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Abstract: We review the progress in metal phosphate structural chemistry focused on proton con-
ductivity properties and applications. Attention is paid to structure–property relationships, which
ultimately determine the potential use of metal phosphates and derivatives in devices relying on
proton conduction. The origin of their conducting properties, including both intrinsic and extrinsic
conductivity, is rationalized in terms of distinctive structural features and the presence of specific
proton carriers or the factors involved in the formation of extended hydrogen-bond networks. To
make the exposition of this large class of proton conductor materials more comprehensive, we
group/combine metal phosphates by their metal oxidation state, starting with metal (IV) phosphates
and pyrophosphates, considering historical rationales and taking into account the accumulated body
of knowledge of these compounds. We highlight the main characteristics of super protonic CsH2PO4,
its applicability, as well as the affordance of its composite derivatives. We finish by discussing relevant
structure–conducting property correlations for divalent and trivalent metal phosphates. Overall,
emphasis is placed on materials exhibiting outstanding properties for applications as electrolyte
components or single electrolytes in Polymer Electrolyte Membrane Fuel Cells and Intermediate
Temperature Fuel Cells.

Keywords: metal phosphate; proton conductivity; super protonic conductors; fuel cells; H-bond
network; proton carriers

1. Introduction

Metal phosphates (MPs) comprise an ample class of structurally versatile acidic solids,
with outstanding performances in a wide variety of applications, such as catalysts [1–3],
fuel cells [4–6], batteries [7], biomedical [8], etc. Depending on the metal/phosphate
combinations and the synthetic methodologies, MP solids can be prepared in a vast diversity
of crystalline forms, from 3D open-frameworks, through layered networks, to 1D polymeric
structures.

The advantages of these solids are, among others, their low cost and easy prepara-
tion, hydrophilic and thermally stability and structural designability to a certain extent.
Additionally, their structures are amenable to post-synthesis modifications, including the
incorporation of ionic or neutral species that significantly affect their functionality and other
important properties, such as the formation of hydrogen bonding networks or insertion of
proton carriers.

While tetravalent and monovalent metal phosphates are usually prepared by con-
ventional synthetic routes, the synthesis of many divalent and trivalent metal phosphates
requires the presence of organic molecules/ions as structure-directing agents, some of
which also act as charge-compensating ions [9]. In any case, the metal phosphates con-
tain acidic phosphate groups (H2PO4

− and HPO4
2−) or they can result from specific

post-synthesis acid–base reactions, thus, allowing a mostly intrinsic proton conduction.
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Additionally, an extrinsic proton conduction, associated with surface proton transport,
can also result from specific chemical modification and/or induced morphological changes,
e.g., with formation of nanoplatelets or nanorods particles [10,11]. Water molecules act
both in the formation H-bonding networks inside the framework and as proton carriers.
Moreover, other guest species, including organic moieties, can be inserted in their structure
following different strategies, such as intercalation [12–14], template [15,16], and post-
synthesis adsorption [17–19].

Accordingly, proton transport in MPs results from the interplay between water/guest
molecules and the hydrophilic network/framework walls in specific ways. Thus, in metal
phosphates, such as CsH2PO4 [20] or CaHPO4·2H2O [21] the proton-transfer mechanism
involves not only the jump of H+ but also the free rotation of the phosphate groups. In
other cases, such as for KH2PO4 the proton-transfer mechanism behavior is by defects [22].

A more complex proton-transfer process arise from the so called “quasi-liquid” state,
such as described for H3OUO2PO4·3H2O [23,24], or it may stem from various mobile
species moving on the surface, each one using different paths at different rates, e.g., in
Ce(HPO4)2·nH2O [25,26]. The proton transport in the quasi-liquid state is often char-
acterized by a “proton jump” or the Grotthuss mechanism, with low activation energy
(Ea) [21].

Determining proton conduction mechanisms is key to designing proton conductor
materials (Figure 1). Thus, if a vehicle-type mechanism is needed, proton-containing
counter ions, such as hydronium ions, NH4

+, protonated amine groups, and protonated
organic molecules in general, should be incorporated into the structure. Additionally, the
immobilization of specific functional groups and the corresponding counter ions onto the
framework could be required.

Figure 1. Examples of proton transport in phosphate-containing materials: (a) structural reorientation-
mediated proton transfer. Zn (magenta), P (orange), O (red) and H (pale pink). (b) hopping through
H-bond networks, and (c) carrier-mediated proton conduction. Zn (magenta), Zr (green), Cu (cyan),
Cl (light green), P (orange), O (red), N (blue) and H (pale pink) atoms.

On the other hand, solids exhibiting proton transport by a Grotthuss-type mechanism
basically consist of continuous H-bond networks that favour H+ conduction with low
activation energy (Ea). A main drawback for the latter materials is that, above certain
temperatures, breaking of the H-bond networks can result, accompanied by the release of
water molecules, which makes the construction of permanent H-bonding networks with
hydrophilic channels or exploring new alternative conductive media necessary [27].

A research area of paramount interest is that relative to fuel-cell (FC) development re-
garding energy efficiency, environmental issues, and the gradual depletion of conventional
fuel reserves [28,29]. The operating temperature regime of these electrochemical devices is
determined by the electrolyte. Among the many types of solid electrolytes that have been
developed over the past several decades [30], perfluorinated sulfonic acid (PFSA) ionomers,
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such as Nafion® and Aquivion®, are the most widely used in PEMFCs and DMFCs as
polymer electrolyte membranes (PEM) for operating temperatures <120 ◦C.

This is due to superior conductive properties, ranging from 9 × 10−3 S·cm−1 to
1.2 × 10−1 S·cm−1, and chemical and mechanical stability [31,32]. This PEM acts as a sepa-
rator for the reactants and, at the same time, provides pathways for proton transport [33,34].
However, Nafion® also shows some important drawbacks, such as methanol permeabil-
ity, high costs, and complex steps of preparation, working below 100 ◦C to maintain the
hydration of the membrane and other issues related to catalyst efficiency. All this makes
necessary the development of new membrane materials [35,36].

Intermediate Temperature fuel cells (ITFCs), which operate between 120 and 300 ◦C,
circumvent some of these problems, achieve less catalyst poisoning and better handling of
the hydration conditions, and enable the use of non-precious or low-loading precious metal
catalysts [37–39]. Nevertheless, for the case of methanol HT-PEMFCs, which must operate
above 250 ◦C and with high pressure, possible degradation of the electrolytes should be a
subject of study [40]. Some MP-based electrolytes gather proton conductivity properties
to be used as single electrolytes or main components for ITFC applications. Examples are
superprotonic CsH2PO4 [41] and M(IV)P2O7-based electrolytes [42].

This review summarizes the state of the art on proton conductive metal phosphates
with special attention to the last two decades of developments. A review of publication
trends, from the CAS SciFindern database, is given in Figure 2, which confirms the increas-
ing interest in this topic during this period. In this article, our focus is placed on updating re-
cent advances in proton conductors based on tetravalent metal phosphates/pyrophosphates
and superprotonic Cs2HPO4. In addition, the design and development of new proton car-
rier systems relying on divalent and trivalent metal phosphates are also revised.

Figure 2. Publications on metal phosphates and pyrophosphate proton conductors over time.

The potential applications of these materials as proton conductor electrolytes for PEM-
FCs and ITFCs are also discussed. Other high temperature (above 300 ◦C) conductive metal
phosphates, such as rare earth phosphates and metal polyphosphates, ionic conductors
(e.g., NASICON), and electrode materials are out the scope of this revision. The review is
not intended to be exhaustive, and therefore certain specific reports and/or applications
may not be covered.
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2. Tetravalent Metal Phosphates and Pyrophosphates
2.1. Zirconium Phosphates

The prototype of layered metal(IV) phosphates is zirconium hydrogen phosphate,
which presents mainly three topologies, known as the forms α: Zr(HPO4)2·H2O (α-ZrP),
γ: Zr(PO4)(O2P(OH)2) 2H2O (γ-ZrP), and λ: (Zr(PO4)XY, X = halides, OH−, HSO4

−, and
Y = DMTHUS, H2O, etc.) (λ-ZrP). α-ZrP is the most thermal and hydrolytically stable
phase and, thus, the most studied compound following the pioneering works by Giulio
Alberti and Abraham Clearfield groups [43–45].

In the structure of α-ZrP, planar Zr atoms are coordinated by the three oxygen atoms
of HO-PO3

− groups, while the P-OH bond points toward the interlayer space giving rise
to small cavities, where the lattice water is located. Although this water forms hydrogen
bonds with P-OH groups, an extended interlayer hydrogen bond network is absent in this
structure [44]. On the other hand, the structure of γ-ZrP consists of a biplanar Zr atomic
system connected through bridge PO4

3− groups, while the externally located H2PO4
−

groups complete the octahedral coordination of the Zr atoms.
Due to the higher stability of the α form, proton conductivity studies have been con-

ducted mainly with this phase. Typical values of 10−6–10−4 S·cm−1 have been determined
at RT and 90% RH with activation energy (Ea) ranging between 0.26 (90% RH) and 0.52 eV
(5% RH). This conductivity originates from surface transport and is dominated by surface
hydration since the long distance between adjacent P-OH groups hinders proton diffusion
along the internal layer surface [46].

According to theoretical estimations [47], the interactions between POH and water
molecules on the zirconium phosphate surface are relatively large and generate strong local
hydrogen-bond networks. The high density of acid groups should produce continuous
short O-O distances and generate proton-transfer paths with low activation energy, even
under high-temperature and low-humidity conditions.

Studies on microcrystalline α-ZrP revealed that both the morphology and the electric
field orientation are important aspects to consider. Thus, pellicular samples of α-ZrP,
prepared by intercalation-deintercalation of n-propylamine [48], exhibited a proton conduc-
tivity of 10−4 S·cm−1 at 300 ◦C when it was measured with the electric field parallel to the
pellicles. This conductivity was found to be approximately two orders of magnitude higher
than that measured on applying the electric field perpendicular to the pellicles [49].

Several other strategies to increase the proton conductivity of α-ZrP have been de-
veloped (Table 1). One of the first approaches was the formation of polyhydrated n-
propylamine-intercalated compounds (ZrP·xPrNH2·nH2O). For a composition with x = 0.8
and n = 5, a proton conductivity of 1.2 × 10−3 S·cm−1 at 20 ◦C and 90% RH was deter-
mined [50]. Another more sophisticated way of enhancing the proton conductivity of zirco-
nium phosphate was the preparation of mesoporous zirconium phosphate/pyrophosphate,
Zr(P2O7)0.81(O3POH)0.38.

This material, obtained from the thermal decomposition of zirconium phosphite
benzenediphosphonate, displayed a high specific surface area (215 m2/g) with an enhanced
proton conductivity of 1.3 × 10−3 S·cm−1 at 20 ◦C and 90% RH [51]. One of the most
successful ways of obtaining zirconium phosphate derivatives with outstanding proton
conductivity properties consisted in preparing mixed zirconium phosphate/phosphonates,
an example being [Zr(O3POH)2−x(O3PC6H4SO3H)x], whose proton conductivity was found
to increase with x, up to a value of 0.07 S·cm−1 (x = 1.35 at 100 ◦C and 90% RH) [52].

The great versatility of zirconium phosphate preparation under numerous experi-
mental conditions, has been exploited to synthesize various novel derivatives, which dis-
played remarkable proton conductivity properties. Two examples are layered (NH4)2[ZrF2
(HPO4)2] [53] and the 3D open framework zirconium phosphate (NH4)5[Zr3(OH)3F6(PO4)2
(HPO4)] [54]. In both structures, the participation of NH4

+ ions in the formation of extended
hydrogen-bond networks (Figure 3) resulted in proton conductivities of 1.45 × 10−2 S·cm−1

(at 90 ◦C and 95% RH) and 4.41 × 10−2 S·cm−1 (at 60 ◦C and 98% RH), respectively. From
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the Ea values found, 0.19 and 0.33 eV, respectively, a Grotthuss-type proton-transfer mecha-
nism was inferred for these materials (Table 1).

Figure 3. Layered structure of compound (NH4)2[ZrF2(HPO4)2] and possible proton-transfer path-
ways (adapted from [53]).

A one-dimensional zirconium phosphate, (NH4)3Zr(H2/3PO4)3, consisting of anionic
[Zr(H2/3PO4)3]n

3n− chains bonded to charge-compensating NH4
+ ions was reported [55].

In this structure, the phosphates groups are disorderly protonated, while NH4
+ ions oc-

cupy ordered positions in between adjacent chains (Figure 4). This arrangement generates
H-bonding infinite chains of acid–base pairs (N-H···O-P) that lead to a high proton con-
ductivity in anhydrous state of 1.45 × 10−3 S·cm−1, at 180 ◦C (Table 1). This material also
showed a remarkable high performance in PEMFC and DMFC under operation conditions.

Figure 4. Views of chain packing and H-bond network (dashed grey lines) in compound
(NH4)3Zr(H2/3PO4)3 (adapted from [55]).

2.2. Zirconium Phosphate Composite Membranes

ZrP has been widely studied as a suitable filler for the preparation of Nafion®-
composite electrolytes due to its good thermal and chemical stability, proton conductivity,
hydrophilic nature, very low toxicity, and stability in hydrogen/oxygen atmospheres.
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Nafion®, a sulfonated tetrafluoroethylene-based fluoropolymer copolymer is the most
widely used proton conductor for polymer electrolyte membrane fuel cells (PEMFCs) [56].

Despite its excellent properties, this polymer is limited to operations at low tempera-
tures of <100 ◦C, due to dehydration, which drastically reduces the proton conductivity.
As operating at higher temperatures is desirable for better efficiency, Nafion® composite
membranes have been investigated in which fillers of diverse nature were incorporated to
the polymer using different approaches.

Various methodologies of preparing Nafion®/ZrP membranes have been
devised [46,57–65]. Among them, treatment of the Zr(IV)-exchanged ionomer with phos-
phoric acid [59], filler/ionomer co-precipitation [61] and casting of ionomer solution/filler
gel mixtures [60–62]. In general, improvements in mechanical properties and efficiency [61]
were highlighted, although high filler loads beyond 25% led to decreased proton conduc-
tivity in certain cases.

A derivation of the above methods consisted of using nanosized ZrP particles-
containing ionomer Aquivion® as fillers [63]. The resulting composite membranes showed
enhanced elastic modulus and lower proton conductivity as compared to Nafion® itself,
although they were high enough for fuel cell application [64] with values ranging between
0.16 and 0.23 S·cm−1 at 90% RH [62,65].

Derivatising ZrP with hydrophobic groups resulted in composite membranes me-
chanically stronger than the pristine Nafion® membrane while displaying high proton
conductivities [66–70]. Furthermore, integrating both hydrophobic and hydrophilic ZrP
nanofillers showed a synergistic effect with mechanical reinforcement of the composite
membrane and better fuel cell performance than that found when single ZrP filler were
employed [60]. Other ionomer alternatives to Nafion®, such as sulfonated poly(arylene
ether) and poly(ether ether ketone) polymers (SPAEK and SPEEK, respectively), polybenz-
imidazole (PBI), and vinyl-type (PVA and PVP), have been employed as components of
polymer electrolyte membranes [71].

The sulfonated poly(fluorenyl ether ketone) (SPFEK) polymer presents acceptable
proton conductivity and stability; however, its performance is lesser in comparison to the
benchmark Nafion® ionomer. To overcome this handicap, several approaches have been
implemented, one of them being hybridization with α-zirconium phosphate. Recently,
SPFEK/ZrP-SO3H composite membranes have been reported with improved proton con-
ductivity, oxidative stability, methanol cross-over barrier and improved H2/O2 fuel cell
performance [72,73].

ZrP has been also used as a filler in other polymeric matrices, such as poly(vinylidene
fluoride) (PVDF) and (sulfonatedpoly(styrene-block-(ethylene-ran-butylene)-block-styrene)
(S40). The resulting composite membranes were tested for potential applications in
DMFC, with improved performance especially relative to reducing the methanol perme-
ability [72,74]. PA-PBI/Zr(HPO3) composite membranes (PA-PBI = phosphoric acid-doped
polybenzimidazole) exhibited enhanced proton conductivity as compared to a pristine
polymer electrolyte membrane at 200 ◦C and 5% RH [75].

A different approach is based on the substitution of the polymer membranes for others
more eco-friendly, inexpensive, and biodegradable materials. Although poly(vinyl alcohol)
(PVA) is a suitable candidate for this purpose, it still requires some enhancements related
to its ionic conductivity due to its rigid structure. As an example, Gouda et al. [76] doped
iotan carrageenan (IC)/sulfonate PVA (SPVA) membranes with different loads of zirco-
nium phosphates. Enhancement of the membrane properties was attributed to abundant
hydrogen bond interactions established between the zirconium phosphate particles and
the polymers.

2.3. Titanium and Tin(IV) Phosphates

Structurally, titanium(IV) phosphates are more diverse than ZrP, given that structures con-
taining an oxo/hydroxyl ligand or mixed-valence (TiIII/TiIV) titanium ions have been reported.
In addition to the zirconium phosphate analogues, α- [77] and γ-TiP [78], two more other layered
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titanium phosphates, TiO(OH)(H2PO4)·2H2O [79] and Ti2O3(H2PO4)2·2H2O are known [80].
Furthermore, the mixed-valence titanium phosphate TiIIITiIV(HPO4)4·C2N2H9·H2O contains
microporous channels [81], where monoprotonated ethylenediamine and lattice water
are accommodated, which favours its transformation into a porous phase, Ti2(HPO4)4, at
600 ◦C with a 3D structure similar to that of τ-Zr(HPO4)2 [82].

Impedance spectroscopy experiments combined with dynamics simulations revealed
that this compound was a good proton conductor, with a σ value of 1.2 × 10−3 S·cm−1

(at room temperature and 95% RH) and Ea of 0.13 eV (Table 1). From these data, a water-
mediated proton transport originating from the H-bond interaction of water molecules
with the bridging oxygen of the porous framework was proposed [83].

The crystal structure of two other open-frameworks Ti2O(PO4)2·2H2O polymorphs (ρ-
TiP and π-TiP) has been reported [84,85]. Fibrous ρ-TiP and π-TiP crystallize in triclinic and
monoclinic unit cells, respectively, and are composed of TiO6 and TiO4(H2O)2 octahedra
bridged through the orthophosphate groups (Figure 5). This type of connectivity creates
two types of 1D channels running parallel to the direction of the fibre growth [84–86]. 31P
MAS-NMR spectroscopy studies revealed that π-TiP has capability of adsorbing superfi-
cially protonated phosphate species (H3PO4/H2PO4

−/HPO4
2−), which affects the proton

conductivity properties as confirmed by AC impedance measurements.

Figure 5. Structure of Ti2O(PO4)2·2H2O, a fibrous compound with capability of enhancing surface
proton transport by H3PO4 impregnation (adapted from [86]).

Thus, this solid reached a proton conductivity value of 1.3 × 10−3 S·cm−1, at 90 ◦C and
95% RH (Table 1). This behaviour was explained as being due to an extrinsic vehicle-type
proton transport mechanism. Additionally, H3PO4-impregnated π-TiP solid was used as
filler for the preparation of composite membranes of Chitosan (CS) matrices exhibiting a
proton conductivity of 4.5 × 10−3 S·cm−1 at 80 ◦C and 95% RH, which is 1.8-fold higher
than that of the pristine CS membrane [86].

Insights in the structure of the isomorphous series of layered α-metal(IV) phosphates
[M(IV) = Zr, Ti, Sn) showed appreciable differences in the hydrogen bond interaction of the
lattice water with the layers, associated with a variable layer corrugation degree along the
series; α-TiP and α-SnP displaying H-bonds stronger than the prototype α-ZrP [87], which,
in turn, might have significant implications in making internal surfaces accessible to proton
conduction paths.

Nevertheless, studies on structure–property correlations are still lacking, due, in part,
to appreciable differences in chemical stability under different conditions, particularly
in the case of α-SnP. Recent studies carried out on a nanolayered γ-type tin phosphate,
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Sn(HPO4)2·3H2O, have revealed that this solid could be obtained in a water-delaminated
form, which showed a high proton conductivity of ~1 × 10−2 S·cm−1 at 100 ◦C and 95%
RH (Table 1). This high value was attributed to strong H-bonds between water and the SnP
layers, in combination with a high surface area of 223 m2·g−1 [88].

2.4. Other Tetravalent Phosphates

POH groups-containing silicophosphates have received attention as proton-conducting
electrolytes [42] but its solid-state structural characterization is elusive, at least, under
conditions similar to those used in operating fuel cells [89]. A conductivity value of
2.5 × 10−3 S·cm−1 at 180 ◦C, under more than 0.4% RH, was reported for a silicophosphate-
based composite membrane. However, it was noted that the formation of Si5O(PO4)6
crystals, under dry conditions, was detrimental for the proton conductivity.

NASICON-type compounds with the general formula, AxB2(PO4)3, where A = H+, H3O+,
or NH4

+ and B = Zr, Ti, Hf, Sn, Ge, etc., are also potential proton conductors [90,91]. HZr2(PO4)3
was firstly prepared by Clearfield et al. [92] and Komorowski et al. [93] described the
synthesis of a hydrogen form from Na1 + xZr2SixP3–xO12 by replacing Na+ ions with hy-
dronium ions through ion exchange. This solid showed a bulk proton conductivity of
5.0 × 10−4 S·cm−1 at 100% RH and 25 ◦C, the proton transport mechanism being a
Grotthuss-type one [93].

Other materials, such as HZr2(PO4)3·nH2O, NH4Zr2(PO4)3, or H1 ± xZr2 xMx(PO4)3 ·
H2O (M = Nb, Y) [94,95], have been reported. Some NASICON-type compounds based on zir-
conium or titanium hydrogen phosphate exhibit remarkable proton conductivity while show-
ing a high thermal stability, at least for the case of zirconium derivatives [96,97]. Less studied
are the NASICON-type hafnium hydrogen phosphates. Among them, (NH4)0.4H0.6Hf2
(PO4)3, obtained by thermal decomposition of the cubic NH4Hf2(PO4)3 at 550 ◦C, showed
a proton conductivity of 1.2 × 10−6 S·cm−1 at 500 ◦C [90].

2.5. Tetravalent Pyrophosphates

In addition to acid metal(IV) phosphates, tetravalent metal pyrophosphates (MP2O7;
M = Sn, Ce, Ti, Zr), in particular tin(IV) derivatives, have received considerable attention as
proton conductors for intermediate temperature electrolyte applications. These solids combine
high thermal stability (T ≥ 400 ◦C) with conductivities of 10−3–10−2 S·cm−1 in the temperature
range of 100–300 ◦C, under anhydrous or low humidity conditions [98–102]. The origin of
this proton conductivity was initially explained because of protons being incorporated into
the framework, formed by metal(IV) octahedra and corner-sharing phosphate tetrahedral,
after interaction with water vapor.

Defect sites, such as electron holes [103] and oxygen vacancies are believed to favour
proton generation [104]. These protons may occupy hydrogen-bonding interstitial sites
on either the M−O−P or the P−O−P bonds, thus, generating a hopping proton transport
between these sites [105,106]. In support of this, 1H NMR studies revealed two signals
corresponding to hydrogen-bonded interstitial protons at phosphate tetrahedral and metal
octahedral sites in In3+-doped SnP2O7. Furthermore, indium doping seemed not to af-
fect the proton conduction occurring by a hopping mechanism between octahedral and
tetrahedral sites.

Thus, the increased proton conductivity is instead attributable to increased proton
concentration [107]. The strategy of dopant insertion into the M(IV) pyrophosphate has
been further extended to include other dopant divalent and trivalent metal ions, such as
Mg2+, Al3+, Sb3+, Sc3+, and Ga3+, with a maximum conductivity of 0.195 S·cm−1 (Table 1)
being reported for In0.1Sn0.9P2O7 [108]. However, recent studies on metal doped and
undoped SnP2O7 suggested that it is in co-precipitated phosphorous-rich amorphous
phases where the proton conductivity mostly resides, while the crystalline phase exhibit a
very low conductivity (~10−8 S·cm−1 at 150−300 ◦C) [109].

Notwithstanding, the proton conductivity of the high temperature-sintered mate-
rials could be recovered by phosphoric acid treatment [110] or by carefully choosing
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the phosphate precursor. For the latter case, tetrabutylammonium phosphate-based
SnP2O7/Nafion® composite membranes showed an increased fuel cell performance, as
compared to other analogous SnP2O7/Nafion® composite membranes [111]. A major
challenge in using metal(IV) pyrophosphates as electrolytes is forming dense pellets and
the associated low open circuit voltages (OCVs) and considerable gas crossover [108].

Several studies to test applicability of composite membranes for ITFCs have been
conducted. For this purpose, dispersion of Sb0.2Sn0.8P2O7 nanoparticles into H3PO4-doped
PBI membranes were shown to exhibit enhanced conductivities and greater power density
relative to the pristine membranes in the single cell tests [112]. Similar claims were made
for composite membranes based on Sn0.95Al0.05P2O7 [113]. Other approaches, such as
using graphite oxide (GO)/SnP2O7 or biphosphate-containing SnP2O7/Nafion composite
membranes have been accomplished.

The former showed improved proton conductivity (~7.6 × 10−3 S·cm−1) peak power
density of 18 mW·cm−2 at 220 ◦C and reduced fuel crossover [114]. The latter, aimed at
increasing stability by establishing strong ammonium cation-biphosphate ion interactions,
which prevents the loss of biphosphate and, hence, optimises the three-phase interface at
the fuel cell electrodes. With these improvements, the H2/O2 fuel cell delivered a power
density of 870 mW·cm−2 at 240 ◦C, with minimal performance loss even under exposure to
gas containing 25% carbon monoxide [37].

Mg-doped cerium pyrophosphate, with optimal composition of Ce0.9Mg0.1P2O7,
showed a remarkable performance as electrolyte into a fuel cell, generating electricity
up to 122 mA·cm−2 at 0.33 V and displaying a peak power value of 40 mW·cm−2 when
using 50% H2 at 240 ◦C. Prepared in disk form and sintered at 450 ◦C, the Mg-doped
material exhibited a significantly high proton conductivity in the presence of moist air
(PH2O = 0.114 atm) between 160 and 280 ◦C. A maximum value of 4.0 × 10−2 S·cm−1 was
found at 200 ◦C, (Table 1), which was even higher than that of CeP2O7 (3.0 × 10−2 S·cm−1,
at 180 ◦C) [115].

Low crystallinity titanium pyrophosphates also exhibit high proton conductivity [116].
Values of 0.0019–0.0044 S·cm−1, at 100 ◦C and 100% RH were reported for these compounds.
The proton conduction is attributable to the presence of H2PO4

− and HPO4
2− species,

demonstrated by 31P MAS NMR and FTIR, and it occurs through a water-facilitated
Grotthuss-type proton transport mechanism. Titanium phosphates are also prone to be
functionalized with phosphonates groups. Thus, mixed titanium phosphate/phosphonates,
Ti(HPO4)1.00(O3PC6H4SO3H)0.85(OH)0.30·nH2O [117], displayed an exceptional proton
conductivity of 0.1 S·cm−1 at 100 ◦C (Table 1).

A structurally different proton-conductor metal pyrophosphate is the mixed template-
containing vanadium nickel pyrophosphate, (C6H14N2)[NiV2O6H8(P2O7)2]·2H2O
(Figure 6). Its crystal structure is composed of octahedrally coordinated V(IV) and Ni(II)
interconnected through bridging pyrophosphate groups, thus creating a 3D framework
of [NiV2O6H8(P2O7)2]2− unit charged-compensated by protonated DABCO molecules.
Hydrogen-bonding networks inside 3D channels facilitate the proton transport, and thus
this material exhibits a remarkable proton conductivity of 2.0 × 10−2 S·cm−1 at 60 ◦C and
100% RH (Table 1) through a Grotthuss-type proton-transfer mechanism (Ea = 0.38 eV) [118].
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Figure 6. (a) View, along b-axis, of the chain packing and (b) 3D-framework of compound
(NH4)3Zr(H2/3PO4)3, with H-bond network (dashed blue lines) highlighted (adapted from [118]).

3. Super Protonic Metal(I) Phosphates

Solid acid proton conductors, with stoichiometry MIHyXO4 (MI = Cs, Rb; X = S, P, Se;
y = 1, 2), have received much attention because they exhibit exceptional proton transport
properties and can be used as electrolytes in fuel cells operated at intermediate temperatures
(120−300 ◦C). The fundamental characteristics of these materials are the phase transition
that occurs in response to heating, cooling or application of pressure [6,119], accompanied
by an increase in proton conductivity of several orders of magnitude—referred to as super
protonic conductivity (Figure 7).

Figure 7. The characteristic high and low temperature proton conductivity and the corresponding
structures for CsH2PO4, adapted from [6,120].

This property has been associated with the delocalization of hydrogen bonds [120].
For CsH2PO4, a proton conductivity of 6 × 10−2 S·cm−1 (Table 1) was measured above
230 ◦C corresponding to the super protonic cubic (Pm−3m) phase [121] while it drastically
drops in the low temperature phases. Recently, from an ab initio molecular dynamics
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simulation study of the solid acids CsHSeO4, CsHSO4 and CsH2PO4, it was concluded that
efficient long-range proton transfer in the high temperature (HT) phases is enabled by the
interplay of high proton-transfer rates and frequent anion reorientation.

In these compounds, proton conduction follows a Grotthuss mechanism with proton
transfer being associated with structural reorientation [122]. The super protonic conductor
CsH2PO4 is stable under humidified conditions (PH2O = 0.4 atm) [6], but it dehydrates to
CsPO3, via the transient phase Cs2H2P2O7, at 230−260 ◦C, according to the relationship
log(PH2O/atm) = 6.11(±0.82) − 3.63(±0.42) × 1000/(Tdehy/K) [123].

Several studies [6,124,125] have shown that CsH2PO4 can be employed as the elec-
trolyte in fuel cells with good long-term stability. Thus, a continuous, stable power genera-
tion for both H2/O2 and direct methanol fuel cells operated at ~240 ◦C was demonstrated
for this electrolyte when stabilized with water partial pressures of ~0.3−0.4 atm. In fact,
high performances, corresponding to single cell peak power densities of 415 mW·cm−2, was
achieved for a humidified H2/O2 system provided with a CsH2PO4 electrolyte membrane
of only 25 µm in thickness [126].

Various strategies, including salt modification by cation and anion substitution [127–130],
and mixing with oxide materials [131–137] or organic additives [121,138–140], have been
explored to improve the solid acid performance. The preparation of these derivatives
and composites involved different synthesis techniques, such as sol-gel, impregnation,
thin-casting and electrospinning, depending on the state of the precursor materials and the
desired product [6].

Studies on the effects of incorporating different substituents in the structure of CsH2PO4
have shown mixed results. Thus, while incorporation of Rb+, up to 19%, led to a maximum
conductivity of 0.03 S·cm−1, at 240 ◦C, Ba2+-doping only increased the conductivity of the
low temperature phase in two orders of magnitude [127]. On the other hand, substitution
of phosphorus with Mo or W hardly modified the proton conductivity, as compared to the
parent compound. For S-doping, a shift to lower temperatures of the phase transition was
observed at low S-contents, while the conductivity increased only for the low temperature
phase.

Mixing CsH2PO4 with H3PO4 or CsH5(PO4)2 resulted in composites Cs1−xH2+xPO4
(xmole= 0.01−0.05) with excesses of protons. In comparison with CsH2PO4, these compos-
ites exhibited super protonic phase transition at lower temperature (up to ~200 ◦C) and
increased lower-temperature conductivities (σ150 ◦C~ 2 × 10−3 S·cm−1, x = 0.1) [141]. Addi-
tion of Cs2HPO4·2H2O to CsH2PO4 (up to an xmole = 0.03) also resulted in an enhanced
low-temperature conductivity and decreased the activation energy to Ea = 0.56 eV. For
all these composites no significant changes in the high-temperature conductivity were
observed, although the super protonic phase transition became more diffuse and almost
disappeared in some case [141,142].

Improvements in the mechanical and proton conductivity properties, as well as in
thermal stability of CsH2PO4-based electrolytes have been addressed by mixing with
oxide materials, such as zirconia, silica, alumina, and titania (Table 1). Thus, the (1-
x)Cs3(HSO4)2(H2PO4)/xSiO2 composite with x = 0.7 increase the proton conductivity up
to 10−2 S·cm−1 in the range 60–200 ◦C. Moreover, the introduction of fine-particle silica
reduced the jump in conductivity at the phase-transition temperature and shifted it to
lower temperatures. Higher silica contents led to a decrease in the conductivity due to the
disruption of conduction paths [132].

The use of acid-modified silica confers high thermal stability at low H2O partial pres-
sure while maintaining high proton conductivity (10−3–10−2 S·cm−1, at 130–250 ◦C) [134].
A similar trend was found for the composites (1−x)CsH2PO4/xTiO2 and (1−x)CsH2PO4/
xZrO2 (contents x = 0.1 and 0.2) [135,136]. High performance was also reported for the com-
posite 8:1:1 CsH2PO4/NaH2PO4/ZrO2, with a stable conductivity of 2.23 × 10−2 S·cm−1

for 42 h being measured for the high temperature phase [137]. Nanodiamonds (ND) are
another type of heterogeneous additive giving rise to the (1−x)CsH2PO4-xND (x = 0–0.5)
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composites exhibiting enhanced low temperature proton conductivities, while maintaining
almost unaltered that of high temperature [140].

CsH2PO4 composites based on organic additives have been also intensively inves-
tigated. For example, binary mixtures containing N-heterocycles (1,2,4-triazole, benzim-
idazole and imidazole) displayed enhanced proton conductivity at temperatures below
the super protonic phase transition (2 − 8 × 10−4 S·cm−1 at 174–190 ◦C) [138]. Another
approach was reported in which the solid acid CsH2PO4 was combined with fluoroelas-
tomer p(VDF/HFP), producing high conductive composite membranes (1−x)CsH2PO4-
xp(VDF/HPF) (x = 0.05–0.25 wt%) with improved mechanical and hydrophobic properties,
along with flexibility and reduced thickness.

However, a high concentration of p(VDF/HFP) rendered membranes with a reduced
proton conductivity for the HT phase [141]. By using the polymer butvar (polyvinyl
butyral) [121], composite membranes (1−x)CsH2PO4-xButvar (x < 0.2 wt%) were obtained
showing, in a wide range of composition, a proton conduction behaviour analogous to the
pure salt in the high temperature region but with increased low temperature conductivity
by three orders of magnitude at x = 0.2.

Table 1. Proton conductivity data for selected monovalent and tetravalent metal phosphates and
pyrophosphates.

Compounds/Dimensionality Temperature
(◦C)/RH(%)

Conductivity
(S·cm−1)

Ea
(eV) Ref.

Tetravalent Metal Phosphates

ZrP·0.8PrNH2·5H2O/2D 20/90 1.2 × 10−3 1.04 [50]

Zr(P2O7)0.81(O3POH)0.38/2D 20/90 1.3 × 10−3 0.19 [51]

Zr(O3POH)0.65(O3PC6H4SO3H)1.35/2D 100/90 7.0 × 10−2 — [52]

(NH4)2[ZrF2(HPO4)2]/3D 90/95 1.45 × 10−2 0.19 [53]

(NH4)5[Zr3(OH)3F6(PO4)2(HPO4)]/3D 60/98 4.41 × 10−2 0.33 [54]

(NH4)3Zr(H2/3PO4)3/1D 90/95 1.21 × 10−2 0.30 [55]

Ti2(HPO4)4/1D 20/95 1.2 × 10−3 0.13 [83]

Ti2O(PO4)2·2H2O (π-TiP)/3D 90/95 1.3 × 10−3 0.23 [86]

Ti(HPO4)1(O3PC6H4SO3H)0.85(OH)0.30·nH2O/2D 100/– 0.1 0.18 [117]

Sn(HPO4)2·3H2O/2D 100/95 1.0 × 10−2 — [88]

α-ZrP2O7/3D 300 1.0 × 10−4 — [49]

(NH4)3Zr(H2/3PO4)3/1D 180 1.45 × 10−3 0.26 [55]

Tetravalent Pyrophosphates

TiP2O7/3D 100/100 4.4 × 10−3 0.14 [116]

(C6H14N2)[NiV2O6H8(P2O7)2]·2H2O/3D 60/100 2.0 × 10−2 0.38 [118]

In0.1Sn0.9P2O7/3D 300 0.195 — [108]

Ce0.9Mg0.1P2O7/3D 200 4.0 × 10−2 — [115]

CeP2O7/3D 180 3.0 × 10−2 — [115]

Super protonic Cesium Phosphates

CsH2PO4/3D >230 6.0 × 10−2 — [120]

Cs1-xRbxH2PO4/3D 240 3.0 × 10−2 0.92 [127]

Cs1−xH2+xPO4/3D 150 2.0 × 10−2 0.70 [141]

(1−x)Cs3(HSO4)2(HPO4)/xSiO2 200 1.0 × 10−2 — [132]

(1-x)CsH2PO4/xTiO2 230 2.0 × 10−2 — [135]

(1-x)CsH2PO4/xZrO2 250 2.6 × 10−2 — [136]

CsH2PO4/NaH2PO4/ZrO2 230 2.23 × 10−2 — [137]
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4. Divalent and Trivalent Metal Phosphates
4.1. Divalent Metal Phosphates

Divalent transition metal phosphates show a great structural versatility, from 1D
polymeric topologies through layered framework to 3D open-framework structures. Most
of these solids are synthetized in the presence of organic molecules, which are retained
as protonated guest species (amines, iminazole derivatives, etc.), thus, compensating the
anionic charge of the inorganic framework. This is formed by the metal ion, mainly in
octahedral or tetrahedral coordination environments, linked to the phosphate groups
with different protonated degrees (HxPO4). The presence of the latter makes possible the
formation of effective and extensive hydrogen bond networks with participation of water
molecules. In addition, protonated guest species and water itself can act as proton carriers,
thus, boosting proton conduction (Table 2) [12–14].

Several 3D open-framework M(II) phosphates have been reported [14,143], which
consist of [CoPO4]∞

− or [Zn2(HPO4)2(H2PO4)2]2− anionic frameworks that contain or-
ganic charge-compensating ions in their internal cavities. (C2N2H10)0.5CoPO4 exhibited
negligible conductivity in anhydrous conditions; however, it displayed a relatively high
water-mediated proton conductivity 2.05 × 10−3 S·cm−1 at 56 ◦C and 98% RH. On the
other hand, the solid NMe4·Zn[HPO4][H2PO4] experiences a structural transformation
from monoclinic (α) to orthorhombic (β) upon heating at 149 ◦C. Both polymorphs contain
12-membered rings composed of tetrahedral Zn2+ ions linked to protonated phosphate
groups without changing Zn-O-P connectivity (Figure 8).

Figure 8. Irreversible structural transformation in NMe4Zn[HPO4][H2PO4]4 adapted from [143]. N
(sky-blue), O (red), Zn (magenta), P (orange), C (grey) and H (pale pink) atoms.

The α phase transforms into the β phase at high humidity and temperatures above
60 ◦C, and then reaches a proton conductivity of 1.30 × 10−2 S·cm−1 at 98% RH, a behaviour
that might be attributed to the participation of adsorbed water molecules in creating
H-bonding networks with effective pathways for proton conduction. The conductivity
drastically decreases at 65 ◦C. In anhydrous conditions, the α phase exhibited a proton
conductivity of ~10−4 S·cm−1 at 160 ◦C, similar values were found for other reported zinc
phosphates at temperatures between 130 and 190 ◦C [12,144,145].

Membrane-electrode assembly prepared with the pelletized solid, gave an observed
open circuit voltage (OCV) of 0.92 V at 190 ◦C measured in a H2/air cell, suggesting that the
dominant conductive species are protons, and the proton transport from anode to cathode
takes place through H-bond networks in the pellet.

As an example of 2D metal phosphate water-assisted proton conductors, (C2H10N2)
[Mn2(HPO4)3](H2O), displayed a proton conductivity of 1.64 × 10−3 S·cm−1 under 99%
RH at 20 ◦C. This proton conductivity was attributed to the formation of dense H-bond
networks in the lattice, composed of Mn3O13 units-containing anionic layers [146], which
provide efficient proton-transfer pathways for a Grotthuss-type proton transport at high
RH.
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Another way of improving the proton conductivity in layered divalent metal phos-
phates is favouring the formation of hydrogen bond networks by ion exchange. For
instance [17], partial exchange of Na+ for ethylendiammonium yielded two new crystalline
phases, with composition (C2H10N2)xNa1−x[Mn2(PO4)2] (x = 0.37 y 0.54), which influenced
formation of extended hydrogen bond networks and concomitant increase in proton con-
ductivity, from 2.22 × 10−5 S·cm−1 for the as-synthesized material (in ethylendiammonium
form) to 1.3 × 10−2 S·cm−1 (x = 0.37) and 2.1 × 10−2 S·cm−1 (x = 0.54) at 99% RH and
30 ◦C.

This strategy of enhancing proton conductivity was further extended successfully to
other 2D manganese phosphates [18]. A proton conductivity value as high as
7.72 × 10−2 S·cm−1 was reached at 30 ◦C and 99% RH for K+-exchanged compounds,
which compares well with those of MOF-based open-framework materials [147–149]. The
1D solid [Zn3(H2PO4)6(H2O)3](Hbim) (Hbim= benzimidazole) prepared by mechanochem-
ical synthesis is characterized by presenting a dual-function as proton conductor.

It loses the coordinated water by heating transforming into [Zn3(HPO4)6](Hbim),
which exhibits an intrinsic proton conductivity higher than the hydrated form, reaching
a value of 1.3 × 10−3 S·cm−1 at 120 ◦C, believed to be due to a rearrangement of the
conduction path and the liquid-like behaviour of benzimidazole molecules. In addition, this
solid also showed porosity, thus, enabling the adsorption of gaseous methanol that further
improved the proton conductivity of the anhydrous phase. This enhancement of proton
conductivity in methanol-adsorbed samples was explained by the effective participation of
the guest molecule in formation of extended hydrogen-bond interactions [19].

An ordered-to-disordered structural transformation and its implication in proton
conduction were investigated for the 1D copper phosphate [ImH2][Cu(H2PO4)2Cl]·H2O
(Im = imidazole). In this structure, the protonated imidazole (ImH2) and the water molecule
are located in interspaces of the anionic chains [Cu(H2PO4)2Cl]−. Upon heating a structural
transformation from an ordered crystalline state to a disordered state occurred. Highly
mobile and structurally disordered H+ carriers were supposed to be responsible of the high
proton conductivity 2 × 10−2 S·cm−1 at 130 ◦C, under anhydrous conditions [150].

A 1D zinc phosphate-based proton conductor, [Zn3(H2PO4)6(H2O)3](BTA) (BTA =
1,2,3-benzotriazole) has been reported [151] that exhibits high proton conductivity,
8 × 10−3 S·cm−1 in anhydrous glassy-state (120 ◦C). The glassy-state, developed via melt-
quenching, was suggested to induce isotropic disordered domains that enhanced H+ dy-
namics and conductive interfaces. In fact, the capability of the glassy-state material as an
electrolyte was found suitable for the rechargeable all-solid-state H+ battery operated in a
wide range of temperatures from 25 to 110 ◦C.

Focus has been also put on metal phosphate-based solid solutions [152,153]. Vacancies
can be generated that introduce extra protons into the structure and increase the proton con-
duction. This effect was investigated for the 1D rubidium and magnesium polyphosphate
compound, RbMg1-xH2x(PO3)3·yH2O, for which system a maximum proton conductivity
of 5.5 × 10−3 S·cm−1 was measured at 170 ◦C with a vehicle-type mechanism of H3O+

conduction.
The proton conductivity results from H-bond interactions between water molecules

and corner-sharing PO4 chains that provide formation of sandwiched edge-sharing
RbO6-MgO6 chain [152]. Another example is the solid solution with composition
Co1-xZnx(H2PO4)2·2H2O (0 < x < 1.0), which showed the highest conductivity value,
2.01 × 10−2 S·cm−1 at 140 ◦C, for a composition Co0.5Zn0.5(H2PO4)2·2H2O [153].

4.2. Trivalent Metal Phosphates

Zeolite-like open framework metal(III) phosphates consist of metal(III) ions-phosphate
species (PO4

3-, HPO4
2-, H2PO4

−) linkages featuring internal cavities, where charge-
compensating cations and/or neutral species are located and, thus, dense hydrogen bond
networks frequently result. In addition, the robust inorganic framework endues this porous
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material with better thermal and chemical stability compared with porous coordination
polymers/metal organic frameworks (PCPs/MOFs) [13].

Regarding to proton conductivity (Table 2), aluminium phosphate-based solids are by
far the most studied compounds [154–167]. The species inside channels affect in different
ways to proton conduction. Thus, while water adsorption is key to assist proton transfer
in (NH4)2Al4(PO4)4(HPO4)·H2O by a hopping mechanism along H-bond chains [166],
densely packed NH4

+ ions show negligible contribution because of hampered migration.
By using an organic template-free synthetic methodology, a 3D open-framework

aluminophosphate Na6[(AlPO4)8(OH)6]·8H2O (JU103) was prepared [158], which showed
a proton conductivity of 3.59 × 10−3 S·cm−1, at 20 ◦C and 98% RH. It was argued that
the enhanced conductivity of the as-synthesized material as compared to its NH4

+- or
Ag+-exchanged forms is indicative of a beneficial effect of hydrated Na+ ions in generating
proton-transfer pathways. The 3D cesium silicoaluminophosphate, Cs2(Al0.875Si0.125)4
(P0.875Si0.125O4)4(HPO4), belonging to the structural family of SAPOs, was shown to exhibit
a remarkable proton conductivity of 1.70 × 10−4 S·cm−1 at low temperature and RH (20 ◦C
and 30%, respectively) [168,169].

Several 2D aluminophosphates have been reported as proton conductors [154,156].
These compounds (denoted as AlPO-CJ70/2) are structurally characterized by displaying
an anionic layer: [Al2P3O12]3-, formed by alternating Al3+ and phosphorus tetrahedra,
which is charge-compensated by N,N-dimethylbenzylamine or α-methylbenzylamine ions,
respectively. In these layered structures, extended H-bond networks are formed through
interactions of the amine N atoms, H2O molecules and protruding phosphate groups of
the anionic layer. Consequently, water-mediated proton conduction processes occurred
upon immersion in water, with σ values around 10−3 S·cm−1, at 80 ◦C, and Ea values of
0.16−0.2 eV, typical of a Grotthuss-type proton-transfer mechanism.

By following a synthetic route in which methylimidazolium dihydrogenphosphate
was used as a solvent, structure-directing agent, and a phosphorus source, the solid
(C4H7N2)(C3H4N2)2·Al3(PO4)4·0.5H2O (SCU−2) was obtained [164]. Its layered struc-
ture, built up from corner-sharing Al3+ and PV tetrahedra, features 8-member rings where
guest imidazolium ions and water molecules are hosted. At 85 ◦C and 98% RH, this solid
showed a proton conductivity of 5.9 × 10−3 S·cm−1 and a low activation energy (0.20 eV),
characteristic of a Grotthuss-type proton-transfer mechanism. An efficient pathway for
the proton transfer was attributed to the hydrogen bond network established between the
imidazolium ions and water molecules interacting with the host framework.

A few examples of phosphate-based proton conductors of other trivalent metals do ex-
ist. Among them, two Fe(III) phosphates, 1D (C4H12N2)1.5[Fe2(OH)(H2PO4)(HPO4)2(PO4)]·
0.5H2O [13] and 3D open-framework iron(III) phosphate (NH3(CH2)3NH3)2[Fe4(OH)3
(HPO4)2(PO4)3]·4H2O [170], have been reported. Both compounds contain Fe4O20 tetramers
as a common structural feature. The 1D solid is composed of chains of tetramers bridged by
PO4

3- groups and having terminal H2PO4
− and HPO4

2− groups [171], while piperazinium
cations and water molecules are disorderly situated in between chains. This arrangement
gives rise to extended hydrogen bonding interactions and hence proton conducting path-
ways. The proton conductivity measured at 40 ◦C and 99% RH was 5.14 × 10−4 S·cm−1,
and it was maintained upon dispersion of this solid in PVDF [13]. In the case of the 3D
solid, infinite chains of interconnected tetramers are interlinked, in turn by phosphate
groups that generate large tunnels (Figure 9). The diprotonated 1,3-diaminopropane and
water molecules, localized inside tunnels, form an extended hydrogen bond network with
the P–OH groups pointing toward cavities. These interactions favour proton hopping,
the measured proton conductivity being of 8.0 × 10−4 S·cm−1, at 44 ◦C and 99% RH,
and with an Ea of 0.32 eV [172]. Furthermore, the proton conductivity of this compound
increased up to 5 × 10−2 S·cm−1 at 40 ◦C upon exposure to aqua-ammonia vapors from
1 M NH3·H2O solution. This result confirms this treatment as an effective way of enhancing
proton conductivity, which has been elsewhere demonstrated for the case of coordination
polymers [173,174]. The observed variation of Ea with the ammonia concentration also
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suggested that NH3, as well as H2O, molecules contribute to create proton-transfer path-
ways, by a Grotthuss mechanism. However, when ammonia concentrations were lower
than 0.5 M, the proton conduction mechanism tended to be vehicle-type one [156].

Table 2. Proton conductivity data for selected divalent and trivalent metal phosphates.

Compounds/Dimensionality Temperature
(◦C)/RH(%)

Conductivity
(S·cm−1)

Ea
(eV) Ref.

Divalent Metal Phosphates

(C2N2H10)0.5CoPO4/3D 56/98 2.05 × 10−3 1.01 [143]

NMe4·Zn[HPO4][H2PO4] (β phase)/3D 60/98 1.30 × 10−2 0.92 [14]

(C2H10N2) [Mn2(HPO4)3](H2O)/2D 20/99 1.64 × 10−3 0.22 [146]

(C2H10N2)xNa1−x[Mn2(PO4)2]/2D 30/99 2.1 × 10−2 0.14 [17]

(C2H10N2)1-xKx[Mn2(PO4)2]·2H2O/2D 30/99 7.72 × 10−2 0.18 [18]

(C2H10N2)1-xKx[Mn2(HPO4)3] (H2O)/2D 30/99 0.85 × 10−2 0.081 [18]

[Zn3(H2PO4)6(H2O)3](Hbim)/1D 120 1.3 × 10−3 0.50 [19]

[ImH2][Cu(H2PO4)2Cl]·H2O/1D 130 2.0 × 10−2 0.1 [150]

[Zn3(H2PO4)6(H2O)3](BTA)/1D 120 8.0 × 10−3 0.39 [151]

RbMg0.9H0.2(PO3)3·yH2O/1D 170 5.5 × 10−3 — [152]

Co0.5Zn0.5(H2PO4)2·2H2O/1D 140 2.01 × 10−2 — [153]

Trivalent Metal Phosphates

Na6[(AlPO4)8(OH)6]·8H2O/3D 20/98 3.59 × 10−3 0.21 [158]

[C9H14N]8[H2O]4·[Al8P12O48H4]/2D 80, in water 9.25 × 10−4 0.16 [154]

[R-,S-C8H12N]8[H2O]2·[Al8P12O48H4]/2D 90/98 3.01 × 10−3 0.20 [156]

(C4H7N2)(C3H4N2)2·Al3(PO4)4·0.5H2O/2D 85/98 5.94 × 10−3 0.20 [164]

In(HPO4)(H2PO4)(D,L-C3H7NO2)/3D 85/98 2.9 × 10−3 0.19 [16]

(NH3(CH2)3NH3)2[Fe4(OH)3(HPO4)2(PO4)3]·4H2O/1D 40/99 5.0 × 10−2 — [170]

Hbim = benzimidazole; Im =imidazole; BTA = 1,2,3-benzotriazole.

Figure 9. Open-framework structure of (NH3(CH2)3NH3)2[Fe4(OH)3(HPO4)2(PO4)3]·4H2O showing
guest species inside channels and H-bond interactions. Fe (green), O (red), P (orange), and C (grey)
atoms.

For the series of isostructural imidazole cation (ImH2)-templated layered metal phos-
phates, [ImH2][X-(HPO4)2(H2O)2] (FJU−25-X, X = Al, Ga, and Fe), it was found that the
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proton conductivity was dependent on mobility of imidazole guests, FJU−25-Fe exhibiting
the highest proton conductivity (5.21 × 10−4 S·cm−1 at 90 ◦C). The determined activation
energies (~0.20 eV) were indicative of a Grotthuss-type mechanism of proton conduction.

The amino acid-template indium phosphate, In(HPO4)(H2PO4)(D,L-C3H7NO2)
(SCU−12), represents a singular example of 3D metal phosphate-based proton conduc-
tors [16].

Its crystal structure is formed by edge-sharing four-ring ladders, with the amino
acid molecules attached to the ladders through In–O bonds. Further bridging the indium
phosphate ladders by the H2PO4

− groups gives rise to a three-dimensional structure. The
presence of two kinds of proton carriers, H2PO4

− ions and zwitterionic alanine molecules,
favours the development of high proton conductivities (2.9 × 10−3 S·cm−1 at 85 ◦C and
98% RH) through a Grotthuss-type proton-transfer mechanism (Ea = 0.19 eV).

Other trivalent metal phosphates have been reported, e.g., BPOx [175] and CePO4 [176].
The former exhibited a proton conductivity of 7.9 × 10−2 S·cm−1 as self-supported elec-
trolyte and 4.5 × 10−2 S·cm−1 as (PBI)−4BPOx composite membrane, measured at 150 ◦C
and 5% RH, but structure/conductivity correlations were not established because of
its amorphous nature. The latter showed a low-temperature (RT) proton conduction
< 10−5 S·cm−1 at 100% RH through a structure-independent proton-transport mecha-
nism [176].

There are only a few examples of metal(III) pyrophosphates displaying proton conduc-
tivity. Among them is the open framework magnesium aluminophosphate MgAlP2O7(OH)
(H2O)2 (JU102) [167]. Its structure is composed of tetrahedral Al3+ and octahedral Mg2+

ions coordinated by pyrophosphate ions. This connectivity results in an open framework
with unidirectional 8-ring channels. The proton conduction properties originate from the
existence of an H-bond network in which coordinated water molecules participate.

Thus, the proton conductivity measured at 55 ◦C on water-immersed samples was
3.86 × 10−4 S·cm−1 [167], which raised to 1.19 × 10−3 S·cm−1 when calcined at 250 ◦C
and measured at the same conditions, while the Ea value hardly changed from 0.16 to
0.2 eV. This behaviour was explained as being due to a dehydration–rehydration process
that enhances proton conductivity by altering the H-bonding network and the pathway of
proton transfer.

Another example of 3D open framework metal(III) pyrophosphate is the compound
NH4TiP2O7 [177]. The structure of this solid is composed of negatively charged [TiP4O12]−

layers, forming one-dimensional six-membered ring channels, where the NH4
+ ions are

located. Its proton conductivity increased from 10−6 S·cm−1 under anhydrous conditions to
10−3 S·cm−1 at full-hydration conditions and 84 ◦C. The low Ea value, 0.17 eV, characteristic
of a Grotthuss-type proton-transfer mechanism, was associated with the role played by the
NH4

+ ions in the channels as proton donors and promoters of proton migration. A drop
in proton conductivity was observed when the triclinic TiP2O7 phase formed by thermal
decomposition of NH4TiP2O7 [177].

5. Outlook

Great efforts have been devoted to the synthesis and characterization of metal phosphate-
based proton conductors over more than three decades. Among them, zirconium phos-
phates are prominent not only because of the feasibility of Zr(IV) and phosphate ions to
form a rich variety of crystallographic architectures (from 1D to 3D open frameworks)
but also due to their outstanding properties and workability while being environmentally
benign and low cost materials.

Although the prototype layered α-zirconium phosphate has been commonly proven
as a filler for PEMFCs devices, new synthetic designs of M(IV) phosphates, including
pyrophosphate compounds, are promising candidates to broaden their applicability in
different electrochemical devices. Other M(IV) phosphates and pyrophosphates (M = Ti,
Sn) are less known due, in part, to their amorphous nature or strong tendency to amorphise
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at working temperatures, though, in some cases, these compounds presented remarkable
proton conductivity properties.

CsH2PO4, a super protonic material, was proven as a suitable electrolyte for both
H2/O2 and direct methanol fuel cells operated at ~240 ◦C, and provides excellent perfor-
mance when controlling its thermal stability. In addition, combinations with other materials
are possible to adjust the specific characteristics of the composite CsH2PO4 electrolyte, thus,
offering a wide range of compositions with tuning properties.

Recently, research and developments in metal phosphate proton conductors have been
addressed to divalent or trivalent metal phosphates, which present a remarkable structural
versatility and tunable conductivities; however, more in-depth studies are required to
assess their potential use and applicability for low and intermediate temperature fuel cells.

Applications of metal phosphates as electrolytes or as electrolyte components are in
continuous progress, although their use for energy storage and conversion remains a chal-
lenge. For practical applications in fuel cells at low/intermediate temperatures, phosphate-
based proton conducting electrolytes have demonstrated acceptable proton conductivity
values; however, other features, such as their mechanical strength, chemical/thermal sta-
bilities, film-forming ability (in the case of composite membranes), durability, and fuel
cross-over, are key factors to be improved.
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