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Abstract: Industry 4.0 in healthcare involves use of a wide range of modern technologies including
digitisation, artificial intelligence, user response data (ergonomics), human psychology, the Internet
of Things, machine learning, big data mining, and augmented reality to name a few. The healthcare
industry is undergoing a paradigm shift thanks to Industry 4.0, which provides better user comfort
through proactive intervention in early detection and treatment of various diseases. The sector is
now ready to make its next move towards Industry 5.0, but certain aspects that motivated this review
paper need further consideration. As a fruitful outcome of this review, we surveyed modern trends
in this arena of research and summarised the intricacies of new features to guide and prepare the
sector for an Industry 5.0-ready healthcare system.
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1. Introduction

The Fourth Industrial Revolution, otherwise known as Industry 4.0, is advancing
healthcare to unprecedented comfort levels on the foundation of digitisation, artificial
intelligence, and 5G telecommunication [1,2]. In this context, Table 1 summarise various
definitions used currently in the context of Industry 4.0 to explain many of its subsystems.
These factors have helped in many ways to combat the ongoing crisis the world is facing in
the wake of the COVID-19 pandemic [3–6].

Different digital projects have been developed globally by incorporating digital diag-
nostic systems which have significantly improved agility in X-ray and MRI investigations.
This has, in turn, allowed quick diagnosis of patients’ healthcare data retrospectively as
well as clinical anamnesis to provide prompt feedback [7,8]. A question worthy to be asked
at this stage is: what is next? The answer to this question primarily drove this review. As
shown in Figure 1, the review begins by providing an insight into the interoperable devel-
opment of the current ecosystem involving people, industry, business, and the government,
which forms the backbone of Industry 4.0 in sharp contrast to the previous industrial revo-
lutions. In modern times, machines have become sufficiently intelligent to make decisions
in real time and to feed those decisions through cloud-based technologies [9] using neural
networks [10,11] and decision-support systems [12]. Figure 2 shows the core components
and essential elements of an Industry 4.0 system.
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Table 1. Definitions of critical elements in an Industry 4.0 system.

Name Alternative Term Definition Ref.

Internet of Things
Industrial Internet of Things;

IoT;
IIoT

A single device or a system of devices having network
access and communication with information

networks and the internet.
[13–15]

Artificial intelligence
AI;

Deep Learning;
Machine Learning

AI is a collective term for computer systems that can
perceive their environment, think, learn, and can take

action in response to stimuli or pre-assigned goals.

[16–21]

[22–25]

Neural networks Artificial Neural Network;
ANN

A mathematical model or computing system, as well
as its software or hardware implementation, built on

the principle of organization and functioning of
biological neural networks—networks of neurons of

a living organism.

[10]

Blockchain Cryptographic ledger
A continuous chain of blocks containing all the

records of transactions and safe distribution
among participants.

[26–28]

Additive manufacturing Digital manufacturing;
3D Printing

The process of manufacturing parts, which is based on
the creation of a three-dimensional physical object

from a digital geometric model, by adding material in
a layer-by-layer manner.

[29–34]

Advanced materials
Composites;

High Entropy Alloys;
Hybrid materials

New groups of materials which are out of standard
classification—metals/alloys, ceramics, polymers. [32,35–44]

Radio-frequency
identification RFID

A communication system that stands for radio
frequency identification method. This is a method

whose task is to recognize living or inanimate objects
using radio waves. Fingerprints, retinas, voice, or

clothing are used as Auto-ID.

[45,46]

Big data analytics Big data;
BDA

This technology deals with a large array of data,
enabling the derivation information relevant for rapid

decision making
[47–49]

Digital medicine
Digitalisation in medicine;

Hospital 4.0
H-IoT

The collective term for Industry 4.0 technologies used
in medicine. [15,50,51]

Virtual & augmented
reality (including

medical application)
VR & AR

Perceived mixed reality created with the help of a
computer using “augmented” (visual/audio) elements
of perceived reality, when real objects are projected in

the field of perception.

[52–55]

Virtual and VR
Experiments VE & VRE Virtual experiments and experiments with body

part surrogates. [56–58]

In fact, the use of deep neural networks has enabled AI to make unprecedented
improvements to quality of learning. For example, working with Alexa, Google Search,
and Yandex Disc has helped learning over time and the more these tools are used, the more
the system becomes trained.

There are numerous examples of use of Internet-of-Things (IoT)-enabled systems
which can be seen in day-to-day life. An Amazon store without cash registers or cashiers
with the capability to charge users simply based on their body movements is an excellent
example, while another involving the use of IoT include Uber, Ola, and GetTaxi. Recently,
Lv et al. [59] investigated the issue of quality service and network loading for next genera-
tion IoT systems. Additionally, environmental aspects of Industry 4.0 are now also being
explored [2,60].

Table 2 highlights state-of-the-art use of advanced technologies in healthcare and
medicine revealed by different research papers. This review paper is the first to highlight
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the prospects of the Industrial Internet of Things (IIoT) in the healthcare sector. Table 2
highlights the novelty of this review paper vis-a-vis increasing interest of the scientific
community in this area.

Table 2. The key technologies discussed in the recent review publications (adapted and expanded
from [15]). Here, “V” stands for the presence, and “X” for the absence of discussion on the relevant
topics that make up an Industrial 4.0 system.

Ref. IoT IIoT
AI

Blockchain Digital
Manufacturing VR & AR Hospital 4.0

H-IoT RFID Big
DataDeep

Learning
Machine
Learning

Neural
Networks

[15] V X V V V V X V V V V

[61] V X X V X X X X X X X

[62] V X X X X X X X X X X

[63] V X V V X X X X X X V

[25] V X V V X X X X X X X

[51] V X V V X X V X V X V

[64] V X X V V X X X X X V

[65] V X X X X X X X V V V

[66] V X X X X X X X X X X

[67] V X V V V X X X V X X

[68] V X X X X X X X X X X

This
work V V V V V X V V V X V

Recently, Austin et al. [7] investigated collaboration between academia, SMEs and
digital health industries for the promotion of innovative digital solutions in healthcare.
Qadri et al. [15] presented an extensive review of IoT applications in healthcare with
careful articulation of the previous literature in this field. They introduced the term H-IoT
(Healthcare IoT) to emphasize the importance of IoT in the field of healthcare and medicine.
Marques et al. [62] presented a review on IoT applications in healthcare highlighting the
need of medical professionals, students, and engineers. They discussed the advantages
of IoT platforms in achieving personalized healthcare and developing smart devices for
diagnosis and monitoring. They also pointed out the limitations on social readiness [62].
Hau et al. [69] showed how the digital tools of Industry 4.0 could be used to combat COVID-
19 pandemic. Von Eiff et al. [51], in their short review, discussed prospects of digitalisation
in healthcare. Their work partly discussed digital development and the use of Industry 4.0
tools in medicine development.

From this brief discussion, the importance of Industry 4.0 in the healthcare sector
is obvious. Thus, this review highlights state-of-the-art digitalisation of medicine and
healthcare and alludes to the sharp transition this sector is facing while moving towards
Industry 5.0. This review also aims to discuss the trends in digital medicine and healthcare
and to provide future directions in this area.

2. Ingredients of an Industry 4.0 Healthcare System
2.1. Internet of Things (IoT)

IoT is a term that refers to any device with network access [13,26,70,71]. Modern
devices/objects/networks of objects/systems are equipped with sensors, software, and
network equipment. The network equipment and these sensors are capable of compiling
and processing data arrays using internet [2,70,72–75] protocols.

5G has made an enormous impact on IoT technology and economy due to its supe-
rior level of connectivity and improved functionality. The key 5G technology drivers are
superfast broadband, ultra-reliable low latency communication, massive machine-type
communications, high reliability/availability, and efficient energy usage [73,76–78].
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The main area of applications of 5G-enabled IoT are the tracking of goods and materi-
als, asset monitoring, remote data collection, self-service systems, remote service delivery
systems, real-time market data, and flexible pricing models [71,79]. As per the review of
Likens et al. [80], it would appear as shown in Figure 3 that the Internet of Things will
lead to be the most promising techniques that will change the gamut for industries and
academia in the post-Fourth Industrial Revolution era.
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Most modern industries utilise modelling and simulations for process monitoring,
control, diagnosis, optimisation, and design. Industry 4.0 and massive digitisation have
made it possible to collect and process large arrays of data, resulting in the development of
data-driven decisions and modelling tools [81]. It is worth mentioning that data-driven,
statistical, or empirical models do not require broad initial knowledge about the studied
system, but strongly rely on the presence of data collected from the process [82]. Modern
simulation tools are used for predicting natural disasters which might lead to many victims
(e.g., tsunami) [83–86]. A new trigger for modelling advancement re-emerged in recent
years due to the development of machine learning techniques and a variety of Industry 4.0
technologies. Big data and modern modelling and analytical tools provide new horizons
even to address old legacy issues and open new scenarios for realising innovative ideas.

2.2. Artificial Intelligence

Artificial intelligence (AI) allows computers to learn from their own experience, adapt
to given parameters, and perform tasks that were previously only possible for humans.
In most AI implementations such as computer chess players or self-driving cars, the
role of deep learning and natural language processing is critical. AI allows automation
of repetitive learning and searching processes using data acquisition to identify trends.
Forms of AI in use today include digital assistants, chatbots, deep learning, and machine
learning [16–23,87–89].

2.3. Big Data Analytics (BDA)

Big data analytics (BDA) is one of the key components of Industry 4.0. Big data
technology deals with large arrays of data, enabling the derivation of information relevant
for rapid decision-making. The derived data is transformed into the relevant goal-oriented
knowledge to help achieve agility in problem solving [47,48]. The successful application of
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BDA in online trade can be seen through AliExpress, Amazon, and eBay. Technologies for
image data are also rapidly developing enabling target recognition, photo filtering, and
stereoscopic three-dimensional (3D) contents [90–93].

2.4. Digital Manufacturing and Advanced Materials Processing

One of the main outcomes of the advances in digital manufacturing is 3D printing tech-
nology, also called additive manufacturing (AM) [29–33]. AM enables the processing of poly-
mers, ceramics, glass, and metallic alloys. Using approaches such as the Design for Additive
Manufacturing (DfAM) [94] and Materials Design by Additive Manufacturing (MaDe-by-
AM) [95], novel materials can now be manufactured with ease, which includes tailored com-
position as well as structural and functionally graded materials [32,35–39,96–98]. By shape
and composition complexity, the design of new porous materials and metamaterials can
also be fabricated. Moreover, the flexibility of maneuvering the printing head allows on-site
printing of freeform shapes, which are potentially useful to develop custom-sized implants
or prostheses [31,99,100]. Digitalisation of industrial manufacturing is developing due to the
implementation of design strategies for new materials development [95,96,101,102]. Now,
these additive technologies allow the printing of concrete buildings/structures [103]. Addi-
tive manufacturing of concrete structures is much more promising for fast construction in
complex natural environments compared to other techniques [104–106].

2.5. Green Aspects of Industry 4.0

Among other aspects, the environmental aspects of Industry 4.0 deserve a special men-
tion. Some of those aspects in relation to food-water-energy nexus are highlighted below:

1. The survival of humanity will largely depend on how we address the following
concerns in the upcoming years:

• Global energy shortage and depletion of raw materials (energy crisis) [107–109];
• Reduction of arable land, decrease in soil fertility, and food shortage (food

crisis) [110];
• Depleting availability of clean water [111]
• Catastrophic state of the environment (ecological crisis) [60,112–114].

2. Main spheres of life such as industry, transport, the fuel and energy complex, the
economy, public administration, and security have taken new forms. This is due to
the penetration of digital technologies into everyday life and the development of
alternative energy and electrical vehicles [115].

3. Modern industrial development cannot proceed without efficient re-use and recycling
procedures [116–119].

3. Digitalisation in Medicine

The term Medicine 4.0 is closely related to Industry 4.0; it describes the fourth stage in
the development of medicine. Modern medicines which emerged around 150 years ago
are undergoing a digital journey with the help of robotics, internet and artificial intelli-
gence. The introduction of AI systems in medicine is one of the most important modern
trends in world healthcare. Modern medical treatments cannot achieve their full poten-
tial without using advanced computing technologies. AI technologies are fundamentally
changing the global healthcare system, allowing a radical redesign of the system of medical
diagnostics, the development of new drugs, advanced analysis, testing, and treatment to
enable advances in the field of transplantation surgeries [50,51,120,121]. Computational
simulation using finite element analysis (FEA) is a crucial part of the digitalisation process
in medicine [122,123]. FEA allows medical engineers/industrial designers to study many
inter-related concepts including, for instance, device stability and durability (e.g., predict-
ing end-of-life of patient-specific implants). FEA enables modelling of stresses within a
material under different thermodynamic conditions [124]. In an FEA model, the part is
simulated and analyzed using representative physical behavior [122,125–127]. Such an
approach demonstrates weak areas of the part, and it allows enhancement of the design.
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Digitalisation and AI generally improve the quality of healthcare services while reduc-
ing costs for medical clinics. Figure 4 highlights key technologies enabling digitalisation
of medicine.
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3.1. On-Demand Healthcare

According to Fox et al. [128], consumers are increasingly using online platforms to
obtain medical information due to the following reasons:

• 47% wish to know more about their doctor.
• 38% would like to check a hospital and its medical facilities.
• 77% would prefer online medical appointments.

In the new regime of digital economy, medical professionals, just like freelance profes-
sionals, can provide their skills, talents, and expertise directly to the patients.

Several healthcare companies provide an online marketplace that connects medical
workers directly with the required medical facilities. This results in a much more effec-
tive way to provide on-demand medical procedures and services to consumers. In turn,
healthcare workers have now become a part of the digital healthcare industry providing
patient-oriented treatments [129].

3.2. Telemedicine

Telemedicine is a rather modern trend that became especially popular during the
COVID-19 pandemic [130]. Such an approach enables support and care of patients in a non-
crucial state. Telemedicine minimise the number of contacts between ill patients. Moreover,
such educational support is important for chronic patients, and to prevent diseases [131].
According to the data of John Hopkins, before the first global lockdown in March 2020,
the number of televisits was approximately 50–70 per month. By May 2020, this number
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radically increased to 94,000. Moreover, after healthcare services were broadly reopened,
the number of monthly televisits remained about 35,000 [132].

Technologically, this kind of telecommunication provided the direct transmission of
medical information in various formats (medical history, laboratory data, X-ray images,
CT scan results, video images, ultrasound, etc.), as well as real-time video conferencing
between medical institutions or a doctor and patients.

The use of telemedicine enabled the provision of consultative medical services in those
areas where patients do not have the opportunity to receive the help of focused specialists
directly at a medical institution. Telemedicine is of no less importance even in developed
countries. With its incorporation, treatment costs have significantly reduced, the quality of
diagnostics has improved, and remote monitoring of health has become accessible. This is
especially important for elderly patients and patients with chronic diseases. For example,
St. Luke University Health Network in Pennsylvania regularly hosts video conferencing
to help elderly patients. They recognize that this social group is less likely to use mobile
applications and is more comfortable with technologies that target desktops or laptops.

According to the Global Telemedicine Market Outlook, the global telemedicine market
reached USD 56.2 billion in 2020 and is expected to reach USD 175.5 billion by 2026. The
annual growth rate is about 19.2% [133]. Patient telemonitoring accounts for the main share
of 32–48% of the world market (see Table 3). The leading countries in terms of spending on
telemedicine and the development of the telemedicine technology market are China and
the United States [133].

Table 3. Telemedicine directions.

Telemedicine Directions Application

Teleconcilium
Communication between consultant doctors

from different medical institutions, or different
professional areas, and the attending doctor

Telemonitoring Monitoring patients with chronic diseases

Teleconsultation Remote doctor–patient consultations

Medical archive, patient’s personal account Maintaining and storing patient health records

Data integration
The ability to merge and exchange information

between different clinics, health authorities,
insurance companies, etc.

Maintaining a register, making an
appointment with a doctor Remote appointment with a doctor

Remote access to equipment Control over the condition of equipment,
remote diagnosis of the patient

Tele-teaching Conducting lectures, video seminars,
conferences, including operating rooms

The global telemedicine market can be segmented according to several criteria, including:

• The nature of remote interaction (clinic–clinic, clinic–patient’s home);
• Technological parameters of interaction (monitoring systems, communication and

communication channels, measuring instruments and sensors, video conferencing
systems, databases, mobile and “wearable” technologies);

• Purpose of application (medical education, diagnostics, monitoring, consultation,
treatment).

Depending on these, different approaches to the design and development of software
solutions are augmented and, accordingly, different tools are used. However, as these
segments are closely intertwined, the developer must have skills and expertise in a wide
variety of development areas, including experience with embedded solutions, mobile cloud
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technologies, and protocols specific to the medical industry. It can be concluded that for
telemedicine technologies to flourish, it is crucial to provide:

• Remote interaction of medical workers with each other, with patients, and/or their
legal representatives;

• Identification and authentication of specified persons;
• Documenting their actions during consultation and remote medical monitoring of

patient’s health.

3.3. Data Privacy & Cybersecurity in Medicine and Healthcare

With progress in big data and its advancement into medical innovation, there are po-
tential risks to patient data privacy [134]. Healthcare is a prime target for cyberattacks, and
even with continued investment in cyber security, critical vulnerabilities remain in many of
the medical devices that hospitals rely on to treat patients [135]. Modern healthcare requires
advanced solutions that reduce risks due to cyberattacks. Alongside this, GDPR patient
sensitive data also needs to be protected so that the privacy of patients is not compromised.

For healthcare organisations, it is extremely important to ensure proper handling of
patient data not only according to GDPR, but also because it is crucial for transparency
with patients [136]. It can be said that the narrow scope of data privacy laws can be an
issue. That can be traced to the U.S. health data privacy law (HIPAA), which regulates data
between healthcare professionals and patients, but not un-identified data. For example, the
data shared with a fitness trainer, tracking from smartphones, and data from various apps
can be considered unprotected.

However, the relevant laws have become more and more effective in medical data
privacy. The European Union’s General Data Protection Regulation, which passed in 2016,
is a good example. EU law now requires data processors and controllers to provide users
with their own data, clearly disclose data collection, set high-privacy defaults, and more.

Healthcare gadgets are not fully unprotected, similar to other IoT devices, and that
affects data privacy and even the safety of the device. Risks and threats always exist. The
trends in the rapid growth of the audience facing cyberattacks can be explained by the
growing usage of electronic medical records and an increase in the amount of medical
equipment and IoT devices connected to hospital networks. Additionally, the spread of
viruses that interfere with the work of not only computers, but also medical devices is a
continual problem. However, to eliminate such issues, cybersecurity is actively regulated by
healthcare- and government-associated organizations such as the FDA [137]. This results in
reduced risk of potential cybersecurity threats in legally marketed healthcare devices. It can
be concluded that there is a necessity of regulated procedures to protect patient data [138].

3.4. Big Data Analytics (BDA) in Healthcare

BDA in healthcare enables improved diagnostic practice efficiency. Moreover, even
therapeutic treatment based on BDA is much more accurate. It is especially relevant for
cases involving tumours, including hard cancer pathologies. The main points of extreme
importance in this regard are timely diagnosis and accurate choice of treatment [50,121,139].

BDA is advantageous for genetic analysis to compute genetic pathology and generate
possible problem-oriented knowledge [121,140]. It should be considered that even superfast
computers may take hours to do an intense data analysis which can now be accelerated
using GPU computing [141].

BDA helps to decrease the rate of medication errors and to predict future admission
rates [50]. It can be concluded that BDA helps to make healthcare more predictive. Predic-
tive analysis about burden on healthcare systems and admission loading allows healthcare
providers to make services more effective and to optimize resources for active deployment.

It should also be considered that predictive analysis could help companies to smoothly
mobilise manpower resources by predicting possible outbreaks of colds/flu that could lead
to manpower shortages.
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Pharmaceutical manufacturers are looking to gain access to patient health data and
are striking deals with technical companies knowledgeable in BDA, a tool that creates new
possibilities for understanding how drugs work in real life. One recent example is the
Roche deal announced in 2018, wherein the company acquired all shares of Flatiron Health,
a clinical data collection company for cancer patients, by paying USD 2 billion [142]. Exam-
ining real-world evidence allows pharmaceutical manufacturers to prove the usefulness
and value of their drugs. The most active research in this area is carried out in the fields
of oncology, heart disease, and respiratory disorders. Actual drug use data is collected
outside of traditional randomized clinical trials, which are today’s gold standard for drug
evaluation. Neural networks are now effectively used for the development of automated
drug discovery. Researchers and medicinal chemists work together to identify problematic
issues and create more proficient models for newer drug design [143]. Advances in inter-
disciplinary fields that combine computational and genomic technologies are expected to
lead to newer horizons in personalized medicine [121,140,144,145].

In the United States, the Human Microbiome Project was launched simultaneously
with the renowned Human Genome Project [146]. During its implementation, a special Data
Analysis and Coordination Center was created within the framework of the US National
Institutes of Health. A joint Chinese–European project MetaHit is being implemented,
where active research is being carried out in this direction.

3.5. Augmented Reality and Virtual Reality (AR & VR)

Smart glasses with AR functionality allow warehouse workers to achieve a higher level
of accuracy. For critical life applications like aircraft production, AR helps manufacturers
to precisely assemble and repair planes and to achieve improved reliability during re-
pairs [147]. VR is transforming healthcare and changing the way patients are being treated.
For millions of people suffering from chronic pain, VR is a working alternative to drug
medication. VR is a safe and efficient treatment for pain and a powerful rehabilitation
instrument for anxiety, post-traumatic syndrome, stress, strokes [54]. Healthcare profes-
sionals and medical students use VR simulations for improving their skills and for complex
surgery planning. The global virtual and augmented reality healthcare market is expected
to reach USD 5.1 billion by 2025 [148]. Recently, Nevada Spine Clinic surgeons performed
a posterior lumbar fusion procedure using a Medtronic Mazor X robotic platform and
an xvision augmented reality headset [149]. This is usually a rather invasive and time-
consuming operation, lasting six to seven hours, but in this case, using the xvision headset
in tandem with the Mazor X robotic platform, the surgery took less than two hours. The
xvision headset allows the surgeon and their team to locate implants more accurately, which
would have otherwise taken longer time. Before the procedure, the orthopedic surgeon
and neurological surgeon used a robotic platform to carefully plan the exact placement
of the implant and screw system. During surgery, an augmented reality headset allows
the surgeon to refer to a 3D anatomical plan that has been previously created. As a result,
the entire process becomes minimally invasive and much more efficient. The incidence of
complications and the recovery time of patients reduced sharply due to the reduction in
the time spent in the operation theatre, as did the minor damage to soft tissues compared
to that with the open access.

In late September 2021, Kinomatic launched a virtual reality-based scaffolding plat-
form that allows surgeons to develop customized plans for knee and hip arthroplasty [150].
This platform can work with any implant system and can be adapted for a variety of
surgical techniques and surgical approaches. The company’s patented VR app allows sur-
geons to view and manipulate surgical plans in unparalleled detail. The platform supports
preoperative modeling for knee and hip arthroplasty using preferred implants, surgical
techniques, and specifications. Patients receive high-resolution computed tomography,
which is then converted into an accurate 3D model of the patient’s joint after completion of
the simulation. The surgeon can determine the exact size and orientation of the implant
which will most accurately recreate the natural anatomy of the joint.
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VR headsets are used for sports and fitness promotion, and these help children with
autism to learn how to orient in the real world [151]. Application of VR training for
patients with autism results in improvement of daily living skills [151]. VR and AR possess
the potential to help older adults to overcome mobility issues and cognitive ability and
socialisation limitations [124]. It was recently shown how the translational potential of
VR can be used to reduce suicide risk [152]. VR factors like dissociation and derealisation
allowed the simulation of the experience of a suicide opportunity and to reduce this risk.
Virtual reality not only helps humans, but also enables investigation of the behavior and
environment of animals [55].

3.6. VR Experiments

Development in computational technologies have led to new ways of supporting
research and development work, which are now also regarded as “virtual experiments”.
They are quickly emerging and rapidly developing tools within different applications of
virtual reality (VR), including medicine [153]. One can briefly define “VR experiment”
(VRE) as an advanced tool of computer modelling. Due to the advantages of modern
technology in computation and visualisation, VRE has already started to play a significant
role in cases where real experiments are extremely dangerous or prohibitively costly. One
such case is related to research in safety, medicine and healthcare. In that aspect, VR
experiments can be regarded as non-intrusive and non-invasive. This method is based
on the development and utilisation of complex, advanced models of the human body
and its parts. These models are further used for testing various “what if” scenarios in
both static and dynamic cases, making predictions about how the human body will react
to different situations, and how various equipment designed to prevent injuries or help
with surgeries will work. Today, such models have become so sophisticated that one
can speak about “digital twins” [154,155], and the results of modelling are coming close
to experimentation. One of the examples of true success stories in the development of
advanced digital twins and virtual experimentation in medical and safety research is
modern achievement in the study of traumatic brain injuries and in the related development
of modern protection helmets [156–160].

Unfortunately, computer modelling in general and virtual experimentation in particu-
lar are not free of problems. One of these problems is that a model cannot be tested from
within a model. Further developments in this area are represented by “surrogate twins”.
These are body part surrogates (physical models) manufactured using additive manufac-
turing, another modern technology enabled by digitisation [57,58,161]. Such surrogates
can have the same shapes and outlines as their digital counterparts, as they use the same
CAD files (see Figure 5). Properties of materials used in the surrogate mimic soft human
tissues and bones and can be exactly characterized. Surrogates often have encapsulated
sensors and experiments in realistic conditions are performed with them. Experiments with
surrogate twins are also performed without endangering humans, and collected data are
equally useful for both research and development and for cross-validation of both digital
and physical models. Significant progress in the application of surrogate twins is achieved
in the area of safety research and studies of injury mechanisms [57,58,160,161].

These methods harness the power of digitisation, from scanning shapes to making
surrogates of differing complexity with embedded sensors using additive manufacturing
and synthetic materials mimicking different tissues. Such an innovative approach allows
the design of new devices with a high degree of efficacy. The application of surrogate twins
is helpful in both civil and military areas.
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3.7. Wearable Medical Devices

Wearable medical devices are a modern trend in healthcare. They help to collect health
data to monitor patients’ health. These devices provide day-to-day health data and are
active monitoring tools compared to once-a-year or once-a-month clinical checkups.

Medical companies are investing in wearable smart devices that can provide up-to-
date monitoring of high-risk patients, preventing major health episodes. According to a
recent report, the wearable medical device market is expected to reach USD 46.6 million
by 2025, a spectacular jump from approximately USD 8 million in 2017 [162]. Some of the
most common of devices include:

• Smart watches with heart rate sensors and exercise tracking.
• Sweat meters used by diabetics to monitor blood sugar levels.
• Smart patches to measure hydration levels, body temperature, heart rate, and other

biometric parameters.
• Oximeters measure the amount of oxygen in the blood, which is relevant to patients

with respiratory illnesses, e.g., asthma.
• Headphones to monitor blood pressure.
• Biosensors in modern devices are able to not only read pulses and measure steps and

calories, but also measure hydration, electrolyte levels, blood pressure; obtain electro-
cardiogram (ECG) results; and determine muscle load, strength, and fatigue level.

There are many tangible benefits for healthcare companies in spreading the use of
wearable devices:

• These devices make patients themselves responsible for monitoring their actions
leading to a certain health state.

• People are incentivized to engage in more sports and remain fit by actively monitoring
their results, thus setting new goals. Such practices decrease the risk of obesity and
reduce the burden on the healthcare system.

• Relevant medical information is on demand for insurance companies to assess the real
risks to patients’ health.

• Patients who use technologies for preventive treatment and monitoring are offered
discounts on their health insurance.

3.8. 3D Imaging and Prototyping

The whole complex of assisted three-dimensional techniques is used in 3D prototyping
as described below:

• 3D visualisation/medical image processing of a medical problem using medical com-
puted tomography, MRI, and X-ray examination tools [120,139]. Machine learning can
be used for medical image processing. After the required features from a particular
medical case are extracted, this data can be processed for accurate decisionmaking [99].
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• 3D-modelling using modern digital tools like Magics by Materialise and analogues.
A complex model of a damaged area could be realized for further surgical planning.
This is especially relevant for complex cancer cases where a surgeon needs to attempt
resection from multiple sides of a tumor.

• 3D-planning digital systems enable online communication between the surgeon and
the engineer responsible for 3D printing of the implant.

• 3D-prototyping using polymer printers improves the accuracy of custom-designed
metal implants [26,100,146].

• 3D-printing of organs and tissues, also called bio-printing, is a rapidly developing
application for meeting the demands of modern transplantology [163,164].

3D printing is used for additive manufacturing of patient-specific metal/ceramics im-
plants; for stereolithography of drug delivery systems; for polymer/metal-based individual
prosthesis; and for individual surgeons’ tool designs [121].

3.9. Machine Learning & Deep Learning

In biomedicine, machine learning and deep learning are used to simulate human
knowledge and for complex analysis of special medical data and biomedical and biophysi-
cal processes in the human body [15]. Here, AI works for the systematisation of assisted
behavioral processes using complex machine learning (see Table 4).

Table 4. Areas leveraging AI in medicine.

Goals Effect

Analysis (including cross-sectional) of population
data, registration data, Omix data, social networks

New correlations for further scientific
research and medical applications

Analysis of medical images, creation of a system
with an automatic initial level of description and

interpretation of results

Improving the speed and quality of
medical decision-making

Smart scripts for patient surveys -

Clinical decision support system (CDSS), platforms
for organizing CDSS as services -

Operational quality control and intelligent
benchmarking of healthcare delivery

in an institution

Improving the speed and quality
of expert work

Control of long-term consequences of medical care Changing systems for assessing and
analysing the provision of medical care

Systems for increasing adherence of lifestyle of
citizens and patients to prescribed treatment

Reducing morbidity and improving the
effectiveness of treatment

Modelling the activities of a medical organization Improving the quality of management,
optimizing costs

Wearable and other mobile medical devices for
remote monitoring

Online/regular monitoring of
health indicators

Smart training medical simulators Improving the quality of training of
medical workers

Medical data visualisation, including smart
navigation during surgical interventions

Improving the speed and quality of
medical decision-making, medical care

The main goal of AI in biomedicine is to establish relationships between patients’
health, diagnostics, selected treatment program, and follow-up outcomes. Due to AI,
the effectiveness of diagnostics and selected therapeutic treatment could be radically im-
proved [25]. Machine learning for such diagnostic tools as electrocardiography (ECG)
and electroencephalography (EEG) supports doctors in screening and recognition of the
disease, and possible risks reduction [165]. The use of machine learning enables the pro-
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cessing of the extracted data, such as heart rate, pulse, intervals, variability from ECG/EEG
data, etc. A combination of these parameters can help to identify the existence of heart-
related diseases [166].

The diagnosis of cancerous tumours by applying AI (deep learning, image classifica-
tion, object recognition) to MRI images is not inferior to the conclusions of highly qualified
radiologists in terms of accuracy. AI algorithms are also an effective solution for proper
patient-oriented and patient-specific drug selection.

The implementation of novel digital tools is sometimes referred to collectively as the con-
cept of “hospital 4.0”, emphasizing the digital character of progress in medicine [50,51,121].
Areas of using AI in medicine can be specified as follows:

• At the design level: predicting diseases, identifying groups of patients with high risk
of disease, organizing preventive measures.

• At the production level: automation and optimisation of processes in hospitals, au-
tomation and improvement of diagnostic accuracy.

• At the promotion level: price management, risk reduction for patients.
• At the level of service delivery: adaptation of therapy and the composition of drugs

for each individual patient, the use of virtual assistants for planning a patient’s route
in a polyclinic or hospital.

However, at present, the healthcare community has no unanimous opinion of whether
digitalisation in medicine is necessary and helpful for all healthcare industries, or if it is
being forced on the medical community because of general trends. This means that deep
academic research on this topic is in demand by health care specialists [51]. The limitations
of digitisation stem from massive hardware requirements. Traditionally, mechanical parts
such as the bolts and nuts of an instrument can simply be taken off and replaced, but
with electronics this is not the case. Hardware now very quickly becomes obsolete, and
software or firmware updates are no longer available after their intended design period.
Moreover, the electronic circuits themselves become dated, as they can no longer function
at the same speeds as newer hardware. Consequently, despite having the so-called “right
to repair”, the repair of digital hardware is almost impossible and is not cost-effective even
if pursued. This grim situation is leading the accelerated generation of electronic waste and
these aspects require serious consideration in view of the growing focus on a “net zero”
economy.

4. Summary

In the post-4th Industrial Revolution era, the term “5th Industrial Revolution” started
to be used in scientific reported data [167]. In healthcare, the terms “hospital 4.0” and
“medicine 4.0” are gaining popularity by highlighting a new era in medicine- and healthcare-
assisted spheres. The main trends in technological and economic development that can
be observed are that the advent of the Industrial Internet of Things is a very specific
economic and technological evolution that requires new action and will enable incredible
development. Now, business strategy and administration need to be customer-oriented
through new relationships provided by IIoT. It is also noteworthy that artificial intelligence,
big data analytics, and robotics will enable the very fibre of everyday life, especially in
safety-critical applications. Additionally, “virtual experiments” and experiments with body
part surrogates applied for medicine and healthcare represent the true power of digitisation,
from scanning shapes to making surrogates of different complexity with embedded sensors
using additive manufacturing and synthetic materials to mimic different tissues. With
the use of finite element modeling, “virtual experiments” can achieve newer horizons
hitherto unrealised.

In the time to come, newer forms of prescription will become the most exciting
medical advances. Tablets with support for microscopic sensors can provide doctors with
the best information about the condition of a patient internal organs. In this regard, digital
techniques including 3D printing and digital health devices (IoT) will pave the way for
patient-specific, need-oriented, and predictive/provision-based approaches for all spectra
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of the medical industry. BDA will lead various areas of medical digitalisation, having a
significant influence on the healthcare industry’s evolution and development. According
to analysts’ forecasts, the market volume of the Internet of Things in medicine will exceed
USD 158 billion by 2022. The average market growth rate (CAGR) in the period from 2016
to 2022 was estimated by Market Research Engine experts to be 30.8% [168]. This review
identifies the breakthrough technologies of digitalised healthcare as important ingredients.

In the area of big data and modern modelling, the medical industry would benefit
from digital tools tailoring existing technology to the needs of the industry, healthcare
professionals, and patients.

Among the factors contributing to the increase in medical IoT costs on a global scale
are the growing number of chronic diseases, the introduction of favourable initiatives by
governments in various countries and the evolution of artificial intelligence technologies.
Current assessments suggest that further integration of digital instruments and technologies
will improve the efficiency of the healthcare system, the development of patient-oriented
innovations, the transformation of business models, and new workspace organization.

It is necessary to note that the digital technologies discussed in this paper relate to the
most successful industrial application up to now. However, both international coopera-
tion and organizational efforts are required for deeper research and further digitalisation.
Moreover, it is important to mention that higher awareness from society on digitalisation
and Industry 4.0 technologies through improved education and development of “digital”
professionals will be of great importance.

Future research will cover the aforementioned technologies related to digitalisation
in medicine and healthcare, including virtual and VR experiments, biological additive
manufacturing, development of cybersecurity, and pandemic predictive big data analysis.
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