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Abstract: The model of the frictional heating process during single braking to determine the tem-
perature of the functionally graded friction elements with an account of the thermal sensitivity of
materials was proposed. The basis of this model is the exact solution of the one-dimensional thermal
problem of friction during braking with constant deceleration. The formulas approximating the
experimental data of the temperature dependencies of properties of the functionally graded materials
(FGMs) were involved in the model to improve the accuracy of the achieved results. A comparative
analysis was performed for data obtained for temperature-dependent FGMs and the corresponding
data, calculated without consideration of thermal sensitivity. The results revealed that the assumption
of thermal stability of FGMs during braking may cause a significant overestimation of temperature of
the friction pair elements.

Keywords: thermal sensitivity; functionally graded materials; temperature; friction; braking

1. Introduction

During intensive braking, the volume temperature of the disc braking system may be
higher than 450 ◦C [1] and the maximum temperature on the friction surfaces of the pad
and the disc during single braking may even reach a level above 1000 ◦C [2]. In such severe
conditions, the thermal and mechanical properties of materials may highly differ from the
initial, reached at the ambient temperature. Therefore, in order to improve the theoretical
analysis of the thermoelastic behavior of the braking systems, it is necessary to develop
mathematical models taking into consideration the thermal sensitivity of friction materials.
However, the introduction of the temperature-dependent properties in formulation of
the thermal problems of friction leads to nonlinearity, so most of the published analyses
have been performed using numerical methods, especially the finite element method [3,4].
One of the alternative techniques used to develop such nonlinear models of frictional
heating is linearization by means of the Kirchhoff substitution [5]. This method relies on the
reduction of the originally nonlinear heat conduction equation to the linear one. However,
it works this way only for materials with simple nonlinearity, which means that their
thermal conductivity and specific heat capacity are temperature-dependent, but the thermal
diffusivity remains constant [6]. For materials with arbitrary nonlinearity, only the partial
linearization by the Kirchhoff substitution of such a problem is possible; as a result, another
nonlinear problem is obtained for which the method of solving is known [7]. The Kirchhoff
transform has a similar effect in the heat conduction problems formulated for solids with
simple nonlinear thermosensitivity under complex heat exchange. Some analytic–numerical
methods for the solution of such problems have been proposed in the study [8]. Another
technique to take into consideration the thermal sensitivity of materials is the method
of successive approximations (iterations), in which the solution of the corresponding
linear problem is adopted as the initial approximation, and then the solution found in the
previous step is corrected. An iteration algorithm to solve the one-dimensional problem
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of heat conduction at braking has been proposed in the article [9]. Most models of the
frictional heating process taking into account of the thermal sensitivity effect have been
developed only for homogeneous materials. Modern friction materials often have a non-
uniform, complex internal structure with a changing composition, microstructure, or
porosity across the volume of material, such as functionally graded materials (FGMs),
which are characterized by smooth variations of properties as a function of position along
certain direction. In the case of devices operating at elevated temperatures, including
braking systems, FGMs are primarily used in order to obtain high temperature resistance on
the friction surface by dissipating heat from it to the inside of the element while maintaining
low wear. FGMs of this type are usually two-component. Their friction surface is usually
made of metal-ceramic, and the metal opposite surface (core) should have high thermal
conductivity. The change of properties in the direction perpendicular to the friction surface
is described by continuous functions, usually power or exponential. In the case of the
latter, the material gradient parameters are responsible for the speed of transition from one
material to another.

The problem of wear of an FGM strip with an account of the heating on sliding contact
from friction has been considered in the study [10]. The exact solution of the problem was
obtained with the help of the integral Laplace transform technique. It was assumed that
the shear modulus is described by means of the function of the vertical coordinate. A com-
prehensive review of the literature concerning the thermal contact problems of frictional
heating for functionally graded materials was provided in our previous article [11]. So far,
investigations of the transient heat conduction in FGMs are limited, and most of them have
ignored the temperature dependence of the material properties. Therefore, in general, those
models are adequate only for relatively low temperatures in an FGM or the materials with
insignificant thermal sensitivity. To accurately describe the thermomechanical behavior of
FGMs, the temperature dependence of the material properties should be considered. The
heat conduction problems formulated for FGMs with non-uniform spatially distributed
and temperature-dependent properties are highly nonlinear. Nevertheless, several studies
concerning such problems taking into consideration the thermal sensitivity of FGMs can be
found, but most of them are solved by means of numerical or semi-analytical methods. The
finite element method has been adopted in the paper [12], to perform the nonlinear tran-
sient thermal stress analysis of a thick-walled FGM cylinder with temperature-dependent
material properties. Another nonlinear transient heat transfer and thermoelastic stress
in thermosensitive functionally graded cylinder have been investigated using the Her-
mitian transfinite element method in the study [13]. The results showed that the effect
of thermal sensitivity of materials has a significant influence on the thermal behavior of
friction systems.

An analytical approach to solve the one-dimensional transient heat conduction prob-
lem for functionally graded materials with temperature-dependent properties has been
presented in the article [14]. As for the analytical treatment, the temperature and thermal
stress solutions have been obtained in approximate forms for a simplified, homogeneous,
multi-layered model of materials. They concluded that the temperature dependence of
the material properties is one of the most important factors in the accurate evaluation
of temperature and stress distributions [14]. A similar multi-layered model was used to
formulate another thermal problem of friction for a thermally sensitive FGM plate in the
paper [15]. The authors made an attempt to optimize the functionally graded structure in
order to enhance their thermal performance. The proper manufacturing process allows the
design of an FGM according to the engineering demands by intentionally setting a specific
distribution of the properties. A hybrid genetic algorithm has been developed for the
optimization of the FGM composition with temperature-dependent material properties, in
order to minimize the thermal stresses under steady-state thermal loads [15]. The optimum
composition profile of the functionally graded materials for wide temperature ranges was
also studied in the article [16]. The thermoelastic problem for functionally graded mate-
rial with temperature-dependent properties was considered by means of the perturbation
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method. Additionally, the crack propagation path was predicted by introducing the fracture
mechanics analysis. It was concluded that the proper selection of an FGM gradient can
lead to a significant decrease in thermal stresses [16]. A transient thermoelastic behavior
of the functionally graded plate with temperature-dependent properties due to a thermal
shock was considered in the paper [17]. The temperature and thermal stress distributions
in the Cu-W functionally graded composite were found by means of the semi-analytical
micromechanical model.

The aim of this study was to investigate the influence of FGMs thermal sensitivity
on the distribution of temperature in a disc brake system. This study is a continuation
of our previous articles [11,18], which concern the transient thermal problem of friction
under uniform sliding and during single braking with an exponential increase in the
contact pressure. Due to the appearance of a high temperature level, there is a demand to
improve the results by involving the variations of material properties dependent on the
actual temperature, since the thermal sensitivity effect is particularly manifested in a high
temperature range. In this article, the braking with constant deceleration is considered,
when the nominal pressure is reached immediately at the beginning of the process, since the
increase in the time of contact pressure growth causes a drop in the achieved temperature.

2. Statement to the Problem

To develop an analytical model of frictional heating process in the braking system, the
following assumptions were taken into account:

1. The braking process with constant deceleration is considered;
2. At the initial time moment, the temperature of a brake is equal to the ambient temper-

ature Ta;
3. In the heat conduction equation, only the change in temperature gradient in the

perpendicular direction to the disc-pad contact surfaces is taken into consideration;
4. The thermal contact on the friction surfaces is perfect, i.e., the temperatures of its

contact surfaces are equal, and the sum of frictional heat fluxes intensities, acting
along the normal direction to the contact surface to the insides of the elements equal
to the specific friction power;

5. Due to the symmetry of the system with respect to the mid plane of the disc, when
determining the brake temperature, the contact of one pad and a disc with half of its
thickness is considered;

6. The pads and the disc are made of two-component thermally sensitive functionally
graded materials, in such a way that their friction surfaces are materials with low
thermal conductivity (i.e., cermet), while the core materials are characterized by higher
thermal conductivity (titanium alloys, aluminum, etc.);

7. The thermal conductivity of the disc and pads materials increases exponentially with
the distance from the contact surface;

8. The whole initial kinetic energy of the vehicle is transformed into heat during braking,
neglecting the small part of energy associated with wear on the contact surfaces of the
disc and pads;

Based on the assumptions (1)–(5), in order to determine the temperature of the disc-pad
system, the scheme of sliding with linearly decreasing velocity of two semi-spaces z ≥ 0
(disc) and z ≤ 0 (pad) has been adopted. Initiated by the frictional heating temperature
field of such a system at a given time instant t ≥ 0 depends only on the distance from the
friction surface in a perpendicular direction—independent variable z: T = T(z, t).

According to the assumption (6), the thermophysical properties of a friction pair are
functions of temperature T:

Kl,m = Kl,m(T), cl,m = cl,m(T), ρl,m = ρl,m(T), (1)

where Kl,m, cl,m and ρl,m—thermal conductivity, specific heat capacity and density of the
first (m = 1) and second (m = 2) component of the materials of the disc (l = 1) and pad
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(l = 2), respectively. Corresponding values at the initial system temperature T = T0 are
marked as follows:

K(0)
l,m ≡ Kl,m(T0),c

(0)
l,m ≡ cl,m(T0),ρ

(0)
l,m ≡ ρl,m(T0). (2)

According to the mixture law, the effective specific heat capacities and densities were
also determined:

c(0)l = c(0)l,2 Vc + (1−Vc)c
(0)
l,1 , ρ

(0)
l = ρ

(0)
l,2 Vρ + (1−Vρ)ρ

(0)
l,1 , (3)

where Vc, Vρ—volume fractions of the phases c(0)l,m and ρ
(0)
l,m, l = 1, 2, m = 1, 2, respectively.

Based on the assumption (7), the effective thermal conductivities Kl , l = 1, 2 of the
disc and pad materials were established from the equations:

K1(z) = K1,1eγl z, 0 ≤ z ≤ a, K2(z) = K2,1e−γ2z, −a ≤ z ≤ 0, (4)

where

γl =
γ∗l
a

, γ∗l = ln

K(0)
l,2

K(0)
l,1

, (5)

a = max{a1, a2}, al =

√
3k(0)l ts, (6)

k(0)l =
K(0)

l,1

c(0)l ρ
(0)
l

, (7)

and ts—stop time, and parameters al , l = 1, 2 (6) are the thicknesses of the subsurface layers
actively participating in heat absorption in the disc and pads, respectively (the so-called
effective depth of heat transfer [19]). During braking with constant deceleration, the specific
friction power decreases linearly from the nominal value q0 to zero [20]:

q(t) = q0q∗(t), q0 = f p0V0, q∗(t) = 1− t t−1
s , 0 ≤ t ≤ ts, (8)

ts = W0 Q−1
0 , Q = q0 Aa, Aa = 0.5β(R2

e − R2
i ), (9)

where Aa—nominal area of the contact between the pad and the disc; f —friction coefficient;
p0—nominal pressure; Q0—nominal friction power; 0 ≤ β ≤ 2π—nominal friction power;

—cover angle of the pad; Ri and Re—respectively, the internal and external radii of the
pads; V0, W0—the initial velocity and kinetic energy of the system, respectively. The latter,
according to assumption (8), is equal to the total work of friction.

In order to solve the above-formulated nonlinear problem, we will use the idea of
adapting an appropriate solution of the linear problem of thermal friction. This approach
in the case of homogeneous materials was used in the studies [9,21].

3. Solution with Temperature-Independent FGMs Properties

The key element of the proposed approach is the precise solution of the linear thermal
problem of friction during braking with constant deceleration. In the case of FGMs, such a
solution for the above-adopted scheme of two sliding semi-spaces for the specific friction
power q(t) (8) and (9) can be written in the form [18]:

T(z, t) = T0 + Θ(z, t), 0 ≤ t ≤ ts, (10)

Θ(z, t) = Λe−γ1z/2

[
e−γ1z/2

(1 + γεKε)
q∗(t) +

4
γε

∞

∑
n=1

ϕ1(z, µn)

Ψ(µn)
Gn(t)

]
, z ≥ 0, (11)
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Θ(z, t) = Λeγ1z/2

[
eγ2z/2

(1 + γεKε)
q∗(t) +

4
γε

∞

∑
n=1

ϕ2(z, µn)

Ψ(µn)
Gn(t)

]
, z ≤ 0, (12)

Gn(t) = e−pnt − (1− e−pnt)

pnts
,pn =

1
4

k1(γ1µn)
2, (13)

ϕ1(z, µn) = J1(γεµn)J1(µne−γ1z/2), ϕ2(z, µn) = J1(µn)J1(γεµneγ2z/2), (14)

Ψ(µn) = µ2
n[(1 + γεKε)J0(µn)J0(γεµn)− (γε + Kε)J1(µn)J1(γεµn)], (15)

Kε = K∗(k∗)−1/2, γε = γ∗(k∗)1/2, (16)

Λ =
q0

γ2K(0)
2,1

, K∗ =
K(0)

1,1

K(0)
2,1

, k∗ =
k(0)1

k(0)2

, γ∗ =
γ1

γ2
, (17)

where µn > 0, n = 1, 2, 3, . . ., are the real roots of the functional equation:

J0(γεµn)J1(µn) + Kε J0(µn)J1(γεµn) = 0. (18)

Jk(x)—are the Bessel functions of the first kind of the kth order [22].
The temperature of the friction surfaces of both elements, in accordance with the

assumption (4) of their perfect thermal contact of friction, should be the same. Substituting
z = 0 in Equations (10)–(12) and (14), the following were obtained:

T(t) ≡ T(0±, t) = T0 + Θ(t), 0 ≤ t ≤ ts, (19)

Θ(t) ≡ Θ(0±, t) = Λ

[
q∗(t)

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂(µn)

Ψ(µn)
Gn(t)

]
, 0 ≤ t ≤ ts, (20)

where
ϕ̂(µn) = J1(γεµn)J1(µn). (21)

Dimensionless variables and parameters were introduced:

ζ =
z
a

, τ =
k1t
a2 , τs =

k1ts

a2 , Θ0 =
q0a

K(0)
1,1

, Θ∗ =
Θ
Θ0

, (22)

where parameters a and q0 were determined accordingly from Formulas (6) and (8). Taking
into account the indications (22) in Formulas (11)–(14), the dimensionless temperature rise
of the friction pair elements can be presented in the form:

Θ∗(ζ, τ) =
K∗0
γ∗2

e−γ∗1 ζ/2

[
e−γ∗1 ζ/2

(1 + γεKε)
q∗(τ) +

4
γε

∞

∑
n=1

ϕ∗1(ζ, µn)

Ψ(µn)
Gn(τ)

]
, ζ ≥ 0, 0 ≤ τ ≤ τs,

(23)

Θ∗(ζ, τ) =
K∗0
γ∗2

eγ∗2 ζ/2

[
eγ∗2 ζ/2

(1 + γεKε)
q∗(τ) +

4
γε

∞

∑
n=1

ϕ∗2(ζ, µn)

Ψ(µn)
Gn(τ)

]
, ζ ≥ 0, 0 ≤ τ ≤ τs,

(24)
where:

ϕ∗1(ζ, µn) = J1(γεµn)J1(µne−γ∗1 ζ/2), ϕ2(ζ, µn) = J1(µn)J1(γεµneγ∗2 ζ/2), (25)

Gn(τ) = e−λnτ − 1
λnτs

(1− e−λnτ), λn =
1
4
(γ∗1 µn)

2, (26)
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and the remaining functions as well as parameters are given by Formulas (15)–(18). Substi-
tuting ζ = 0 in Formulas (23)–(25), the dimensionless rise of the temperature on the friction
surfaces was obtained:

Θ∗(τ) ≡ Θ∗(0±, τ) =
K∗0
γ∗2

[
q∗(τ)

(1 + γεKε)
+

4
γε

∞

∑
n=1

ϕ̂(µn)

Ψ(µn)
Gn(τ)

]
, 0 ≤ τ ≤ τs, (27)

Based on Fourier’s law, the intensity of heat fluxes directed along the normal to the
contact surface z = 0 towards the insides of the friction pair elements were defined:

ql(t) = (−1)lK(0)
l,1

∂T(z, t)
∂z

∣∣∣∣
z=0±

, 0 ≤ t ≤ ts, l = 1, 2. (28)

Taking into account the indications (22) dimensionless intensities of heat fluxes q∗l =

qlq−1
0 , l = 1, 2 were written as:

q∗1(τ) = −
∂Θ∗(ζ, τ)

∂ζ

∣∣∣∣
ζ=0+

, q∗2(τ) =
∂Θ∗(ζ, τ)

K∗0 ∂ζ

∣∣∣∣
ζ=0−

, 0 ≤ τ ≤ τs. (29)

After differentiating the solution (23)–(26) with respect to the variable ζ and subsequent
substitution of the found derivatives to the right side of Formula (30), the following
was found:

q∗1(τ) =
γεKε

(1 + γεKε)
q∗(τ) + 2γεKε

∞

∑
n=1

ϕ̃(µn)

Ψ̃(µn)
Gn(τ), 0 ≤ τ ≤ τs, (30)

q∗2(τ) =
1

(1 + γεKε)
q∗(τ) + 2

∞

∑
n=1

ϕ̃(µn)

Ψ̃(µn)
Gn(τ), 0 ≤ τ ≤ τs, (31)

where:
ϕ̃(µn) = J0(γεµn)J1(µn), Ψ̃(µn) = µ−1

n Ψ(µn), (32)

and functions Ψ(µn) and Gn(τ) can be determined from Equations (15) and (26), respectively.
It should be noted that in the case of homogeneous materials ( γi → 0, i = 1, 2 ) of

the disc and pads, the dimensionless temperature rise during braking with a constant
deceleration has the form [23]:

Θ∗(ζ, τ) = 2K∗
√

τ
(1+Kε)

{
ierfc

(
ζ

2
√

τ

)
− τ

τs

[(
1 + ζ2

6τ

)
ierfc

(
ζ

2
√

τ

)
− e−

ζ2
4τ

3
√

π

]}
,

ζ ≥ 0, 0 ≤ τ ≤ τs,
(33)

Θ∗(ζ, τ) = 2K∗
√

τ
(1+Kε)

{
ierfc

(
− ζ

2

√
k∗0
τ

)
− τ

τs

[(
1 + ζ2k∗0

6τ

)
ierfc

(
− ζ

2

√
k∗0
τ

)
− e−

ζ2k∗0
4τ

3
√

π

]}
,

ζ ≤ 0, 0 ≤ τ ≤ τs,

(34)

where ierfc(x) = π−1/2e−x2 − x erfc(x), erfc(x) = 1− erf(x), erf(x)—Gaussian error func-
tion. For ζ = 0 from Equations (33) and (34), the known solution of Fazekas was ob-
tained [24]:

Θ∗(τ) =
2K∗

(1 + Kε)

√
τ

π

(
1− 2τ

3τs

)
, 0 ≤ τ ≤ τs. (35)

4. Volume Temperature

With the given input parameters, solutions (19)–(27) make it possible to find the space–
time distribution of the temperature inside and its evolution on the friction surfaces of
the pad and disc, made of thermally insensitive FGMs. In order to take into account the
thermal sensitivity of materials determining the temperature of the braking system using
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the above-mentioned solutions, the thermal conductivities K(0)
l,m, specific heat capacities c(0)l,m

and densities ρ
(0)
l,m at the initial temperature T0 were replaced with corresponding values

K(ϑl)
l,m , c(ϑl)

l,m and ρ
(ϑl)
l,m found from Equations (1) and (2) for the volume temperature of the

pad and the disc during braking [2,9]:

ϑl = T0 + ϑ̂l , l = 1, 2, (36)

where:
ϑ̂l =

2αl W0

3Glc
(0)
l

, (37)

Gl = Aaalρ
(0)
l , (38)

al—the effective depths of heat penetration (6), α1 = α, α2 = 1− α, 0 ≤ α ≤ 1—heat
partition ratio. Based on Formulas (30)–(32), the heat partition ratio was calculated from
the formula:

α ≡ q1(t)
q(t)

≈ γεKε

1 + γεKε
. (39)

5. Numerical Analysis

The calculations were performed for the friction pair, one element of which was
made of aluminium oxide Al2O3 (friction surface) and cooper Cu (core) [25]. The friction
surface and core of the second element are manufactured of zirconium dioxide ZrO2 and
titanium alloy Ti-6Al-4V [14]. The temperature-dependent properties of these materials are
as follows:

Al2O3 [26–28]

K1,1(T) = 39.717− 0.130T + 4.463 · 10−4T2 − 2.836 · 10−7T3 + 1.941 · 10−10T4, (40)

c1,1(T) = 680.72 + 2.432T − 0.53 · 10−2T2 + 0.6 · 10−5T3 − 0.4 · 10−8T4 + 10−12T5, (41)

ρ1,1(T) = 3992.2− 0.062T − 0.6 · 10−4T2 + 0.4 · 10−7T3 − 0.9 · 10−11T4, (42)

Cu [17,29]
K1,2(T) = 31.985 + 0.0099 T − 0.1 · 10−5T2, (43)

c1,2(T) = 523.3 + 1.4726 T − 0.0024T2 + 0.2 · 10−5T3 − 0.5 · 10−9T4, (44)

ρ1,2(T) = 492.45− 0.01 T − 0.1 · 10−5T2, (45)

ZrO2 [27,30,31]

K2,1(T) = 1.9365 + 0.7 · 10−4T + 0.5 · 10−6 T2 − 0.2 · 10−9T3, (46)

c2,1(T) = 437.96 + 0.7767T − 0.17 · 10−2T2, (47)

ρ2,1(T) = 6104.6− 0.1212T − 0.4 · 10−4T2 + 0.3 · 10−7T3 − 0.1 · 10−10T4, (48)

Ti-6Al-4V [32,33]

K2,2(T) = 6.6926 + 8.9177 · 10−3 T + 6.8432 · 10−6T2, (49)

c2,2(T) = 529.9316 + 0.4154T − 4.01646 · 10−4T2 + 1.6364 · 10−7T3, (50)

ρ2,2(T) = 4434− 0.1088T − 0.8 · 10−4T2 + 10−7T3 − 0.6 · 10−10T4. (51)

Graphs of dimensionless functions K∗l,m = Kl,m(T)/K(0)
l,m, c∗l,m = cl,m(T)/c(0)l,m and

ρ∗l,m = ρl,m(T)/ρ
(0)
l,m are illustrated in the Figures 1–3.
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The calculations were performed according to the following scheme:

(1) the values of the input parameters were given (Table 1), and then from Equations (8) and (9)
the area of the nominal contact was calculated Aa = 0.0022 m2, specific friction power
q0 = 3.87 MW m−2, friction power Q0 = 8510 W and stop time ts = 12.1 s;

Table 1. Input parameters.

Friction
Coefficient f

Nominal
Pressure
p0, MPa

Initial Sliding
Speed

V0, ms− 1

Initial Kinetic
Energy W0, kJ

Outer
Radius Re, mm

Inner Radius
Ri, mm

Initial
Temperature

T0,
◦
C

0.27 0.602 23.8 103.54 37.5 26.5 20

(2) using the dependencies (40)–(51) the materials properties K(0)
l,m, c(0)l,m and ρ

(0)
l,m, l, m = 1, 2

at the initial temperature T0 = 20 ◦C were established (Table 2);

Table 2. Material properties at the initial temperature T0.

Element
Index

Material
Index Material

Thermal
Conductivity

K(0)
l,m, Wm− 1K− 1

Specific Heat
Capacity

c(0)
l,m, J kg− 1K− 1

Density
ρ(0)

l,m, kgm− 3

l = 1
m = 1 Al2O3 37.24 727.29 3990.92
m = 2 Cu 402.65 147.35 8947.92

l = 2
m = 1 ZrO2 1.94 452.83 6102.16
m = 2 Ti-6Al-4V 6.87 538.08 4431.79

(3) the effective values of: the specific heat c(0)l , density ρ
(0)
l , thermal diffusivity k(0)l , the

effective depths of heat penetration al and the dimensionless gradient parameters
of materials γ∗l , l = 1, 2 were found from Equations (3) and (5)–(7). Then, the di-
mensionless parameters Kε and γε were determined from the Formulas (16) and (17),
and also the weight Gl and heat partition ratios αl , l = 1, 2 were calculated from the
Equations (38) and (39) (Table 3);

Table 3. Calculated parameters at the initial temperature T0.

Element Index l = 1 l = 2

c(0)l , J kg−1K−1 437.3 495.5

ρ
(0)
l , kgm−3 6469.4 5267

k(0)l × 106, m2 s−1 13.2 0.743
γ∗l 2.381 1.266

al , mm 21.854 5.193
Gl , kg 0.3127 0.0605

αl 0.896 0.104

(4) the volume temperature values ϑ
(0)
1 = 471.97 of the disc and ϑ

(0)
2 = 260.92 the pad

were obtained from the Equations (36) and (37);

(5) the values of materials properties K
(ϑ

(0)
l )

l,m , c
(ϑ

(0)
l )

l,m , ρ
(ϑ

(0)
l )

l,m , l, m = 1, 2, corresponding to

the volume temperature ϑ
(0)
l were determined from the Formulas (40)–(51);

(6) the steps (3)–(5) were repeated resulting in the corrected values for the volume tem-

perature ϑ
(1)
l = 624.93, and ϑ

(1)
2 = 292.98;

(7) by means of the formula ϑl = 0.5(ϑ(0)
l + ϑ

(1)
l ), l = 1, 2 final values of the volume

temperature ϑ1 = 548.45 ◦C, and ϑ2 = 267.95 ◦C were found;



Materials 2022, 15, 963 10 of 15

(8) based on the dependencies (40)–(51) the values of materials properties K(ϑl)
l,m , c(ϑl)

l,m ,ρ(ϑl)
l,m ,

l, m = 1, 2 corresponding to the volume temperature ϑl were established (Table 4) and
other parameters necessary to perform the calculations (Table 5);

Table 4. Material properties at volume temperature ϑl , l = 1, 2.

Element
Index

Material
Index Material

Thermal
Conductivity

K(ϑl)
l,m , Wm−1K−1

Specific Heat
Capacity

c(ϑl)
l,m , J kg−1K−1

Density
ρ
(ϑl)
l,m , kgm−3

l = 1
m = 1 Al2O3 10.19 1097.93 3945.59
m = 2 Cu 367.15 401.89 8690.20

l = 2
m = 1 ZrO2 1.99 552.67 6069.84
m = 2 Ti-6Al-4V 9.57 615.44 4399.06

Table 5. Calculated parameters at volume temperature ϑl , l = 1, 2.

Element Index l = 1 l = 2

c(ϑl)
l , J kg−1K−1 749.7 584.9

ρ
(ϑl)
l , kgm−3 6317.2 5233.8

k(ϑl)
l × 106, m2 s−1 2.15 0.65

γ∗l 3.585 1.583
al , mm 8.834 4.854
Gl , kg 0.1234 0.0562

αl 0.863 0.137

(9) the temperature field Θ∗(ζ, τ) (23)–(26), the temperature evolution Θ∗(τ) (27), and
temporal profiles of heat fluxes intensities q∗l (τ), l = 1, 2 (30)–(32) were determined.

In order to calculate the values of Bessel functions Jk(x), k = 0, 1 the programs
BESSJ0 and BESSJ1 from the Numerical Recipes package [34] were used. The roots of the
characteristic Equation (18) were searched for by the bisection method with the RTBIS
program from this package. In summation of the series in solutions (23), (24), and (30), (31)
was performed with an accuracy of 5× 10−5. For this accuracy, the minimum number of
components was equal to 70.

Changes in the dimensionless temperature rise Θ∗(ζ, τ) during braking, at few selected
distances from the contact surface are presented in Figure 4. The temperature calculated
with an account of the thermal sensitivity of the materials (solid lines) is significantly lower
in both friction elements compared to the results achieved without taking into account the
temperature dependencies of FGMs properties (dashed lines). The maximum dimensionless
temperature on the contact surface ζ = 0 without and taking into account the thermal
sensitivity of the materials are 0.816 and 0.277, respectively (reduction of about 2.94 times)
and are reached at the time moments τmax = 0.37 and τmax = 0.29 (reduction of 21.6%).

Increasing the distance from the contact surface ζ = 0, the temperature level of both
elements drops (Figure 5). The temperature of components made of thermally sensitive
materials is lower than their temperature, found for the constant material properties. The
greatest difference between these results is on the contact surface.
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The time profiles of the dimensionless intensities of heat fluxes )(τ∗
lq , 2,1=l  are 

shown in Figure 7. They decrease linearly during the braking process from the maximum 
value at the initial moment to zero at the stop. Most of the frictional heat generated is 
absorbed by the first element ( 1=l ) Al2O3-Cu. The linear change in )(τ∗
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Figure 5. Distribution of the dimensionless temperature Θ∗max(ζ) = Θ∗(ζ, τmax) reached at the time
moment τ = τmax along the distance ζ from the surface of friction with (solid lines) and without
(dashed lines) taking into account the thermal sensitivity of the materials.

The conclusions established on the basis of Figures 4 and 5 confirm the results of the
calculations, presented in Figure 6. It shows the dimensionless temperature isotherms
Θ∗(ζ, τ). It can be seen that the effective depth of heat transfer is much greater in the case
that material properties remain unchanged under the influence of temperature, than in the
case of considering the thermally sensitive FGMs. This effect is most noticeable for the first
one (l = 1), the Al2O3-Cu element. This result is also confirmed by the parameter values al ,
l = 1, 2 presented in Tables 3 and 5.
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Figure 6. Isotherms of the dimensionless temperature Θ∗(ζ, τ) for: (a) thermally sensitivity materials;
(b) materials with properties at the initial temperature.

The time profiles of the dimensionless intensities of heat fluxes q∗l (τ), l = 1, 2 are
shown in Figure 7. They decrease linearly during the braking process from the maximum
value at the initial moment to zero at the stop. Most of the frictional heat generated is
absorbed by the first element (l = 1) Al2O3-Cu. The linear change in q∗l (τ) is the result of the
specific friction power q∗(τ) (8), which decreases linearly during braking with a constant
deceleration, and the requirement to meet the boundary condition q∗1(τ) + q∗2(τ) = q∗(τ),
0 ≤ τ ≤ τs. The influence of thermal sensitivity on the intensity of heat fluxes is much
smaller than on the temperature. For thermally sensitive materials, the maximum values
of the intensity of heat fluxes are q∗1,max = 0.864 and q∗2,max = 0.136, and for constant
properties of the materials, we have q∗1,max = 0.895 and q∗2,max = 0.105.
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6. Conclusions

A calculation scheme was proposed to determine the temperature field of the friction
elements of a disc brake, taking into account the changes in the FGMs properties depending
on the actual temperature. The main part of the scheme was the adaptation of a linear
solution (with temperature-independent material properties) to the thermal problem of
friction during braking to thermally sensitive FGMs. A numerical analysis was performed
in the case of braking with constant deceleration of elements made of two-component
functionally graded materials with exponential variations in thermal conductivities in the
axial direction, across the volume of the materials. It was found that:

• the influence of thermal sensitivity on the temperature of FGMs may be more signifi-
cant than in the case of homogeneous materials;

• for the selected friction pair, taking into account the thermal sensitivity caused an
almost threefold reduction in the maximum temperature in comparison to the appro-
priate temperature values, found with the same properties of the materials;

• the influence of thermal sensitivity on the intensity of heat fluxes directed from the
friction surface to the interior of the friction pair elements is insignificant. This means
that to estimate the amount of heat absorbed by the individual elements of the friction
pair, appropriate solutions to linear problems can be used.

A verification of the developed theoretical model based on empirical results would
be advisable. However, no information on this kind of experimental data has been found
in the literature. In particular, it concerns the frictional heating of braking systems with
friction elements made of thermally sensitive FGMs. Therefore, the verification of the exact
solution was obtained carried out by determining from it, in cases of limit parameters,
known solutions of other authors for homogeneous materials, which were verified with
appropriate experimental data. A new element, significantly differentiating the results
of a given article from those published earlier by us, is the incorporation in the model of
the possibility of changing the frictional properties of FGMs under temperature influence.
This model includes many new elements, such as determining the intensity of heat fluxes
to obtain the form of the heat partition ratio, finding the volume temperature of FGMs,
developing a calculation algorithm that takes into account the thermal sensitivity of all
materials components, etc. We have shown that taking into consideration the thermal
sensitivity of materials can significantly reduce the surface temperature contact of the pad
and disc. We proposed a theoretical computational model. We hope that it will be verified
with the data obtained from other authors’ research positions. An indirect confirmation
of the correctness of our model is also the time profiles of temperature and heat fluxes
obtained on its basis, characteristic for braking with a constant deceleration.

It should be noted that all three of our papers constitute a monothematic cycle of
interrelated research. We also want to develop a suitable model for braking systems
operating in a short-term, repetitive mode. The problem of lowering the temperature level
in such systems is up to date.
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Nomenclature
al Effective depth of heat penetration (m)
Aa Area of the nominal contact region (m2)
cl,m Specific heat capacity (J kg−1K−1)
f Coefficient of friction (dimensionless)
Gl Weight of the friction elements (kg)
Jk(·) The Bessel functions of the first kind of the kth order
kl,m Thermal diffusivity (m2s−1)
Kl,m Thermal conductivity (W m−1K−1)
p Contact pressure (Pa)
p0 Nominal value of the contact pressure (Pa)
Re External radius of the pads (m)
Ri Internal radius of the pads (m)
q Specific power of friction (W m−2)
q0 Nominal value of the specific power of friction (W m−2)
Q0 Nominal friction power (W)
t Time (s)
ts Stop time (s)
T Temperature (◦C)
T0 Initial temperature (◦C)
V Velocity (m s−1)
Vc, Vρ Volume fractions of the material phases
V0 Initial velocity (m s−1)
W0 Initial kinetic energy of the system (J)
z Spatial coordinate in axial direction (m)
lower l Number of the main (l = 1) and frictional (l = 2) elements of the friction pair
lower m Number of the component material m = 1, 2 of selected friction element
αl Heat partition ratio (dimensionless)
β Cover angle of the pads (rad)
γl Parameter of material gradient (m−1)
γ∗l Parameter of material gradient (dimensionless)
Θl Temperature rise (◦C)
Θ∗l Temperature rise (dimensionless)
Θ0 Temperature scaling factor (◦C)
ρl,m Density (kg m−3)
τ Time (dimensionless)
τs Time of braking (dimensionless)
ζ Spatial coordinate in axial direction (dimensionless)
ϑl Volume temperature (◦C)
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