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Abstract: Foamed porous cement materials were fabricated with H2O2 as foaming agent. The effect
of H2O2 dosage on the multifunctional performance is analyzed. The result shows that the obtained
specimen with 0.6% H2O2 of the ordinary Portland cement mass (PC0.6) has appropriate porosity,
leading to outstanding multifunctional property. The ionic conductivity is 29.07 mS cm−1 and the
compressive strength is 19.6 MPa. Furthermore, the electrochemical energy storage performance is
studied in novel ways. The PC0.6 also shows the highest areal capacitance of 178.28 mF cm−2 and
remarkable cycle stability with 90.67% of initial capacitance after 2000 cycles at a current density of
0.1 mA cm−2. The superior electrochemical energy storage property may be attributed to the high
porosity of foamed cement, which enlarges the contact area with the electrode and provides a rich
ion transport channel. This report on cement–matrix materials is of great significance for large scale
civil engineering application.

Keywords: high-porosity; foamed cement; electrochemical; energy storage

1. Introduction

In the energy consumption structure, building energy consumption has accounted
for a large part of the total social energy consumption, and this proportion is expected
to increase with the continuous improvement requirements of people for the quality of
life. Therefore, building energy efficiency is considered to be a key area to achieve carbon
emission reduction targets. While the establishment of building energy saving equipment
and management systems need energy supply and storage equipment. Common structural
energy storage systems include batteries and supercapacitors, which store electrical energy
only, an external packaging is required to ensure mechanical integrity. By contrast, in a
structural energy storage system, structural electrodes and structural electrolytes them-
selves are designed to achieve electrochemical performance and to withstand mechanical
loads simultaneously, so that they reach a reduction in the weight and volume of the
entire system [1–3]. Therefore, a structural energy storage system is a multi-functional
energy storage system with mechanical load and electrochemical energy storage functions,
which have aroused great interest for research in fields of aerospace, automotive, and
architectures [4].

The concept of structural supercapacitors was first put forward by Luo and Chung [5],
who reported a thin device made of unidirectional CF prepreg layers separated by a
paper dielectric. O’Brien [6] defined and evaluated the multifunctional performance of the
device, which was conductive to the multifunctional design of structural supercapacitors.
Currently developed multifunctional structural supercapacitors (MSS) mainly consist of
carbon fiber (CF) braided into two electrodes separated by a glass fiber (GF) separator, and
all electrodes were stuck on a solid polymer electrolyte (SPE) matrix. The GF separator
is ionically conductive but electronically non-conductive; in other words, ions can be
transferred from one side to the other [7]. The SPE matrix owns both mechanical and
electrical properties, which is critical to the supercapacitor. The SPE matrix is mainly
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composed of highly structural polymers and ionic liquids (ILs) or ionic salts (lithium
salts, etc.), making it ionic conductive [8–10]. The high ionic conductivity of structural
supercapacitors is beneficial to electron transfer and motion, thus improving the areal
capacitance of structural supercapacitors.

Foamed cement-based materials with high porosity have been extensively applied
to thermal insulation and shock absorption barriers in civil infrastructures due to their
low thermal conductivity and good seismic performance [11,12]. At present, most of the
research on porous cement-based materials mainly focuses on the influence of foaming
agent, water cement ratio and other factors on thermal resistance and porosity. For example,
Panesar et al. [13] studied three different foaming agents, one of which was a protein-based
agent, and the other two are synthetic agents. The results show that the type of foaming
agent has significant influence on the thermal insulation coefficient, microstructure of
the bubbles, and thermal resistance of foam cement-based materials. Nambiar et al. [14]
investigated the influence of water content on pore morphology. Falliano et al. [15] found
that the foaming agent had a great influence on the compressive strength in the low-
density range. However, the electrochemical energy storage performance of porous cement
materials has been rarely researched.

In this paper, we prepared the high-porosity foamed cement using ordinary Portland
cement as cementitious material and H2O2 as foaming agent. The effect of H2O2 mass
content on electrochemical performance and multifunctionality of the foam cement were
studied in detail.

2. Materials and Methods
2.1. Materials

Ordinary Portland cement with type of 42.5 R was bought from Hailuo Cement
Company, City, China. Hydrogen peroxide (H2O2) and Potassium hydroxide (KOH) were
obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) Foamed nickel
with mass per unit area of 320 ± 20 g m−2 was purchased from Kunshan Kuangxun
Electronics Co. (Kunshan, China). The GO suspension with a concentration of 22 mg mL−1

was self-made in our laboratory. Deionized water was used for specimen preparation.

2.2. Specimen Preparation

Cement pastes’ specimens with different mix design were prepared in this research.
KOH was dissolved in a certain amount of deionized water, and then the solution was
added to the cement and stirred evenly. Finally, H2O2 was added and stirred for 30 s rapidly.
Then, the mixture was poured into three custom cube molds of 30 mm × 30 mm × 30 mm
for compressive strength and another custom cube mold of 10 mm × 10 mm × 10 mm with
two stainless steels inserted into both edges for the ionic conductivity test. The specimens
were cured in a curing chamber until test. The properties of the specimens are shown in
Table 1. The dosages of H2O2 were 0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% of the mass of the
ordinary Portland cement, respectively. The water–cement ratio is kept at 0.4, and the KOH
concentration is 2 M. The cement specimens are labeled as PC0, PC0.2, PC0.4, PC0.6, PC0.8,
and PC1.0.

Table 1. Mix design of cement pastes.

Specimens Cement/g KOH/g Water/g H2O2/g

PC0 200 8.96 80 0
PC0.2 200 8.96 80 0.4
PC0.4 200 8.96 80 0.8
PC0.6 200 8.96 80 1.2
PC0.8 200 8.96 80 1.6
PC1.0 200 8.96 80 2.0
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2.3. Assemble of Energy Storing Devices

The rGO/Ni foam electrode was firstly prepared. Briefly, GO suspension was coated
on nickel foam and then dried at 60 ◦C for 2 h. The GO/Ni foam was put into a hydrother-
mal reaction vessel filled with 60 mL deionized water and maintained at 180 ◦C for 12 h.
After cooling to room temperature, take out the rGO/Ni foam electrode, and clean it with
ethanol and deionized water three times, respectively. The rGO/Ni foam electrode was
dried at 60 ◦C for 6 h before being used. The weight of rGO on nickel foam was about
1.2 mg cm−2. Then, the above cement paste was placed between two slices of rGO/Ni foam
electrodes with a size of 1 cm × 3 cm and a distance of 1 cm. The samples were kept in a
curing room until testing.

2.4. Material Characterization

The micromorphology of the foamed cement samples was observed using a field
emission scanning electron microscope (FE-SEM, ZEISS Gemini 300, Zeiss, Karl, Germany).
A power X-ray diffraction pattern (XRD, Rigaku Ultima IV, Akishima, Tokyo, Japan) was
conducted to analyze the chemical components. Mercury intrusion porosimetry (MIP, Mike
9620, Atlanta, GA, USA) was applied to examine the porosity of samples.

2.5. Electrochemical and Mechanical Measurements

The electrochemical properties of the synthesized cement pastes and assembled energy
storing devices were studied using two-electrode cells on a CHI660E electrochemical work-
station. Cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) tests were
performed at a potential range of (−0.5) −0.5 V. Electrochemical impedance spectroscopy
(EIS) analysis of the cement pastes was collected in the frequency range from 0.01 Hz and
105 Hz. The intercept between the EIS curve and the x-axis at high frequency is regarded as
the bulk resistance of the cement. The ionic conductivity of cement pastes was obtained
from the following Equation (1):

σ = d/(S × Rb) (1)

where d represents the thickness of the cement between two electrodes (cm), Rb represents
the bulk resistance of the cement slurry (Ω), and S refers to the contact area of rGO/Ni
foam electrode and cement electrolyte (cm2).

The corresponding areal capacitances C (mF cm−2) of devices were obtained from
GCD curves by Equation (2):

C = I∆t/S∆V (2)

where ∆V represents the working voltage window (V), I is the current (mA), S represents
the contact area of rGO/Ni foam electrode with cement (cm2), and ∆t represents the
discharge time (s).

The energy density and power density (P) of the devices can be calculated according
to Equations (3) and (4), respectively [16]:

E =
C∆V2

2
(3)

P =
E × 3600

∆t
(4)

where C represents the specific capacitance of the device (F g−1), ∆V is the working voltage
window (V) during the discharge process, and ∆t is the time of discharge (s).

The mechanical strength of cement slurry was conducted on the JES-300 concrete
compressive strength tester at a loading rate of 2.4 kN s−1.
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3. Results

Figure 1 displays the XRD patterns of various cement specimens. The hydration
products in cement specimens are mainly Ca (OH)2, gypsum, C3S, C2S, hydrated calcium
silicate (C-S-H), and calcium carbonate caused by carbonization, proving the composition
of cement [17,18]. It is noted that, with the addition of H2O2, the characteristic peak value
corresponding to CH in the samples is significantly enhanced, which may be caused by the
inhibition of H2O2 on cement hydration.
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Figure 1. XRD patterns of various cement specimens.

In general, the microstructure of cement slurry has a great influence on its properties.
It can be seen from Figure 2 that the microstructure of specimens is mainly composed of
hydration gels, hydration products (CH), pores, and a few microcracks. The microstructures
of the control group and the specimens containing H2O2 are obviously different. A few
CH crystals and disconnected pores exist in the PC0 sample, but a lot of C-S-H gels are
connected and covered with each other to form a relatively dense microstructure. In
contrast, with the addition of H2O2 (Figure 2b–d), part of C-S-H gels in the samples are
distributed in blocks, and the pore number increased, making the microstructure looser.
When the H2O2 content further increases (Figure 2e,f), the number of pores in the samples
increases significantly, especially that of large pores, and the pores are interconnected. The
porous structure helps to shorten the pathway for transporting the ions, thus improving the
electrochemical performance. The EDX analysis in Figure 2g also displays the presence of
calcium, oxygen, silicon, aluminum, and carbon, homogenously distributed on the surface
of the PC0.6 electrolyte.

Pore structure, such as the porosity and pore size distribution, plays a decisive role in
properties of cement slurry. Figure 3 shows the cumulative porosities of cement specimens
tested by the MIP, and the corresponding detailed pore size distribution is shown in Table 2.
As seen from the figure, the total porosity of samples increases with the increase of H2O2
content. It is well known that the pore can be divided into four categories according
to its influence on cement materials: harmless pore with the diameter less than 20 nm,
less harmful pore with the diameter of 20–100 nm, harmful pore with the diameter of
100–200 nm, and a multi-harmful pore with the diameter greater than 200 nm [19]. Previous
studies noted that, according to the different effect of pore size on concrete properties, the
pores with diameters more than 100 nm are defined as harmful pores [20,21].
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Table 2. The porosity in different pore size intervals of the cement specimens (mL/g).

Group Total Porosity
Harmless Less-Harmful Harmful More-Harmful

0–20 nm 20–50 nm 50–100 nm 100–200 nm >200 nm

PC0 0.1304 0.0283 0.0448 0.0189 0.0105 0.0278
PC0.2 0.1914 0.0437 0.0359 0.0164 0.0143 0.081
PC0.6 0.2532 0.057 0.085 0.0303 0.021 0.0591
PC1.0 0.3191 0.0926 0.1384 0.0232 0.0243 0.0404

In order to characterize the ionic conduction of the foamed porous cement slurry,
Figure 4a shows the ionic conductivity of various specimens. The ionic conductivity
of pure cement slurry is 21.41 mS cm−1. After adding the foaming agent H2O2, the
ionic conductivity increases from 12.52% to 39.28% due to the increase of pore number.
Moreover, the PC0.6 shows the highest ionic conductivity, which is 29.82 mS cm−1. The
ionic conductivity is a key parameter to determine the power and energy density of
supercapacitors. The high ionic conductivity is attributed to the porous network structure
within the foamed cement, which accelerates ion conduction [22]. However, by further
increasing the amount of H2O2, the ionic conductivity was decreased due to the volume
collapse of cement slurry and blocking the ions’ way. Figure 4b depicts the compressive
strength of cement slurry. The compressive strength of pure cement is 22.8 MPa. After
adding the H2O2, the compressive strength of the sample declines, but not much before
the H2O2 content exceeds 0.4%. Its value is in the range from 17.7 to 18.7 MPa, while the
compressive strength of foam porous cement shows a decreased trend when the H2O2
content is between 0.4–1.0%. The main reason for this phenomenon may be that, when the
H2O2 content is lower than 0.4%, the amount of foaming is small, and the volume expansion
of the materials is relatively small, thus containing more materials in the same volume, and
the compressive strength is better. However, when the H2O2 content is about 0.4%, the
compressive strength increased to the maximum 19.6 MPa. As the H2O2 content increases
from 0.4% to 1.0%, the expansion volume of cement slurry increases in the foaming process,
and the foam becomes unstable and eventually bursts. Therefore, the compressive strength
decreases [23].

Figure 4c shows the multifunctionality analysis of various foamed porous cement
specimens, demonstrating ionic conductivity as a function of compressive strength. It
can be found that the optimal point is required with the highest ionic conductivity and
the highest compressive strength in all samples. The closer the distance to the optimal
point, the better the multifunctional performance of the foamed cement. The analysis
result shows that the optimum foamed porous cement for energy storge is PC0.6 with an
ionic conductivity of 29.07 mS cm−1 and a compressive strength of 19.6 MPa, which is
comparable to those of other solid devices, as shown in

To further study the potential electrochemical properties of the foamed porous cement
slurry, solid devices were assembled with rGO/Ni foam electrodes. The CV curves at a
scan rate of 1 mV/s are plotted in Figure 5a. The CV curves of all specimens are nearly a
rectangular shape, suggesting electric double-layer capacitance behavior. The CV curve
area of each specimen is different at the same scanning rate. The area of PC0.6 is the largest,
implying the highest capacitance of PC0.6 because the area of CV is proportional to the
capacitance [30]. Table 3.
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Figure 4. (a) Ionic conductivity; (b) compressive strength; and (c) multifunctional performance of
different foamed porous cement specimens.

Table 3. The ionic conductivity comparation of our device assembles by PC0.6 electrolyte with other
solid devices.

Electrode Electrolytes Ionic Conductivity
(mS.cm−1) Mechanical Property Ref.

Polypyrrole PVA-H3PO4 3.44 2 MPa (Tensile strength) [24]
Activated carbon PVA-H3PO4-Cellulose 0.104 - [25]
Activated carbon PVA-H2SO4 11.4 - [26]

Graphene Cement/KOH 1 9.85 MPa (Compressive strength) [27]
SPE-CF SPE 2 1.45 MPa (Compressive modulus) [28]

CF fabric PEGDGE/IL 28 9.78 MPa (Shear strength) [9]
Graphene Geopolymer-KOH - 45 MPa (Compressive strength) [29]

rGO/Ni foam Foamed cement 29.07 19.6 MPa (Compressive strength) This work
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capacitance of devices based on different cement pastes. 
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Figure 5. (a) CV curves; (b) GCD curves; and (c) the corresponding areal capacitances and specific
capacitance of devices based on different cement pastes.

Figure 5b exhibits the GCD curves of different foamed porous cement. The quasi-
triangle shapes demonstrate electric double-layer capacitance characteristics. The cor-
responding areal capacitation and specific capacitance are presented in Figure 5c. It
can be seen that the PC0.6 solid electrolyte exhibits the highest areal capacitation of
179.98 mF cm−2 and specific capacitance of 150.0 F g−1. Therefore, PC0.6 has the opti-
mal electrochemical energy storage performance. This may be attributed to the abundant
porosity, which is conducive to ion transport and conduction.

Electrochemical performance of the optimal PC0.6 material was illustrated in Figure 6.
The CV curves at various scan rates of PC0.6 are displayed in Figure 6a, which reveals the
EDLC behavior. The CV curve area increases with the increase of scan rate, indicating that
the resultant areal capacitance increases. Due to the increase in scanning rate, the current
increases and electron transfer is better [31].
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Figure 6. (a) CV curves at different scan rates; (b) GCD curves at various current density; (c) vari-
ation of areal capacitance vs. current densities; (d) cycling stability and coulombic efficiency for
2 × 103 GCD cycles, and (e) Ragone plot of the device based on PC0.6.

The galvanostatic charge/discharge curves of PC0.6 tested at different low current
densities of 0.1, 0.2, 0.3, and 0.5 mA cm−2 are shown in Figure 6b. As the current density
increases from 0.1 to 0.5 mA cm−2, the discharge time decreases gradually. The device with
PC0.6 exhibits quasi-triangle curves at different current densities demonstrating EDLC
characteristics. The calculated areal and specific capacitances from the charge/discharge
curves are shown in Figure 6c. The areal capacitances at 0.1, 0.2, 0.3, 0.5 mA cm−2 are
178.28, 60.52, 52.06, and 40.28 mF cm−2, respectively. The specific capacitance of the
device with PC0.6 varies from 148.57 F g−1 to 33.56 F g−1 as the charge/discharge current
density increases from 0.1 to 0.5 mA cm−2. Figure 6d shows the cyclic stability test of the
solid device based on PC0.6. It can be clearly observed that the areal capacitance and the
coulombic efficiency of the device with PC0.6 remains 90.67% of initial capacitance and
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94.58% after 2000 cycles at 0.1 mA cm−2, illustrating outstanding cycle stability of the solid
device. The first five GCD cycles reveal a negligible difference when compared with the
last five curves as displayed in the inset of Figure 6d. The superior cycling performance
may be ascribed to the porous structure of cement slurry, providing a large number of
transmission paths for ions. More importantly, the PC0.6 device can deliver a high energy
density of 13.21 kW kg−1 with the corresponding power density of 33.36 Wh kg−1. The
power density is up to 166.76 Wh kg−1 when the energy density is 2.98 kW kg−1. They are
two crucial parameters in supercapacitor study [32].

4. Conclusions

Foamed porous cement materials with high porosity were fabricated by changing
the foaming agent H2O2. Our work focused on researching the effect of the addition of
H2O2 on the morphology, poor structure, and electrochemical energy storage performance
of the foamed cement material. It displays that the optimum foamed porous cement for
energy storge is PC0.6 with an ionic conductivity of 29.07 mS cm−1 and a compressive
strength of 19.6 MPa. Simultaneously, the solid devices based on various foamed cement
were assembled, and the electrochemical performance was measured. Among them, the
device with PC0.6 exhibits high areal capacitance of 178.28 mF cm−2 and remarkable cycle
stability with 90.67% of initial capacitance after 2000 cycles at 0.1 mA cm−2. The excellent
electrochemical performance may be due to the high-porosity foamed cement that has more
contact area with the electrode, and the porous structure provides a large number of ion
transport paths.
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