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Abstract: Research has become increasingly more interdisciplinary over the past few years. Artifi-
cial intelligence and its sub-fields have proven valuable for interdisciplinary research applications,
especially physical sciences. Recently, machine learning-based mechanisms have been adapted for
material science applications, meeting traditional experiments’ challenges in a time and cost-efficient
manner. The scientific community focuses on harnessing varying mechanisms to process big data sets
extracted from material databases to derive hidden knowledge that can successfully be employed in
technical frameworks of material screening, selection, and recommendation. However, a plethora
of underlying aspects of the existing material discovery methods needs to be critically assessed to
have a precise and collective analysis that can serve as a baseline for various forthcoming material
discovery problems. This study presents a comprehensive survey of state-of-the-art benchmark data
sets, detailed pre-processing and analysis, appropriate learning model mechanisms, and simulation
techniques for material discovery. We believe that such an in-depth analysis of the mentioned aspects
provides promising directions to the young interdisciplinary researchers from computing and mate-
rial science fields. This study will help devise useful modeling in the materials discovery to positively
contribute to the material industry, reducing the manual effort involved in the traditional material
discovery. Moreover, we also present a detailed analysis of experimental and computation-based
artificial intelligence mechanisms suggested by the existing literature.

Keywords: material datasets; material data pre-processing; modeling mechanisms; AI simulations
tools; material analysis

1. Introduction

The need for artificial intelligence (AI) applications in the simulation and exploration
of novel ceramic materials is increasing. Materials design based on AI analysis is foreseen
to lead to innovative materials and reduce the development cost in terms of time and
resources. However, the scientific community identified many limitations of advanced
materials discovery and application based on AI and advanced machine learning tech-
niques. For instance, there are several issues related to computational simulation, and the
structures of the materials involved require high-performance index properties. Therefore,
advanced materials research based on the convergence between AI techniques and experi-
mental mechanisms is needed to produce the basic comprehension of the input parameters
conditions and performance index properties. In the first step, raw data is prepared for
model building using pre-processing and feature engineering techniques. The second step
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is building an AI model using AI-based learning algorithms. Finally, the performance
evaluation of the model and interpretation of the model knowledge into input parameters
and performance index properties for assessment of the materials.

The combination of machine learning and AI has brought an immense revolution in
various walks of life, including varying materials detection. Initially, symbolic methods
were preferred to extract hidden knowledge from the data. Later on, the techniques
were tuned to incorporate some advanced functionalities in artificial neural networks that
own self-learning capabilities with the help of neurons [1]. Similarly, several other useful
machine learning models, including decision trees (DTs) [2], and support vector machines
(SVMs), etc., were also introduced. Presently, various novel machine learning-based
models like deep learning to analyze a massive amount of data have grabbed the attention
of industry and academia [3–5]. Thus, the process of analytical building formulation
becomes automated with the help of the machine learning paradigm. The effort of explicit
programming to reveal the hidden patterns from the data has been diminished with the
initiation of machine learning algorithms that learn from the data iteratively. Different
machine learning methods effectively handle high-dimensional data, including clustering,
regression, and classification. The prime focus of machine learning-based models is the
extensive scrutinization of massive databases to extract hidden knowledge. Machine
learning (ML) models learn from the historical data to return accurate and reliable results
in diversified fields, including image recognition, natural language processing (NLP), and
information security. Many routine activities like web searches, fraud detection, next-best
offers, sentiment analysis are addressed by machine learning-based models [6].

To date, the scholarly community in materials science has made tremendous efforts in
terms of collecting an immense amount of data pertaining to materials property to stipulate
access to relevant personnel with the open quantum materials database (superconducting),
inorganic crystal structure database (ICSD)), superconducting critical temperatures (Super-
Con), etc. [7]. Furthermore, a pioneering study pertaining to machine learning in material
science was coined in the 1990s amid the era of harnessing artificial neural networks and
symbol methods to predict the ceramic-matrix composites for tensile and compressive
power of the fiber interfaces the pattern of corrosion [8]. Likewise, the machine learning
paradigm has played an immense role in addressing diverse aspects related to material
science, including material property prediction and new materials discovery.

Let us consider a definition of machine learning in terms of material science as <C, W,
E>, C, W, and E denote conduct, work, and experience. According to the vital concept, a
computer program learns from the experience E with the corresponding work/task W, as
measured by a Conduct measure C if its performance on Works in T, as by C, enhances
along with the experience. Typically, a machine learning model may be constructed while
harnessing machine learning to handle an issue about materials science. Following is the
general demonstration of such a machine learning model. The prevailing paradigm of such
machine learning systems is given as follows:

In this example, the final goal indicates the said issue, which is typically denoted
with the help of an objective function. Similarly, according to some pre-defined method,
the sample represents the subset of the population picked for analysis [9]. Typically, data
processing parts such as data cleaning and feature engineering form actual data into the
sample data. The first step, i.e., data cleaning, locates noisy patterns in the data and
prepares it for experimentation by removing all the abnormalities from the data [10]. The
later part, i.e., feature engineering that includes feature construction, feature extraction,
feature selection, and feature learning, is comprised of harnessing domain knowledge
pertaining to data in order to form features that machine learning models can process. The
feature engineering process is quite complex in nature. The models comprise of varying
machine-learning algorithms and different optimization algorithms. The widely employed
machine learning models include SVM, artificial neural networks (ANN), and DTs and the
optimization algorithms include particle swarm optimization (PSO), genetic algorithms
(GAs), and simulated annealing algorithms (SAAs), to name a few. The model denotes
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characteristics of a system in the form of mathematical formulations and points to the
algorithm applied to the sample data.

Material applications based on AI mechanisms have emerged recently with increased
experimental and computational data [11]. One important task of material science-based AI
applications is to use existing material data to predict the properties of new materials by us-
ing data science methods and mathematics [12]. The first step is to build a descriptor model
that can predict the property of interest based on a known set of input material-specific
features. For instance, one of the vital descriptor models where input variables are material
structure features is called quantitative structure-property relationship (QSPR). In the input
and output of material properties, a complex relationship is challenging to handle by tradi-
tional linear and non-linear correlation methods. However, these complex relationships can
now be efficiently modeled by ML methods [13,14]. After performing descriptor modeling
analysis and familiarizing with data, a model is applied to predict material behavior using
material analysis models based on AI or statistics. ML models are intelligent and improve
performance automatically by experience using training data to find patterns from data.
In summary, using AI methods in materials science has received a significant concentration
from researchers. AI and its subfields, such as machine learning, have proven as excellent
techniques for analyzing big data retrieved from material databases and datasets. The
upcoming sections of this review paper summarize the datasets available for material
science applications, data pre-processing and AI-based modeling techniques, and materials
simulation tools. AI mechanisms such as deep learning show significant improvements and
potential for predicting compositions, processes conditions, and performance properties
of materials to reveal the changes in specific parameters for modeling materials behavior.
Moreover, this study discusses AI techniques, showing the significance of advanced AI
mechanism-based simulation models in designing and optimizing properties prediction
for advanced materials discovery.

The rest of the paper is organized as follows: a brief discussion on datasets and data
pre-processing for material modeling is presented in Section 2. Section 3 presents the
methods and mechanisms used for material discovery and analysis. Simulation results
and tools are discussed in Section 4. Section 5 presents the commonly used machine
learning application in the material science industry. Finally, the conclusion and future
work directions are presented in Section 6.

2. Datasets and Data Preprocessing for Material Modeling

AI is an exciting technique to predict Material discovery, and It has been used to
predict material properties in an eco-friendly and effective manner. However, there is a
lack of benchmark datasets in this field, especially those encompassing parameters for
material discovery such as task, size, and material systems deemed import indicators for
material information discovery. Therefore, selecting optimal AI models, model architecture,
data featurization, data splitting, including algorithms for a given task is challenging. The
contemporary state-of-the-art in material sciences formed a data repository of fifty different
data sets and revealed a minimal quantity of such data sets. The material system-based
framework comprises varying material researches, and the data set contains computational
and experimental data, classification, and regression data.

These benchmark data sets are used as a baseline to form other comprehensive bench-
mark data sets in the future for comparing AI-based models. Various material properties
and experimental and calculated values are included because the data is from the past
literature. The data collection compares AI models for material informatics efficiently and
accurately and improves computational materials science practices. The combination of
all the benchmark data sets into an individual repository encompassing material data for
probabilistic and AI methods is described in the publications. It also enables researchers to
compare AI-based models, such as ML, which helps find an efficient material discovery
method. In the generalization of ML models, a diverse dataset allows researchers to investi-
gate quickly. Therefore, to test several ML approaches and enhance the diversity and types,
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some data from the MatBench project are included and can be used as a repository that can
be readily obtained for ML and AI-based learning techniques. The source from which these
datasets are collected is based on existing literature [13,15].

Table 1 presents Summary of datasets based on names, material properties, dataset
size, and AI tasks. Methods used for ML and AI in materials science literature were used to
collect the categorical dataset population of the dataset. Above each color bar, descriptors
are listed, to the left categorization methods used in the graph, and each bar describes
the number of datasets. The size of the data set varies between 100 to 5000 instances
encompassing the small and large data set having 100 and 1000 instances, respectively. The
Data Type category has calculated data and experimental data belong to computed data,
which means a large amount of data used from this data belongs to computed data [16–22].

Table 1. Summary of datasets based on names, material properties, dataset size, and AI tasks.

S. No Dataset Name Material Property Dataset Size AI Task Type

1 Pilania_double_perovskites_clean Bandgap (Eg) 1306 Regression

2 Pilania_Polymers_data
Atomization Energy Bandgap Electron
Affinity Formation Energy Lattice
Parameter Electronic Dielec Const

175 Regression

3 Pilania_Polymers_data_Spring_Const
clean Spring Constant 174 Regression

4 Pilania_Polymers_data_total_Diele
Const_clean Total Dielec Const 174 Regression

5 Pilania_superlattices Interfacial Energy Lattice Parameter
Formation Energy 1250 Regression

6 Pilania_superlattices_GGA_Band_
Gap_clean GGA Bandgap 1249 Regression

7 Pilania_superlattices_HSE_Band
Gap_clean HSE Bandgap 121 Regression

8 Pilania_superlattices_elastic_cons Elastic Constants: c11, c12, c13, c33,
c44 987 Regression

9 Wei_composite_materials Effective Thermal Conductivity 720 Regression
10 Wei_porous_media Effective Thermal Conductivity 374 Regression

11 Zeng_elastic_prop Elastic Moduli: Shear Modulus (G)
Bulk Modulus (K) 5518 Regression

12 Bala_classification_dataset Curie Temperature (Tc) 192 Classification
13 Bala_regression_dataset Curie Temperature (Tc) 132 Regression
14 Lee_band_gaps Bandgap (G, Wo) 270 Regression

15 (Li_DFT_and_features_clean and
Li_DFT_dataset_clean Ehull 1925 Classification

16 Mannodi_polymer_diele

Electric Dielec. Const.
Bandgap
Lonic Dielec. Const.
Total Dielec. Const.

284 Regression

17 Seko_melt_temps Melting Temperature (Tm) 248 Regression
18 Wu_DFT_Eg_dielec_consts Bandgap Electric Dielec. Const. 155 Regression
19 Wu_Exp_Tg Glass Transition Temp (Tg) 262 Regression
20 Zhuo_classification_data Bandgap (Eg) 6354 Classification
21 Carrete_therm_conduct_train_clean Lattice Thermal Conductivity (kw) 30 Classification
22 Liu_Tg_AsSe_glass lass Transition Temp (Tg 12 Regression
23 Rajan_Mxene_data Bandgap (Eg) 70 Regression
24 Wu_Exp_die lec_const Dielectric Constant 58 Regression
25 Wu_loss_tang_l OOHz Dielectric Loss Tangent 48 Classification
26 Wu_loss_tang_kHz Dielectric Loss Tangent 44 Classification
27 Xue_thermal_ Therma l Hystersis 22 Regression
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The listed data sets are explained according to four characteristics: Dataset name
represents the name of the data, Material Property explains the associated properties such
as Curie Temperature (Tc), lonic Dielec Const., etc. In addition, each dataset is cited with
its source research paper and its name. In addition, each dataset is cited with its source
research paper and its name [23–28].

Data Preprocessing for Material Modeling

For analysis, it is required to structure data from raw data collected. The data set
is in three different formats, i.e., structured, semi-structured, and unstructured. Highly
organized and neatly formatted data belong to structured data since they are in tabular
format feasible to retrieve, process, and maintain. The structured data set is formed using
mediums such as excel sheets or sensor data. In contrast, unstructured data is not organized
in a pre-defined format; raw form, irregularities, and disorganization result in complex
processing forms. The samples for unstructured data encompass the data formed using IoT
sensors, video, audio, and images. At the same time, transpose, join and pivot functions
can be employed to convert raw data into a structured format.

The exploratory data analysis and pre-processing phase of material discovery model-
ing play a valuable role in revealing the exciting insights from the data. The prime focus
of data analysis is to identify the data trends employing different statistical techniques,
recapitulating data numerically and graphically. For example, the key features of central
tendency, spread such as standard deviation and variance, can be obtained with the above
analysis. Moreover, key features, including outlier detection and distribution shape, may
be ascertained.

Two types of outliers that can be removed from the dataset, i.e., technical errors or
data entry errors and incorrect data values, can influence and skew the data. Box plots,
scatter plots, or other graphs can graphically visualize statistical outliers. Visualization
software such as Matlab, R Programming, Python, Microsoft Power BI, and Microsoft Excel
can perform EDA. This statistical procedure, such as graphical visualization techniques,
assists in summarizing data using visualization charts such as histogram, multi-variate
chart, scatter plot, Boxplot, and histogram.

Every year, expeditious data growth in material science is witnessed, which makes the
quantity of data double; this is also considered one of the primary reasons for evolving the
paradigm of material science in diverse disciplines [29]. However, the growing data rate in
material science is challenging. For instance, data analysis, processing, collection, indexing,
storage, and retrieval are quite complex procedures for handling extensive material science
data. Therefore, it is essential to address the issues mentioned above in material science to
extract hidden patterns and new material discovery for visualization, predictive approach,
analysis, and better data storage [30].

Furthermore, appropriate data storage plays an immense role in the analysis of char-
acteristics of materials’ characteristics [31]. In material science, the most amount of the
data is formed using new calculations or experiments; therefore, there is a dire need for
data-driven based models to perform material discovery and deployment. Thus, analyzing
properties and trends of data and discovering new materials data analysis has a primary
role in material science. Data in material science get collected and compared with exist-
ing data while the researchers generate a large amount of data through experiments and
simulation. Figure 1 presents key steps in material data pre-processing for data preparation.

For better analysis, it is essential to understand the format and representation of data
because it is stored in several structures in the database to perform certain pre-processing
and ensure data quality [32]. The pre-processing techniques include conversion of attribute
type, sampling, feature extraction, feature selection, and data discretization used to remove
noisy values, missing data, outlier data, duplicated data, etc., and remove unsuitable data.
Furthermore, the technique can be either supervised or unsupervised [33].
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Supervised learning for predictive modeling can be used to pre-process data that can be
used for modeling. However, splitting the datasets needs extra care to avoid overfitting that
shows the model’s accuracy. Depending on the target attribute, a regression can be applied
if it is numeric, classification technique can be used if it is categorical [34]. The ensemble
learning technique is another approach that combines various methods to maintain accuracy.
The data mining approach can also be used instead of predictive modeling for relationship
mining and clustering to find hidden patterns associated with data. Data pre-processing
is deemed a challenging process in Big Data analysis and management because of the
extensive data, variety, and velocity gathered from heterogeneous sources. Tool selection
and rule discovery are two tools explored to address these issues. Many mechanisms have
been proposed to pre-process data and their characteristics; however, it is difficult to pick
the best-suited data sets depending on the data type. Likewise, the rule-based discovery
also handles data processing to some extent; however, the issue arises in deciding the
number of rules for specific data collection.

In general, crystal structure and bond strength are two factors on which material
property depends; for this reason, feature identification strongly correlates with a material
property of interest is complex to be applied for machine learning procedures. Thus, a good
material descriptor meets the following three criteria. (1) A unique characterization of the
material, (2) Sensitive to the target property, and (3) easy to obtain. In addition, descriptors
at different levels of complexity can be defined depending on the problem or property
being studied [34].

An example is a molecular design; If the boiling point of a nonpopular organic com-
pound is analyzed, a gross level can be considered as the definition of descriptor, like
total molecular weight wherein the focus is on the prediction of dielectric constant, the
descriptor should include atomic-level information. A plethora of essential descriptors has
been recapitulated in [35]. One-dimension descriptors are the simplest, such as weight and
surface area, molecular volume, number of electrons, and non-polarities that carry little
or no information about the structures of the materials. As discussed before, a preferable
structure for predicting specific properties is descriptors with two or three dimensions.
The topological descriptors contemplate the material’s 2D graphic structure and show
branching, symmetry, and atom connectivity [36].

The most common topological descriptors are the adjacency matrix and the connec-
tivity index [37]. Still, they do not contain any stereochemistry information, which is a
limitation. 3D materials descriptor is important Radial Distribution Function (RDF) ex-
pressed as g(r) denotes probability for identifying particle at a distance from some other
atom. The empirical measurements like ab initio calculations and X-ray computations
obtain the descriptor type. Therefore, it becomes mandatory to investigate the high di-
mensional data sets along with the reduction in dimensionality tool before constructing
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ML models. Many algorithms exist to reduce dimensions of the feature space and identify
relevant descriptors. The algorithms include linear discriminant analysis (LDA), Princi-
pal component analysis (PCA), and multidimensional scaling (LDA). For example, using
orthogonal transformation, the combination of correlated values is converted into a mini-
mized set of uncorrelated new variables using PCA, deemed as principal components (PCs).
PCS results in minimized dimensional space that depicts the original data. For example,
four-dimensional space was formed by reducing 12-dimensional solvent descriptor space
by Zhou et al. [38].

The existing techniques of data collection and pre-processing mechanisms for the
collected data provides these key directions for future research:

• New publicly available database construction tools can be developed based on
existing datasets.

• The datasets should be made available through open-source programming language-
based libraries and APIs.

• Advanced pre-processing-based authoring tools and mechanisms should be introduced.
• The problem of small datasets can be addressed through AI-based data augmentation

mechanisms.

Advanced data imputation mechanisms can address the problem of missing material data.

3. Modeling Mechanisms

The expeditious rise in computational and experimental data has emerged in the field
of material informatics (MI) [39]. A necessary MI process utilizes existing data sets to form
a predictive model for new materials’ discovery harnessing mathematics and information
science procedures [40]. The main focus is on developing a descriptor model which predicts
the property of interest using a set of input material-specific features. The vital descriptor
is one in which input parameters denote material structure features as QSPR.

In the input and output of material properties, a complex relationship is challenging to
handle by traditional linear and non-linear correlation methods. These crucial associations
may effectively be modeled using machine learning techniques [41]. After familiarizing
and conducting EDA and data, a model is utilized to predict the rest of the useful life,
wherein the machine fails.

Big Data with the predictive algorithm can perform better analysis in material science.
However, predictive algorithms do not match with most of the theories of material science,
but material science may be moved. The model interacts with a dynamic environment to
maximize a reward function and does not need to be labeled input/out pairs to be available
compared to Supervised ML. An example of this approach is the Markov decision process
or Q-learning technique. On the other hand, ML needs to make a model, form training
samples, and manage metadata for predictions. ML is deemed a significant component of
AI, which derives models prepared using historical data. Also, it has a vital role in material
science because it can reveal hidden data patterns regardless of having information about
the underlying mechanism. The built machine learning models can be employed for design
and material discovery.

The machine learning models designed for material studies include prediction of
mechanical and physical properties of alloys, steel fatigue strength, catalytic activities,
electronic bandgaps of perovskite materials, and acid dissociation constants, along with
finding promising porous materials [42] mixed oxide catalysts [43], and photovoltaic
materials [44]. Material design and discovery using machine learning-based workflow
is shown in Figure 2. Three primary steps involved are: First, a descriptor is generated,
and data dimensionality is reduced. The second step is prediction and verification of
new predicted data using experimental verification mechanisms. The third step is model
building and validation.
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The first phase involves utilizing features or descriptors to show materials in a dataset.
This step needs certain background information regarding the application’ and class of ma-
terials. In the second phase, the model is mapped among target properties and descriptors
using known data against a composition of reference materials.

Many machine learning techniques comprising linear and non-linear regression can
be adopted for mapping. Finally, inverse design is performed based on the ML models
in the last step to find new materials with desired properties. The performance of the
most promising candidates can then be verified experimentally. As explained earlier, the
categories of machine learning models are segregated into unsupervised and supervised
learning models. Figure 3 presents the structure of ML methods reviewed for supervised
learning-based modeling. The supervised models are further divided into two parts,
classification, and regression.
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Figure 3. The Structure of ML methods reviewed for supervised learning-based modeling.

The supervised learning models find a function that has a capacity for novel material
discovery using known materials and their properties. On the other hand, if the property
to be targeted comprises a continuous value, it falls under the regression category. In this
regard, the widely employed regression models include ANNs, Kriging, and SVMs [45].
If the target outputs are discrete, then it is classification. Commonly used classification
algorithms are the decision tree [46] and random forest [47].

Supervised learning finds a function that predicts the target class by mapping the input
variable to the output property, whereas association among data instances is discovered in
unsupervised learning. The clustering technique divides a data set into different groups
so that similar data instances or those having a little distance are grouped into the same
cluster. The clustering models can be pretty valuable in revealing physical information
from the data and identifying novel material discovery using contemporary models [48].
Hierarchical clustering, K-means [49], and hidden Markov modeling [50] are popular
clustering algorithms.

The applications are utilized during the complete life cycle of the Material discovery
process [51]. The study has critically assessed the role of machine learning tools for material
discovery and relevant advanced concepts utilized by many ML techniques. However, a
minimal number of studies have delineated AI or ML-based review studies in the context
of material discovery. Moreover, most of them have primarily focused on individual
techniques or single-material systems. Therefore, AI-oriented material discovery has
received the scientific community’s attention in terms of application-based context. The
analysis of the contemporary AI-enabled material detection has broadly been categorized
into characterization, property prediction, and theory paradigm discovery. In addition,
the models holding potential for material discovery and future challenges have also been
addressed. A valuable combination of different AI-enabled models is the prime focus of this
study. Figure 4 presents the framework of supervised learning with two main categories
of features.
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Figure 4. The framework of supervised learning with two main categories of features.

The dataset can be an existing database or generated from laboratory experiments
or simulations. Features in material discovery are two intrinsic and extrinsic information;
the pioneer step of the pre-processing includes normalization; the second one is to reduce
the dimensionality of the data to filter less valuable features. In the end, a few of the raw
features from the previous models are tuned and assigned to the final predictive model.

To ensure which feature is suitable for a model to perform well is the most critical
step. A system encompassing two primary classes of features related to supervised learn-
ing is delineated below; the system represents supervised learning having two kinds of
parameters [52]. The material discovery process has four major parts, i.e., characteriza-
tion, property prediction, synthesis, and theory of paradigm discovery. The structure
of AI applications with the life cycle of material discovery is given in Figure 5. ML for
material science envisions automated identification of key data relationships and gaining
scientific understanding.
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A neural network is harnessed to reveal hidden patterns from the data; in other
words, it can be deemed as a process of devising relevant knowledge from the data rather
than considering an application as a prediction tool. CNN-based neural networks models
are widely utilized wherein complex data is modeled into multidimensional as done by
combinatorial material science experiments. Forming a model to analyze the prediction
output out of materials, the following assessment of the trained model in the context
of gradients signifies primary data relationships, and interpreting these relationships by
humans results in fundamental understanding based on a model trained using ML-based
relevant strategies. Figure 6 presents a schematic of the CNN model structure that takes the
Raman spectrum and the composition as input for prediction. The layers depicted using
varying colors indicate different purposes. For instance, red colors show the dense layers
acting on composition, and green color represents the convolutional 1D layer processing
spectral and composition data.
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Figure 6. Schematic of CNN model structure takes the Raman spectrum and the composition as input
to predict P.

Figure 7 presents pairwise correlation analysis of gradients for six composition di-
mensions of the input data. A systematic CNN-based material discovery model considers
composition and Raman spectrum-based parameters for predicting P. Since the V has
inherited the disadvantage of having an inverse correlation with all the other data points in
the left-most area below and Bi, V was filtered out. A correlation plot represents gradient
pairs for an individual sample over the eight frameworks. Each plot on the diagonal is the
histogram of gradients for the respective element and the numbers in each box. Pearson
correlation is shown in the upper-right portion of the figure while coefficient averaged over
eight models for the individual correlation plot [53].
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Integration of practical, relevant applications and properties ensue the High-entropy
materials like a hot research area. The empirical-based frameworks rely on complex trial
and error frameworks or physical intuition. A plethora of computational frameworks is
dependent on computational capacity and empirical data.

Material science with the usage of ML can reduce the cost and fasten development.
This study also proposed the ML method to predict synthesizability by leveraging compo-
sitional attributes and thermodynamics of a given. In the end, 70 new compositions were
assessed to predict the entropy-forming capacity. Thus, a total of 108 chemical parameters
have been evaluated for the target variables from the densities functional theory (DFT)
data sets using an ML-based random forest model to predict EFA, as shown in the figure.
Table 2 presents the identification of the essential features for predicting EFA.

Table 2. Identification of the essential features for predicting EFA.

Predictor Rank Stoichiometric Attributes CALPHAD

1 avg(ionic character) avg(ionic character)
2 min(electrons) Liquidus temperature
3 avg. dev(s-valence electrons) range(electronegativity)
4 max(atomic weight) avg. dev(d-valence electrons)
5 max(covalent radius) max(atomic weight)
6 fwm(covalent radius) fwm(f-valence electrons)
7 range(Mendeleev number) max(covalent radius)
8 avg. dev(melting temp) max(unfilled valence electrons)
9 fwm(unfilled s-valence) fwm(covalent radius)
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The machine learning model has predicted the values of EFA against the random
forest fit having chemical parameters, and eight parameters of CALPHAD were assessed
for the known EFA from DFT [54]. As a result, the best-performing parameters from the
machine learning model and chemical parameters are shown on the left side. Similarly, ten
top-most parameters, including CALPHAD parameters for the ML data, are shown on the
right side. To attain accurate predictive results, CALPHAD and chemical parameters based
on ML models parameters depend on identical properties, including ionic character elec-
tronegativity electron orbitals. The value of composition-weighted average is represented
with avg(x), and average deviation is represented with avg. dev(x). These values were
computed employing the vector of elemental values for all the compounds. The minimum
value of each compound is represented with min(x). Similarly, the maximum value is
represented with max(x), and the fraction-weighted mean is denoted with fwm(x). The
notation * is used to represent the parameters from CALPHAD. The correlation among the
best two features and EFA decline in the ability of entropy-forming.

In higher EFA values and increasing liquidus temperature, a positive correlation
exists. Blue dashes represent trendlines. Comparing EFA with liquidus temperature, ten
compositions overlap entirely. For a given composition, CALPHAD is used to derive
liquidus temperature, providing exciting patterns from the magnitude of anticipated EFA
according to the contemplated composition. The compositions with top EFA values exist
quite far from the trendlines, indicating the dire requirement of multi-variable approaches
to discover useful compositions.

Now we summarize the existing machine learning-based in Table 3.

Table 3. Predictive mechanism used in material science applications.

Methods Category

Least-squares regression Regression
Kernel ridge regression Regression
Kriging or Gaussian process regression Regression
Artificial Neural Network Regression Classification
Support Vector Machine Regression Classification
Decision tree Classification
Random forest Classification
k-nearest neighbors Classification
Naive Bayes Classification

Models for modeling mechanisms are based on AI or statistics, but ML is a subset of AI;
therefore, statistical methods also consider statistical methods the subset of ML. In contrast,
ML algorithms are intelligent that improve automatically by experience harnessing training
data to reveal trends from the data. Following is the explanation of different machine
learning techniques grouped according to their type. In supervised learning, the training
data was considered an input for the model training during the supervised learning
process; thus, the outcome of interest is known. Many techniques focus on classification
and regression models within this learning technique. The regression model results in
numerical values. On the other hand, the classification model results in categorial values,
i.e., yes or no. Unsupervised learning techniques are based on the outcome of interest that
is not known. The renowned methods are dimensionality reduction and clustering. The
clustering models involve Gaussian mixture modeling, spectral and K-means clustering,
whereas principal component analysis and independent component analysis systems fall
under dimensionality reduction models.

There is a research gap in the existing literature on material modeling techniques; for in-
stance, AI and ML fields have been matured for the past decade, and a lot of contribution has
been made, which is never attempted in material science. Therefore, we present future per-
spectives and key directions for future research for material-based modeling mechanisms.
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• Deep learning is explored for modeling mechanisms; however, deep learning-based
optimization mechanisms must be explored for stable material and material with
maximum performance index properties.

• Existing modeling mechanisms are based on images datasets, and the regression
datasets should be publicly available and explored.

• The AI-based mathematical programming should be applied throughout the material
s life cycle.

• Data sampling and synthetical data should be generated using AI-based modeling
mechanisms to improve the performance of material discovery and other applications.

• There is a vital need for an AI-based scientific platform based on leveraging ML and
physical mechanisms.

• Need of adaptation of usability and DIY paradigms in the modeling mechanisms.

4. Simulation Tools and Results

Novel materials define the progression of cultures, from the ancient to the modern-
day. In addition, hundreds of thousands of functional materials are significant parts
of advanced technologies and infrastructures. However, it is difficult to predict an exact
property and process structural relation for designing new materials with distinct properties
instantly and precisely. One reason for this is the high dimensionality of features in
material design, including materials’ intrinsic information and extrinsic synthesis processes’
information. The second reason is the huge material design space containing many possible
materials that are difficult to select. Thirdly, the absence of specifically associated science
of complex material systems. These all the analysis challenges are related to the complex
management of material data, comprehension, and prediction, which surpass human
capability. However, simulation tools and database construction and management tools
can be developed to address these challenges. Although in literature, there are many
machine learning-based simulation tools developed, this Section briefly discusses designs
of well-known simulation tools and their results published in high-quality journals.

4.1. ElemNet

Deep learning the chemistry of materials from the only elemental composition. Tradi-
tional machine learning-based models to predict properties of the material over elemental
compositions [55]. The study has also suggested a deep learning approach by bypassing
manual feature engineering that demands domain knowledge to attain more accurate
results with the help of using a minimal amount of training samples. The authors have
named their proposed model ElemNet, which is based on the design and implementation
of the deep neural network model. The model has the potential to automatically locate
chemical and physical similarities and interactions among varying elements employing AI
to predict materials properties with enhanced speed and accuracy. Figure 8 presents a com-
parison of the deep learning approach of the ElemNet with the conventional ML approach
for the prediction of materials properties. The outcomes revealed that the ElemNet holds
the potential to execute robust and fast screening for novel material candidates in high
dimensional combinatorial space in which a plethora of chemical systems was predicted,
which can ascertain some unidentified compounds.

ElemNet is a model that shows a deep neural network-based framework to locate
chemical and physical interaction and similar patterns autonomously. The model is permits
robust and rapid screening for novel material candidates among the combinatorial space.
The comparison was drawn between the deep learning model and traditional machine
learning techniques to predict the properties of the materials. A plethora of chemical
frameworks which may have some unidentified compounds are predicted by ElemNet.
The manual or cognitive feature engineering process could be bypassed by a deep learning-
based framework. These frameworks require domain knowledge and acquire good results
with the mere use of training samples. Table 4 presents benchmarking of the deep learning
model–ElemNet–against conventional ML approaches.
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materials properties.

Table 4. Benchmarking of the deep learning model–ElemNet–against conventional ML approaches.

Model Input Type MAE (eV/atom) Training Time (h) Prediction Time (s)

RandomForest Physical Attributes 0.071 ± 0.0006 1.5 14.80
RandomForest Elemental Compositions 0.157 ± 0.0012 1.5 2.87
ElemNet Elemental Compositions 0.050 ± 0.0007 7 (GPU) 9.28 (CPU) & 0.08 (GPU)

Comparison of deep learning prediction models with other machine learning-based
prediction models for materials properties. The conventional machine learning-based
frameworks are used to forecast the behavior of materials properties that denote the mate-
rial’s composition for the model input syntax, based on the process performed via manual
feature engineering techniques. The human interpretation and anticipated domain knowl-
edge are used for the selection process by calculating the constituent elements’ physical
and chemical parameters. Table 5 presents ElemNet architecture detailed configurations.

Table 5. ElemNet architecture.

Layer Types No. of Units Activation Layer Positions

Fully-connected Layer 1024 ReLU First to 4th
Drop-out (0.8) 1024 After 4th
Fully-connected Layer 512 ReLU 5th to 7th
Drop-out (0.9) 512 After 7th
Fully-connected Layer 256 ReLU 8th to 10th
Drop-out (0.7) 256 After 10th
Fully-connected Layer 128 ReLU 11th to 13th
Drop-out (0.8) 128 After 13th
Fully-connected Layer 64 ReLU 14th to 15th
Fully-connected Layer 32 ReLU 16th
Fully-connected-Layer 1 Linear 17th
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The proposed predictive deep learning-oriented framework tends to learn using better
speed and accuracy than traditional machine learning models to forecast material prop-
erties, including formation enthalpy out of their elemental compositions. In the end, the
comparisons were drawn between ElemNet and traditional machine learning models. The
comparisons revealed that the deep learning-based ElemNet model outperformed the
conventional ML models. This is because the traditional models depend on the compu-
tation of the physical attributes [55]. The deep learning model is formed using multiple
layers formed using neurons, focusing on finding the potential predictive model for the
formation enthalpy. The authors have performed various experiments to discover the
hyperparameters space and the best DNN framework. The 0th layer is the input layer;
positions and types of a varying range of dropouts and complete layers are shown. The
deep learning model considers ReLU as an activation function.

4.2. Matminer

Since data sets pertaining to materials hold diverse nature, data mining and artificial
intelligence-based methods play a vital role in material-based predictive analysis. An
open-source software named matminer was designed to assist in trend analysis and pre-
diction of material properties. Figure 9 presents the matminer tool design, which was
developed using a python-based framework that provides different modules to process
extensive amounts of data from explicit mediums. These mediums rely on Materials Data
Facility databases, Materials Project, Materials Platform for Data Science, and Citrination.
The framework also provides feasibility in providing API to execute code using a feature
extraction library, designed explicitly for materials-based predictive analysis. The feature
extraction frameworks utilized 47 different parameters related to featurization to derive
multiple descriptors and incorporate them into math functions. In the end, the analysis
outcomes are shown using visualization that offers different types of data plots. The func-
tions are combined with machine learning and AI-based data analysis packages designed
and employed by data scientists. The study has recapitulated the logic and structure of the
matminer and delineated a summary of different modules [56].
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The main contribution of matminer is to help users acquire extensive data from
identical data sources. It forms data representations by transforming the raw data from the
extracted features to develop useful visualizations that can reveal insights and integrate
the useful machine learning modules in the domains of materials. Matminer has addressed
various issues that arise while performing data-drive-based studies, understanding the
Application Programming Interface (API) for all the data sources. Also, the pre-processed
data introduces a lot of complexity while forming new machine learning frameworks. It has
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an interactive interface that models the expansion of the API interactions, which provides
feasibility to the user in maintaining and querying comprehensive data into the standard
pandas-based data format. Matminer implemented a total of 47 varying feature extraction
modules. The model produces several physically relevant descriptors that can be tuned
and processed by machine learning models. Moreover, the model has various pre-defined
functionalities of visualization that can be used to discover relationships among attributes
of the data. Matminer interacts with sci-kit-learn and python libraries of python. Moreover,
it also implements the library of feature forming techniques and contains techniques that
can help in information retrieval and visualization.

Table 6, lists many publicly available databases containing a large number of material
structures and properties.

Table 6. Summary of publicly accessible databases and simulation tools.

Name Description

AFLOW Online applications for property predictions using machine learning

CALPHAD Computer coupling of phase diagrams and thermochemistry

Matminer Data source, descriptive and predictive analysis

ElemNet Deep learning-based mechanism

ChemSpider Search engine for chemistry’s structure database

Citrination AI-Powered materials data platform

Computational Materials Repository Repository for infrastructure framework for CMR

Harvard Clean Energy Project Properties computation of materials

ICSD Multiple databases targeting materials properties

MatNavi A database of structures and properties

MatWeb Searchable database of material properties i

NIST Chemistry webbook

NIST Materials Data Repository Repository for published materials data

The existing simulation tools face almost the same problem as traditional AI mecha-
nisms face in exploring and realizing AI in real-life applications. Therefore, new simulation
tools should be developed to address data collections, data pre-processing, and modeling
mechanisms. Now we present future perspectives and key directions for future research
for material-based simulation tools developed.

• Systematic frameworks should be used to handle the repetitive tasks of the simulation tool.
• Traditional data science libraries should be tested and adopted in the simulation toolbox.
• General-purpose feasibility and testing mechanisms should be introduced for material

performance testing in the simulation tools.
• Data sampling and synthetical data should be generated using AI-based modeling

mechanisms to improve the performance of material discovery and other applications.
Relationship analysis mechanisms based on AI can be explored for high-performance
index properties material discovery.

• Parsing and composition assessment algorithms should be implemented in the simu-
lation tools to explore the complex big chemical data.

5. Commonly Used AI-Based Materials Science Applications

The need for AI applications in the simulation and exploration of novel materials
increases. Materials design based on AI analysis is foreseen to lead to innovative materials
and reduce the development cost in terms of time and resources. However, the scientific
community identified many limitations of advanced materials discovery and application
based on AI and advanced machine learning techniques. For instance, there are several
issues related to computational simulation, and the structures of the materials involved
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require high-performance index properties. Therefore, advanced materials research based
on the convergence between AI techniques and experimental mechanisms is needed to
produce the basic comprehension of the input parameters conditions and performance
index properties. Picking the most-suited machine learning algorithm plays a crucial role
in building a machine learning model as it dramatically impacts the model’s accuracy and
generalization capability. However, no machine learning algorithm can be deemed ideal
for all problems since each has its own merits in terms of applicability.

ML algorithms are categorized into four categories, as per their utilization in material
sciences. The categories include regression, probability estimation, clustering, and classifi-
cation. Probability estimation algorithms are primarily used to discover new materials. On
the other hand, material property prediction on the macro, and micro levels is made using
regression, clustering, and classification models. Moreover, machine learning systems are
integrated with different optimization systems [57], including PSO, GA, or SAAs typically
harnessed for optimizing the model’s parameters. In addition, these optimization models
may also be utilized to perform various optimization problems like optimizing materials
properties and spatial configurations. So far, we have demonstrated the role of machine
learning and AI paradigms in diverse disciplines in general and specifically in material
science. Let us shed light on contemporary machine learning-based state-of-the-art in
material science.

Study [58] proposed developing prefabricated ceramics utilizing Machine Learning
(ML). The model was trained by predetermined element analysis data combined with a
self-learning algorithm to explore high-performance prefabricated ceramics in thermo-
mechanical conditions. First, parametrical generation of topologically interlocked panels is
performed. Then, a finite amount of developed prefabricated ceramics pointed to a thermal
load is analyzed. The multilinear perceptron-based training is performed to predict the
thermo-mechanical performance of prefabricated panels with the number of blocks and
different interlocking angles. The formed feed-forward artificial neural network model
resulted in a fillip to the prefabricated ceramic model efficiency and opened up new vistas
for managing the performance for a plethora of high-temperature applications. For each of
the 3 × 3, 5 × 5 and 7 × 7-block prefabricated panels, 100 random designs were examined
by FEA.

The interlocking angles in the models have a varying range from 5◦ to 25◦. Therefore,
the relationship of input features to outputs is scrutinized at the pre-processing stage.
The pre-processing steps, including normalizing and scaling, helped model convergence
and made the training process less sensitive. The hold-out method was used for model
evaluation wherein 10% of the data was picked on which 5-fold cross-validation was
applied to preclude over-fitting. The study established that the prefabricated ceramic
panels with the ML helped to engineer the patterns. The outcomes yielded 30% enhanced
results for frictional energy dissipation and 7% in the sliding distance of the tiles, and an
80% reduction in the strain energy, which causes the high safety factor and the structural
failure delay compared with the plain ceramics.

Another study [59] has proposed three different models, including multiple linear
regression model (MLR), ANN, and adaptive neuro-fuzzy inference system (ANFIS), to
forecast the 28 days compressive finding of concrete with 173 different mix designs. The
model training and testing were done using MATLAB programming conditions. In the
end, the comparisons were drawn between the three implemented models. The outcomes
yielded that ANN and ANFIS validate the reliable evaluation of the compressive power
of concrete with distinct mix models, but the multiple linear regression algorithm is not
adequately viable in this domain due to non-linear relationships among the concrete mix
parameters. On the other hand, the integration of fuzzy logic and neural network, i.e.,
ANFIS, can form mapping relationships among input and output variables according to
human expertise.

Furthermore, ANIFS holds the potential to locate interpretable IF_THEN rules that
improve the model’s performance in comparison with other models [3,23,24]. The design
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of an ANFIS model along with two input parameters is shown in Figure 10. In the end,
the sensitivity analysis (SA) for two varying sets of features on the concrete compressive
power prediction is conducted. The outcomes yield that the concrete compressive power
prediction performance is contingent on the number of input features. This study [60] has
proposed the primary scrutiny of data set encompassing more than 10,000 observations) of
calculated compressive power from actual (building-site) amalgams and their associative
actual amalgam quantities. Extrapolative designs are applied to assess the nexus among
the amalgam design variables and strength, thereby computing the approximate (28-day)
power. These models were also used in a laboratory-based data set containing power
measurements obtained. A comparison is drawn between the functioning of the designs
across both data sets. Moreover, to demonstrate the significance of such methods beyond
mere power projections, they are harnessed to formulate optimal concrete amalgams,
reduce expense, and include CO2 impact while fulfilling imposed target power.
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In another study [61], the authors have demonstrated how the new compound explo-
ration procedure through ionic replacements can be designed using a mathematical model.
They have proposed a probabilistic model determining the probability for ionic species to
replace each other while maintaining the crystal structure. Each compound comprising
(xi 1, xi 2, xi 3, xi 4) as ionic species, the probability of creating a new by replacement of a,
b, c, and d for xi 1, xi 2, xi 3, and xi 4 is assessed by calculating p(a, b, c, d|xi 1, xi 2, xi 3,
xi 4). If this probability is greater than the threshold value, i.e., σ, the replaced structure
is contemplated. The training is performed on an empirical database of crystal structures
and may be utilized to propose new compounds and their structures quantitatively. The
projecting strength of the system is illustrated using cross-validation on quaternary ionic
compounds. The different replacement rules entrenched in the design were assessed and
compared to some of the conventional rules utilized by solid-state chemists to suggest
novel compounds (e.g., ionic size).

Study [62] presented a technique to automatically recognize new crystalline structures
from big data sets of coordinates. The technique relies on machine learning and shape
matching algorithms to extract, classify, and group local structures into common crystals.
This is done by following a pattern analysis-based hierarchy. The model was evaluated on
two different data sets encompassing simple and complex crystals, including quasi-crystals.
The authors demonstrated how phase drawings could be automatically created and iden-
tified a crystal phase missed in prior analyses. The outcomes suggest that incorporating
machine learning and shape matching algorithms for analyzing quickly formed databases
hasten the identification of novel crystal materials and structures. The approach relies on
two-particle clusters formed using the first and second shell cutoff radius, as shown in
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Figure 11. It can be inferred from the figure that there exist two methods of analyzing
the type, size, and comparison to a cluster type library harnessing Fourier coefficients.
The outcomes revealed that the scheme is best for soft matter systems wherein particle
interactions can be intricately tuned and devised to form the self-assembly of mesoscale
materials with exotic structures. Another study [63] devises a machine learning-based
model for material discovery harnessing a vast volume of data encompassing thousands of
density functional theory (DFT) calculations. The authors claim that the subsequent model
does not require any other input, with six orders of magnitude less computer time than
DFT, and has adequate potential to forecast the thermodynamic stability of arbitrary com-
positions. The model was harnessed to scan candidate compositions of around 1.6 million
for novel ternary compounds, resulting in 4500 predictions of new stable materials. The
overall flow of the model for material discovery is shown in Figure 12: part (a) denotes
the formulation and evaluation of experimental and machine learning models from input
quantum mechanical energetics, and part (b) shows the recognition process of new ternary
compounds. The empirical and machine learning models were utilized, and a combinato-
rial list of ternary compositions was processed. Finally, these two models were mingled
to order the compositions based on the probability of forming compounds. The results
suggested that the approach can be helpful to other descriptors of interest to enhance the
performance for materials discovery.
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Another interesting study has used machine-learning algorithms to train the reaction
data for predicting the reaction outcomes for the crystallization of templated vanadium sil-
lenites. The parameters having information about ‘dark’ reactions as unsuccessful or failed
hydrothermal syntheses were gathered from archived laboratory notebooks. Further details
on basic notebook information using chem-informatics methods are incorporated by adding
physicochemical property. The resulting data was then harnessed for training the machine
learning-based model to forecast reaction success. Their proposed machine-learning model
outclassed conventional human methods and accurately anticipated conditions for novel
organically templated inorganic product formation by achieving 89% accuracy for hy-
drothermal synthesis experiments.

Furthermore, overturning the machine-learning model shows novel hypotheses re-
garding the essentials to formulate the product successfully. The authors constructed the
‘model of the model’ by re-interpreting the support vector machine models as a decision
tree encompassing the IF-ELSE-based rules. The complete version of the vanadium-selenite
branch of the tree envisioned in different colors specifies traditional human methods. The
green lines indicate large single-crystalline products, and the blue lines represent poly-
crystalline products. The outcomes suggest that the model tends to accurately predict
crystal formation conditions compared to the human methods, irrespective of the structural
similarity of the templating amines to known examples in the database. Another study [64]
has proposed an unsupervised machine learning model that finds the crucial identical
patterns among the merge, allowing reported crystalline inorganic materials. The study
suggests prioritizing quaternary phase fields comprising two anions for the sake of syn-
thetic exploration to locate solid lithium electrolytes in a collaborative framework, which
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results in Li3.3SnS3.3Cl0.7 material discovery. The interstitial site combination in this defect
stuffed wurtzite permits a low-barrier ion transport pathway in hexagonal close-packing.

The model was trained using phases containing 2021 MxM′yAzA to assist the pri-
oritization of the candidate phase fields, as shown in step 1 of Figure 13, and step 2 is
performed to show the concentrations. The variational autoencoder (VAE) mechanism was
adopted to reduce the dimensionality from an unsupervised neural network, as shown
in step 3 Figure 13. In the third step, a similar non-linear pattern is detected from the
highly dimensional unsupervised instances of the data. The reconstruction error was
computed using Euclidean distances, which was later minimized using VAE based train-
ing encoding method, as shown in step 4 of Figure 13. The study [65] has suggested a
deep learning-based forecasting model to identify mechanical properties of industrial steel
plates such as elongation (EL), yield strength (YS), impact energy (Akv), according to
the process parameters along with raw steel combination. The model was later applied
on a real steel manufacturing plant online. The proposed optimal deep neural network
(DNN) model comprises 27 input features, having 2 hidden layers spanning 200 nodes and
four target variables.

Materials 2022, 14, x  24 of 32 
 

 

The model was trained using phases containing 2021 MxM′yAzA to assist the prior-

itization of the candidate phase fields, as shown in step 1 of Figure 13, and step 2 is per-

formed to show the concentrations. The variational autoencoder (VAE) mechanism was 

adopted to reduce the dimensionality from an unsupervised neural network, as shown in 

step 3 Figure 13. In the third step, a similar non-linear pattern is detected from the highly 

dimensional unsupervised instances of the data. The reconstruction error was computed 

using Euclidean distances, which was later minimized using VAE based training encod-

ing method, as shown in step 4 of Figure 13. The study [65] has suggested a deep learning-

based forecasting model to identify mechanical properties of industrial steel plates such 

as elongation (EL), yield strength (YS), impact energy (Akv), according to the process pa-

rameters along with raw steel combination. The model was later applied on a real steel 

manufacturing plant online. The proposed optimal deep neural network (DNN) model 

comprises 27 input features, having 2 hidden layers spanning 200 nodes and four target 

variables. 

The model used an Adam optimizer, and the starting value of the learning rate was 

fixed as 0.0001. The model employed the Z pre-processing method to make an optimal 

model with R2 as 0.907. The DNN model was evaluated using RMSE MPA percentage 

error which resulted in 21.06, 16.67, respectively. The RMSE percentage error resulted in 

4.7% for YS, 2.9% for ultrasounds testing (UTS), 7.7% for EL, and 16.2% for Akv. The out-

come results revealed that the model outperformed the existing machine learning models. 

The insights of their proposed model were further revealed using different local linear 

models by establishing a connection among mechanical properties and process parame-

ters. The designed model was later applied to a real scenario where online supervision 

and steel mechanical properties were controlled. The deployed model was harnessed to 

monitor the creation of desired steel plates and mechanical properties. The study [66] has 

introduced an ANN model and applied it for ceramic material detection. The overall flow 

of the model can be seen in Figure 14, which shows matrix material’s content range can 

be acquired if there are two phases in ceramic tool material. 

 

Stage I. 

Training the model 

Stage II. Ranking

Unexplored phase fields 

Mx M y, Az, A t

phase selection

NaV2 O4 F

                            M-M   A-A 

             phase f ields

V ONa F

V O Na F 

Reconstruction 
Error

=
||p  -  p   

Step1:

 Step2. Training set

Step3. Training the 
model minimization 

of the
Reconstruction errors

p=

p=

Step4. 
Decoded 

image 
vectors

Selection 
of 

elements 
for Li ion 

conductors

Set of 
unexplored
quaternary 
phase fields

Ranked phase fields: 
likelihood of synthetic 

accessibility

Figure 13. Unsupervised machine learning captures the complex patterns of similarity between
element combinations.

The model used an Adam optimizer, and the starting value of the learning rate was
fixed as 0.0001. The model employed the Z pre-processing method to make an optimal
model with R2 as 0.907. The DNN model was evaluated using RMSE MPA percentage error
which resulted in 21.06, 16.67, respectively. The RMSE percentage error resulted in 4.7%
for YS, 2.9% for ultrasounds testing (UTS), 7.7% for EL, and 16.2% for Akv. The outcome
results revealed that the model outperformed the existing machine learning models. The
insights of their proposed model were further revealed using different local linear models
by establishing a connection among mechanical properties and process parameters. The
designed model was later applied to a real scenario where online supervision and steel
mechanical properties were controlled. The deployed model was harnessed to monitor the
creation of desired steel plates and mechanical properties. The study [66] has introduced
an ANN model and applied it for ceramic material detection. The overall flow of the model
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can be seen in Figure 14, which shows matrix material’s content range can be acquired if
there are two phases in ceramic tool material.
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Figure 14. The flow chart for predicting the mechanical property. The model has investigated the
non-linear relationship among the raw material’s content composition, component, and the fracture
complexities of the composite ceramic and flexural strength. The proposed ANN model predicted the
mechanical characteristics of the alumina matrix ceramic tool. The neural network model was trained
using a toolbox available in MATLAB (MATrix LABoratoryMA software). The two and three-phase
composite ceramic tools of the mechanical properties like Al2O3–(W, Ti)C and Al2O3–TiC–ZrO2 were
predicted to verify their proposed model.

On the other hand, the second phase can be fixed if there are three phases in composite
ceramic tool material. Then, the remaining two steps can be amended and optimized to fore-
cast the mechanical characteristics for varying content conditions. The study’s outcomes
revealed that the ANN-based resulted model is quite helpful in simulating the composition
content and predicting the mechanical aspects of the ceramic tool. Another study [67],
backpropagation artificial neural networks (BP-ANNs), and orthogonal experiment design
(OED) model have suggested addressing multi-purpose objective problems raised because
of the preparation of alumina slurry. The relationship between the slurry model’s influ-
encing factors and extrusion parameters harnessing the integrated model. The model’s
effectiveness was ensured by consistently the foretold optimal values with the empirical
results. The outcomes suggest that the Alumina slurry model is helpful and holds signifi-
cant shape retention and extrusion properties for 3D printing. The model was presented to
be used to other various other multi-objective problems about ceramic materials. A linear
strain distribution is considered toward the thickness of the passive plate.

In the paper [68], a linear strain distribution is assumed across the thickness of the
passive plate of the lead zirconated titanate (PZT) actuator given the mechanical properties
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such as Young’s modulus, and Poisson ratio of the actuator and the passive plate are close.
An analytical equation for the passive plate deflection is derived from this assumption.
The analytical result shows excellent agreement with experimental data and the results
from limited element simulation. Based on this analytical model, the effects of several
vital parameters and non-dimensional variable groups on the actuator performance have
been inspected. These parameters and variables include the dimensions and mechanical
properties of the PZT disk, the passive plate, and the bonding layer material.

The critical factors in establishing the strengthening energies of solutes in varying
metallic GBs were predicted using three machine learning models, including SVM with
radial basis function (RBF) kernel, SVM, and artificial neural network (ANN). The historical
density functional theory calculations containing 142 strengthening energies were em-
ployed to train ML models. Among all the models, the non-linear kernel-based SVR model
outperformed the other two models regarding atomic size and bond-breaking effect by
attaining r2 as 0.889. The prediction output was significantly enhanced by only employing
bond-breaking impact. Furthermore, mean impact values’ scrutiny was carried out to
reveal quantitatively explore the relative significance of all the input parameters to attain
the valuable prediction output.

ML-based models, including SBL, clustering analysis, and classification for alleviating
the supply chain risk, and finding variations and validation and consistent material quality
is presented by [69]. Moreover, a certificate of assurance and eCoA SPC control systems
were introduced to validate the quality of raw materials. The main focus of the study is
to attain accurate in-time monitoring of the capability of the supplier process by reducing
foundry manufacturing risk via executing the optimal quality control mechanism to monitor
control raw material COA and timely identification of raw materials encountered during
the inspection stage at the foundry site.

The study [70] focuses on determining the ultimate tensile strength pertaining to the
strain hardening of a material. In other words, the authors developed a methodology by
dividing a data set into different categories randomly. Then, a fully connected topology
was formed wherein further training and prediction rounds were carried out, and aver-
age performance was acquired. By doing this, the behaving pattern of the network was
revealed that the network has 150 perceptron’s in the hidden layers resulting in less than
4% predictive error. Another study [71] has proposed an ANN-based approach to model
the micromechanical behavior of CMCs. The ANN model was learned on the complex
multi-parametric interaction between multiple microstructural features by considering the
example of SiC/SiC ceramic composite. First, the macro-mechanical behavior of the SIC
(matrix)/SiC (fiber) composite was determined with the help of ANN. Then, a microme-
chanical finite element analysis is carried out using the model’s training samples, resulting
in realistically interfacial debonding and sliding. Finally, the network has learned and
evaluated by predicting the behavior of the composite for novel specimens. This study
has critically addressed the steps involved in ANN training, such as data set preparation,
configuring network, training, and testing.

Similarly, machine learning and artificial intelligence-based tools have been utilized
to form mechanical material models and temperature-dependent thermal for structural
steel [72]. As a result, steel structures’ structural and thermal response was predicted. The
outcomes were evaluated with the help of various case studies conducting harnessing a
highly non-linear finite element model designed in an ANSYS simulation environment.

This study has also employed compositional and thermodynamic features of a given
material to predict the synthesizability, such as the entropy-forming ability of the disordered
metal carbides using machine learning-based methods. First, the relative significance
of the compositional and thermodynamic attributes was scrutinized for the prediction.
Then, the density functional theory was then adopted for ML predictions wherein the
model’s suitability was delineated. In the end, the model was employed for predicting
the entropy-forming capability for 70 novel compositions. The experimental synthesis
and different density functional theory computations were utilized for evaluating the
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prediction accuracy. Specifically, seven compositions were picked as they hold all three
Group VI elements (Cr, Mo, and W), which do not provide room temperature-stable rock-
salt monocarbides—adding the Group VI elements into the rock-salt structure to stipulate
the situation to tune potentially material output and electronic structure. Another study [73]
has presented a machine learning-based data-fusion model that served for nondestructive
testing applications in the context of characterization and detecting the flaws. The features
were derived from UTs and eddy current testing (ECT) signals. The Partial Least Squares
were utilized for feature extraction. The proposed data-fusion model was evaluated to
know the performance for characterization and localization rather than one inspection
technique only as done by other similar studies.

A latent space representation-based model was presented in [74], wherein the contin-
uous representation of materials was learned, and the model was built for new material
discovery. The capability of autoencoders to form empirical materials is delineated using
vanadium oxides through the reidentification of empirically aware structures during the
model training without their consideration. The overall flow of the model is shown in
Figure 15. Around 20 thousand hypothetical materials were formed, resulting in various
novel metastable VxOy materials which could be synthesizable. The comparison was drawn
using GAs, which resulted in the computational ability of the generative models holding
the potential to scrutinize the chemical compositional space efficiently via learning aware
materials’ distribution to predict crystal structure. The authors claim that the proposed
model is quite useful for inorganic functional materials using generative models from the
machine learning paradigm.
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Figure 15. Hierarchical two-step image-based materials generator. To summarize the applications
of ML and AI in material science, it is worth mentioning that scholarly and industrial researchers
have applied machine learning techniques for data analysis. Using algorithms that learn based on
data, machine learning methods automate building analytical models. Classification and regression
are areas in which machine learning has good applicability, and therefore it has played a critical
role in many fields of Material science [75–77]. Materials science has been using machine learning
applications since the 1990s. For instance, the machine learning method predicted the corrosion
behavior and tensile strength in ceramic matrix composites [29,30]. Therefore, machine learning has
been used to study a wide range of topics in materials science, such as the discovery of new materials
and the prediction of material properties. Table 7 summarizes machine learning applications in
material science categorized into the material field, application, description, and the AI and ML
mechanism used.
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Table 7. Summary of machine learning applications in material science.

Material Field Application Description AI and ML Mechanisms

Ceramics Design of architectured ceramics

Accelerated design of architectured
ceramics with tunable thermal
resistance via a hybrid machine learning
and finite element approach

ANN

Composite Compressive power of concrete [59]
Forecast the 28 days compressive
finding of concrete with 173 different
mix designs

ANN, ANFIS

Solid-state Crystalline structures recognition [62]
Recognition of new crystalline
structures from big data sets of
coordinates

Probabilistic model

Thermodynamic Thermodynamic’ stability
forecasting [63]

Thermodynamic’ stability for-casting
model from a database of thousands of
DFTs

Predictive modeling

Inorganic materials Patterns of similarity between element
combinations [64]

Unsupervised ML model for identifying
patterns among the element
combinations of crystalline inorganic
materials

Unsupervised ML model

Ceramics Ceramic material detection [66]

Investigating the non-linear relationship
among raw materials content
composition, component, and the
fracture complexities of the composite
ceramics

ANN

Ceramics Mechanical property prediction [67]
Simulating the composition content and
predicting the mechanical aspects of the
ceramic tools

ANN

Solid-state materials Two-step image-based inverse design
of functional materials [74]

Inverse design and latent space-based
representation-based ML model for
functional materials

ML-based inverse design

Clay Clay prediction [78] ML model deployed on a low-cost
portable device for clay prediction

Multi-variate calibration
techniques

Soil matrix Soil organic carbon mapping (SOC
mapping) [79]

SOC mapping based on remote sensing
data based predictive modeling SOC prediction models

Painting materials Colorimetric analysis materials [80]
Photometric UVC based on PLS
regression for colorimetric analysis
materials

PLS regression

6. Conclusions and Future Research Direction

The use of AI methods in materials science has received notable attention from the
scientific community. Many ML-based methods have been presented to analyze big data
retrieved from material databases and datasets to extract hidden knowledge and its utiliza-
tion in the relevant paradigms. These tools provide correlations between many complexes
and interrelated structures of materials composition. However, there is a lack of a detailed
analysis of the existing material discovery methods to have precise insights related to
contemporary state-of-the-art benchmark data set, pre-processing, prediction algorithms,
and simulation methods. This study presents an in-depth analysis of the datasets available
for material science applications, data pre-processing and AI-based modeling techniques,
and materials simulation tools. The study’s outcomes revealed that deep learning-based
methods had shown significant improvements and potential for predicting compositions,
processes conditions, and performance properties of materials to identify the changes in
specific parameters for modeling materials behavior. Moreover, advanced AI mechanism-
based models have been discussed in detail for designing and optimizing properties
prediction for advanced materials discovery.

However there is a research gap of AI mechanisms exploration for the whole life
cycle of material science. With the expansion of computing, interdisciplinary research to
the material science subfields, and different stages of material discovery and assessment,
promising future directions have been discovered. The research gap should be bridged
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using AI and advanced computing techniques through convergence mechanisms. New
research methods should be introduced to effectively combine the AI and ML mechanisms
in the life cycle of material discovery to accelerate the entire process. Systematic frame-
works should be proposed based on AI, ML, and advanced data science mechanisms to
supersede different computationally expensive modeling mechanisms and simulations
tools. Moreover, Composition assessment and material discovery mechanisms can be
proposed based on the cutting-edge AI mechanisms.
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