythm
Hybrid CNN-LSTM Sens = 0.9787

Spec = 0.9929

[91] Fingertip pulse oximeter PPG Atrial fibrillation CNN, RNN AOC = 0.998
AOC = 0.996

[73] MIT-BIH arrhythmia
database ECG Ventricular

fibrillation CNN Acc = 0.9318

[92] Point-of-care ultrasound Ultrasound images Atrial fibrillation Semi-supervised deep
learning network Acc = 0.79

6. Substrate Materials and Skin Interfaces

Due to their flexibility, ease of manufacturing, and low cost, substrates are often made
from polymers or fabrics. Elastomers, such as PET, PI, PEN, polyetherimide (PEI), and
parylene, are common materials for thin-film-based substrates. Their weak intramolecular
forces enable greater elongation and therefore greater stretchability. Substrates such as these
offer many opportunities for breakthroughs. For example, Wonryung et al. reported an
active, ultra-flexible, multielectrode array that using a 1.2 µm-thick parylene substrate [93].
The 2.6 µm sensor can be used for long-term ECG of dynamically moving hearts due
to a 15% strain. Likewise, Shahandashti et al. showed dry stretchable electrodes based
on PDMS, which has great biocompatibility, stretchability, and chemical inertness [13].
The substrate showed similar contact impedance to standard wet Ag/AgCl electrodes,
though pressure was applied between the electrode and skin using a transparent tape. To
improve the adhesion between substrate and skin, Zhang et al. explored a blended film
of PEDOT:PSS, waterborne polyurethane, and D-sorbitol prepared by solution processing.
These films exhibited low electrode-skin electrical impedances in the frequency range of
1 Hz–10 MHz and adhesion forces above 0.4 N/cm.

7. Wearable Devices

Long-term, real-time, continuous monitoring is essential in arrhythmia detection.
Thus, advances in form factors and device’s comfort are critical for better wearable devices
for successful cardiovascular monitoring. Hardware platforms, such as watches and
smartphones, commonly include rigid sensors for measuring ECG and PPG. However,
these devices suffer from motion artifacts, data loss, and low accuracy. Recently, form-factor
innovations in lightweight wearable devices have increased user comfort and compliance.
Breakthroughs in epidermal electronics, for example, have minimized the bulkiness of
wearable devices. Wang et al. reported low-cost electronic sensors based on epidermal
electronics that minimized motion and sweat artifacts [94]. The sensors reported up to 45%
stretchability, adhering to the skin using only van der Waals forces. The 13-µm thick sensor
is tape-free and disposable, allowing for ease of both patient compliance and comfort. The
durability of wearable devices is also essential in arrhythmia detection. For example, the
conductive gels in the traditional Ag/AgCl electrodes degrade over time, resulting in a
signal decrease. In addition, the buildup of moisture, dead skin, and material degradation
can impact the durability of wearable devices. Xu et al. attempted to mitigate some of these
problems through a washable and screen-printed graphene electrode on textiles [95]. The
ECG sensor showed negligible change over nine washing cycles and 2000 bending cycles.
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8. Limitations

Although flexible devices have demonstrated tremendous potential, they are rarely
commercialized or used clinically. Low throughput or expensive manufacturing methods
make many of these devices difficult to implement widely. For example, non-traditional sub-
strates like PET or TPU cannot be manufactured with large-scale conventional cleanroom
fabrication [96,97]. High-throughput manufacturing processes, such as screen printing,
have been demonstrated, yet optimal parameters have not yet been discovered. In addition,
the resolution of these processes remains low. The elimination of motion artifacts also
presents significant challenges. For example, dry electrodes still suffer high impedance with
the skin. In addition, powering these devices for long-term monitoring remains a challenge,
especially for battery-less devices, and low power consumption is an essential trait for con-
tinuous monitoring devices. The addition of wireless transmission also increases the power
consumption needed. Bluetooth, for example, consumes up to 5 mW of power, which is
more than many thin-film batteries can provide. New machine learning methods can help
detect the presence of arrhythmia in heart rates. However, distinguishing between types
of arrhythmias and between other classes of heart disease has proven difficult. Machine
learning is also limited by the quantity and quality of the training data. In addition, many
low-training-data machine learning models are prone to overfitting data and are therefore
unable to generalize the testing data. Machine learning is also computationally intensive,
making real-time data classification difficult. Finally, the “black-box” nature of machine
learning is inherently complex for doctors and clinicians to interpret.

9. Conclusions

This review provides many examples to discuss recent advances in arrhythmia de-
tection using flexible and wearable systems that utilize advanced soft materials, flexible
designs, and integrated sensors. We summarize the current bioelectric, optoelectric, mecha-
noelectric, and ultrasonic sensing methods for monitoring various physiological signals
related to arrhythmia. These methods are used to detect and classify arrhythmia accurately.
We believe that the future of arrhythmia detection lies in further advancements in flexible
wearable sensors and automated classification tools using machine learning algorithms. For
applications of portable wearable devices in clinical diagnosis, there are areas to improve
in terms of materials and sensor performance, such as sensing materials, sensor-to-skin
contact quality, impedance control, power-consumption management, miniaturization,
wireless data transmissibility, and detection and classification.

Author Contributions: Conceptualization, M.G. and W.-H.Y.; writing—original draft preparation,
M.G., N.Z. and W.-H.Y.; writing—review and editing, M.G., N.Z. and W.-H.Y.; supervision, W.-H.Y.;
project administration, W.-H.Y.; funding acquisition, W.-H.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: We acknowledge the support from the IEN Center for Human-Centric Interfaces and
Engineering at Georgia Tech. This study was partially supported by the Institute of Information &
communications Technology, Planning & Evaluation (IITP) grant funded by the Korean government
(MSIT) (2021-0-01517).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng,

S.; Delling, F.N.; et al. Heart disease and stroke statistics—2021 update. Circulation 2021, 143, e254–e743. [CrossRef]
2. Mou, L.; Norby, F.L.; Chen, L.Y.; O’Neal, W.T.; Lewis, T.T.; Loehr, L.R.; Soliman, E.Z.; Alonso, A. Lifetime risk of atrial fibrillation

by race and socioeconomic status. Circ. Arrhythm. Electrophysiol. 2018, 11, e006350. [CrossRef] [PubMed]

http://doi.org/10.1161/CIR.0000000000000950
http://doi.org/10.1161/CIRCEP.118.006350
http://www.ncbi.nlm.nih.gov/pubmed/30002066


Materials 2022, 15, 724 12 of 15

3. Richards, K.J.C.; Cohen, A.T. Cardiac arrhythmias in the critically ill. Anaesth. Intensive Care Med. 2006, 7, 289–293. [CrossRef]
4. Kléber, A.G.; Rudy, Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 2004, 84,

431–488. [CrossRef] [PubMed]
5. Sardana, H.K.; Kanwade, R.; Tewary, S. Arrhythmia detection and classification using ECG and PPG techniques: A review. Phys.

Eng. Sci. Med. 2021, 44, 1027–1048. [CrossRef]
6. Rho, R.W.; Page, R.L. Asymptomatic atrial fibrillation. Prog. Cardiovasc. Dis. 2005, 48, 79–87. [CrossRef] [PubMed]
7. Williams, S.E.; O’Neill, M.; Kotadia, I.D. Supraventricular tachycardia: An overview of diagnosis and management. Clin. Med.

2020, 20, 43. [CrossRef]
8. DiMarco, J.P.; Philbrick, J.T. Use of ambulatory electrocardiographic (Holter) monitoring. Ann. Intern. Med. 1990, 113, 53–68.

[CrossRef]
9. Fung, E.; Järvelin, M.-R.; Doshi, R.N.; Shinbane, J.S.; Carlson, S.K.; Grazette, L.P.; Chang, P.M.; Sangha, R.S.; Huikuri, H.V.; Peters,

N.S. Electrocardiographic patch devices and contemporary wireless cardiac monitoring. Front. Physiol. 2015, 6, 149. [CrossRef]
10. Chen, Y.H.; Op de Beeck, M.; Vanderheyden, L.; Carrette, E.; Mihajlović, V.; Vanstreels, K.; Grundlehner, B.; Gadeyne, S.; Boon,
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