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Abstract: Although lightweight concrete is implemented in many mega projects to reduce the cost and
improve the project’s economic aspect, research studies focus on investigating conventional normal-
weight concrete. In addition, the punching shear failure of concrete slabs is dangerous and calls for
precise and consistent prediction models. Thus, this current study investigates the prediction of the
punching shear strength of lightweight concrete slabs. First, an extensive experimental database
for lightweight concrete slabs tested under punching shear loading is gathered. Then, effective
parameters are determined by applying the principles of statistical methods, namely, concrete density,
columns dimensions, slab effective depth, concrete strength, flexure reinforcement ratio, and steel
yield stress. Next, the manuscript presented three artificial intelligence models, which are genetic
programming (GP), artificial neural network (ANN) and evolutionary polynomial regression (EPR).
In addition, it provided guidance for future design code development, where the importance of each
variable on the strength was identified. Moreover, it provided an expression showing the complicated
inter-relation between affective variables. The novelty lies in developing three proposed models for
the punching capacity of lightweight concrete slabs using three different (AI) techniques capable of
accurately predicting the strength compared to the experimental database

Keywords: punching shear; lightweight; GP; EPR; ANN

1. Introduction

Devastating casualties could result from a concrete slab’s failure under punching
shear, which is due to it occurring suddenly with no warning. Many recent punching
shear failures have been reported worldwide [1–5]. Several design models were developed
for punching shear strength; however, these models vary significantly in the considered
parameters and mechanism in developing the model [6–8]. For example, the European
concrete design code (EC2) [6] model is semi-empirical. In contrast, the FIB model design
code (MC) [7] is physically based. Thus, punching shear strength continues to be a dilemma
that involves many parameters and mechanisms affecting the strength [9–14]. The load
transfer mechanisms for punching shear strength consists of the following components:
(1) the direct shear resistance of the un-cracked compression zone; (2) the friction shear
across the diagonal crack from the aggregate interlock and interface shear; (3) the bending
and direct shear resistance of the flexure reinforcement crossing the cracks (i.e., dowel
action). The effective parameters are as follows: (1) yield strength of steel; (2) concrete
properties; (3) flexure reinforcements; (4) slab dimensions; and (5) column dimensions.

The cost of slabs is relatively high; thus, the engineering community tends to look at re-
ducing the cost via implementing new materials, such as concrete with fiber-reinforced poly-
mer, lightweight concrete (LWC), fiber-reinforced concrete, or high-strength concrete [15–20].
However, LWC is an overwhelming choice, different from conventional normal-weight
concrete (NWC) in the aggregate type. In NWC, diagonal shear cracks propagate around
the strong aggregates; thus, sharp aggregate sticks out across the crack edges. On the other
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hand, diagonal shear cracks in LWC will go through the weak aggregate [21–23]. Therefore,
the LWC punching shear strength could be different from that of NWC.

For the case of LWC slabs under punching shear, design codes are based on research
studies focused on investigating either LWC beams under one-way shear [23,24] or NWC
slabs under punching shear [25–29]. In addition, there are very limited studies in the
available literature verifying the most recent revision of the American concrete design code
(ACI) [8] design code for the punching shear of LWC slabs. Globally, researchers have
tackled the punching shear design of NWC and LWC slabs for more than six decades. Most
of the research studies were experimental ones [30–45]. Based on this pioneering work of
Moe [30], the ACI [8] punching shear design provisions for NWC slabs were developed.
Later, based on the pioneering work of Hognestad [31] and Ivy [32], the ACI was modified
to fit LWC slabs. Those modifications used either the actual tensile splitting strength or a
reduction factor (λ) for calculating the shear strength of LWC slabs. A more recent study by
Caratelli [39] concluded that the MC is conservative for the case of LWC under punching
shear; thus, increasing the aggregate factor by 40–60% of the nominal maximum aggregate
size was proposed. On the other hand, the ACI [8] proposed a modified reduction factor
using the concrete density, which was developed to investigate LWC beams under one-way
shear [22,23].

This current study investigates the punching shear strength of LWC slabs. An extensive
experimental database for LWC slabs tested under punching shear loading is collected.
Effective parameters were selected using statistical analysis: concrete density, columns
dimensions, slab effective depth, concrete strength, flexure reinforcement ratio, and steel
yield stress. Three artificial intelligence (AI) techniques were selected and used to develop
punching shear strength models for LWC slabs. Strength predictions were compared
with each other and with selected design codes concerning the experimentally measured
strength. Recommendations and concluding remarks were outlined and discussed.

2. Experimental Database

An extensive experimental database for the experimental punching capacity of LWC
slabs, which consists of 116 records, was collected [30–45]. Each record contains the fol-
lowing data: (1) concrete density (γ) in kN/m3; (2) column width (short side) (a) in m;
(3) column length (long side) (b) in m, (for circular columns a = b = 0.785 column diameter);
(4) slab depth (d) in m; (5) 28-day cylinder compressive strength of concrete (f′c) in MPa;
(5) longitudinal reinforcement ratio x yield strength of steel (µfy) in MPa; (6) ultimate punch-
ing capacity (Vu) in kN. These collected records were divided into a training set (90 records)
and a validation set (26 records). Table 1 summarizes their statistical characteristics. In
addition, Figure 1 shows the histograms for both inputs and outputs.

Table 1. Statistical analysis of collected database.

γ a b d f
′

c µfy Vu

kN/m3 m m m MPa MPa kN

Training set
Min. 15.60 0.10 0.10 0.04 12.96 1.05 29.00
Max. 23.40 0.40 0.46 0.18 78.40 9.48 914.00
Avg. 18.00 0.19 0.22 0.10 37.98 4.52 245.38
SD 1.38 0.07 0.11 0.04 18.43 2.13 181.90

VAR 0.08 0.39 0.49 0.37 0.49 0.47 0.74
Validation set

Min. 15.60 0.11 0.11 0.04 21.10 0.00 46.59
Max. 21.56 0.41 0.46 0.18 72.00 8.56 1354.00
Avg. 17.79 0.19 0.24 0.10 37.93 4.79 282.99
SD 1.51 0.09 0.13 0.04 14.08 2.11 256.77

VAR 0.08 0.49 0.56 0.39 0.37 0.44 0.91
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3. Selected Design Model

In this section, selected design models are presented and compared with each other in
terms of the various mechanisms and parameters considered, as shown in Table 2. In the
present paper, we consider both EC2 and ACI.

Table 2. Comparison between the parameters included by each of the selected models.

Mechanism EC2 ACI

Friction across crack in terms of f ′c .
√ √

Dowel action mechanism in terms of µ.
√

×
Concrete type in terms of γ.

√ √

Column dimension in terms of a, b × ×
Direct shear mechanism in terms of compression zone depth in the strength. × ×
Size effect in terms of d.

√ √

Aggregate interlock mechanism in terms of aggregate size and type. × ×
Arch action mechanism in terms of shear span to depth ratio. × ×
Flexure capacity of the slab cross section. × ×

For the EC2, the punching shear strength (Vu) is calculated such that:

Vu = 0.15 λλs
3
√

100µ f ′c
(π

2
[a + b + 8d]

)
d ≥ 0.028 λλs

3/2
√

f′c
(π

2
[a + b + 8d]

)
d (1)

where λs =

(
1 +

√
200
d

)
≤ 2.0, µ ≤ 0.02, λ = 0.40+ 0.60 γ/2200, γ is the concrete density

in kg/m3.
Whereas, for the ACI, Vu is calculated such that:

Vu = 0.17
(

1 +
2

β0

)
λ′λs

′√f′c (2[a + b + 2d])d ≤ 0.33 λ′λs
′√f′c (2[a + b + 2d]) (2)

where λs
′ =

√
2

1+0.004d ≤ 1, λ′ = 3 γ
6400 , β0 is the ratio between loading area dimensions.

4. Correlation and Effective Parameters

This section calculates the correlation matrix for all parameters to identify the de-
pendent variables, as presented in Table 3. It is clear that the shear strength is highly
correlated to the following parameters γ, a, b, d, f′c; however, it has a very low correlation to
the parameter µfy. It is worth noting that this conclusion violates the physically observed
punching shear resisting mechanism for dowel action, which depends mainly on the flexure
reinforcement ratio. This violation could be because the correlation coefficient is accurate
for a linear relationship and is not as accurate for nonlinear ones. Thus, the AI models
could provide a more accurate prediction for the significance of the parameters.

Table 3. Pearson correlation matrix.

γ a b d f′c µfy Vu

Γ 1.00
a 0.07 1.00
b −0.15 0.55 1.00
d 0.34 0.21 0.30 1.00
f ′c 0.39 0.28 −0.03 0.44 1.00

µ fy −0.02 0.15 0.15 −0.15 −0.16 1.00
Vu 0.38 0.46 0.39 0.78 0.40 0.05 1.00
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5. AI Model Development

Artificial intelligence (AI) techniques are searching algorithms that aim to find the
best solution for certain problems according to certain criteria within the available time
and resources. (AI) techniques may be classified into statistically based techniques (such
as fuzzy logic), decision-tree-based techniques (such as expert systems), human brain
simulation techniques (such as neural networks), evolutionary-based techniques (such as
genetic algorithm and genetic programming), and mimicking natural creature behavior
techniques (such as ant colony and particle swarm) [46].

ANN is a well-known technique that simulates the human brain activity. The model
consists of a number of cells (nodes) arranged in groups (layers), where the cells of each
group are connected to cells of other groups with links. Each link has its importance
(weight) and each cell has its triggering mechanism (activation function). During the
training stage, information propagates from the first group (input layer) to the last group
(output layer) through the intermediate groups (hidden layers). The errors in the predicted
values are backpropagated to the first group (input layer). During this process, the weights
of links are updated to enhance the performance. ANN is a very powerful and flexible tool
that can simulate any non-linear behavior, but its output is a weights matrix that cannot be
utilized manually. Figure 2 presents a general schematic for the artificial neural network.
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from Elsevier.

Genetic algorithms (GA) are AI-optimizing techniques that mimic the evolution proce-
dure of living creatures. It starts with generating a random set of solutions, and then the
fitness of each solution is evaluated, the most fitting solutions are selected, and the rest are
deleted. Those selected solutions are used to produce the next generation of solutions, and
the cycle continues until the desired accuracy is achieved. This technique was used as a
base to develop more AI techniques, such as genetic programming (GP) and EPR.

GP is a technique that uses GA to optimize the fitness of the mathematical formula
to a certain dataset. The output of this technique is a closed-form equation that could be
utilized manually. EPR is another technique based on GA, where GA is used to optimize
the traditional polynomial regression by selecting the most affecting terms and deleting the
rest. The output of this technique is also a closed-form equation (polynomial) that could
be utilized manually [47]. Figure 3 shows the mathematical formula in a tree and genetic
form, whereas Figure 4 illustrates the flow chart of the EPR technique.
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Three different artificial intelligent (AI) techniques were used to predict the ultimate
punching capacity of LWC slabs using the collected database. These techniques are genetic
programming (GP), artificial neural network (ANN), and polynomial regression optimized
using a genetic algorithm, which is known as evolutionary polynomial regression (EPR).
All of the three developed models were used to predict the ultimate punching capacity
(Vu in kN) using the concrete density (γ in kN/m3), column width (a in m), column
length (b in m), slab depth (d in m), 28-day concrete cylinder strength (f′c in MPa), and
reinforcement ratio by steel yield stress (µfy in MPa).

Each model on the three developed models was based on a different approach (evolu-
tionary approach for GP, mimicking biological neurons for ANN, and optimized mathe-
matical regression technique for EPR). However, for all developed models, the prediction
accuracy was evaluated in terms of the sum of squared errors (SSE), which is calculated
such that:

SSE =
n

∑
i=1

(yi − fi)
2 (3)

The following section discusses the results of each model. The accuracies of the devel-
oped models were evaluated by comparing the (SSE) between predicted and calculated
shear strength parameters values. The results of all developed models are summarized
in Table 4.

Table 4. Accuracies of developed models.

Technique Model SSE Avg. Error % R2

GP Equation (1) 780,494 32.4 0.823
ANN Figure 2 506,732 26.1 0.890
EPR Equation (2) 518,119 26.4 0.888

5.1. GP Model

The developed GP model has four levels of complexity. The population size, survivor
size, and number of generations were 100,000, 25,000, and 100, respectively. Equation (4)
presents the output formulas for (Vu), whereas Figure 5a shows its fitness. The average
error % of total dataset is (32.4%), while the (R2) value is (0.823).

Vu = 58.5d
(
f′ac + γ+ 3

)(
11 d2f′bc + d + d µFy + 1

)
(4)

5.2. ANN Model

A backpropagation ANN with one hidden layer and nonlinear activation function
(Hyper Tan) was used to predict (Vu) values. The used networks layout and their weights
are illustrated in Figure 6 and Table 5. The average error % of total dataset was (26.1%) and
the (R2) value was (0.890). The relative importance values for each input parameter are
illustrated in Figure 7, which indicates that the slab thickness is the most important factor,
whereas the concrete strength and flexure reinforcement ratio is second after the depth. The
relationship between the calculated and predicted values are shown in Figure 5b.



Materials 2022, 15, 2732 8 of 16
Materials 2022, 15, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 5. Relative relationship between predicted and calculated (Vu) values using the developed 
models, (a) GP, (b) ANN, (c) EPR 
Figure 5. Relative relationship between predicted and calculated (Vu) values using the developed
models, (a) GP, (b) ANN, (c) EPR

Table 5. Weights matrix for the developed ANN model.

Hidden Layer
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)

H
(1

:8
)

H
(1
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)

H
(1

:1
0)
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er

(Bias) 1.10 −0.50 0.07 −0.09 −0.23 0.14 0.26 −0.12 −0.53 0.15

γ −0.22 −0.19 0.02 −0.51 −0.38 −0.04 0.68 −1.42 −0.06 0.05
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Vu −0.15 −0.69 0.82 −0.15 0.23 0.13 −0.36 −0.67 −0.48 −0.79 0.26
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5.3. EPR Model

Finally, the developed EPR model was limited to the quadrilateral level. For six inputs,
there are 210 possible terms (126 + 56 + 21 + 6+1 = 210) as follows:

i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

l=6

∑
l=1

Xi·Xj·Xk·Xl +
i=6

∑
i=1

j=6

∑
j=1

k=6

∑
k=1

Xi·Xj·Xk +
i=6

∑
i=1

j=6

∑
j=1

Xi·Xj +
i=6

∑
i=1

Xi + C (5)

The GA technique was applied on these 210 terms to select the most effective ten terms
to predict the values of (Vu). The outputs are illustrated in Equation (5), and its fitness
is shown in Figure 7c. The average error % and (R2) values were (26.4%—0.888) for the
total datasets.

Vu =
200,000 a2 b(a−155 b2d)+53.6 γ2 b d

a f ′c
+

(3165 a2−γ) d3f ′c +7100 a2 b4

3.7 a b d

+30, 000 a b2d
(

700 b d− 700 d2 − b f ′c
)
− 4.1

(6)

6. Safety of Proposed and Existing Models

The safety of the strength calculated using a specific model will be examined using
the ratio between the measured strength and that calculated using that specific model
(SF). Applying statistical measures on the SF calculated using the proposed models and
existing ones could express the model’s accuracy, consistency, and safety. The closer the
average of the SF to unity, the more accurate the model used. The lower the coefficient
of variation of the SF, the more consistent the model. If the lower 95% confidence limit
is close to unity and larger than 0.85, the model has acceptable safety. In addition, the
SF can be plotted versus all effective parameters; thus, the variation of the model safety
can be examined. In addition, the scattering for each effective parameter indicates the
ability of the design model to accurately model the effect of each parameter, which varies
significantly for each design model. Moreover, extreme values are observed for SF, which
are considered statistical outliers and not an essential part of our conclusions. However,
our analysis is based on statistical measures, as shown earlier in this section. This technique
was implemented by several researchers [48].

6.1. Overall Safety of Various Models

Table 6 shows the statistical measures for the SF calculated using various methods.
The three AI have less scattering than existing selected design codes. In addition, from
the statistical measures, the three proposed AI models are more accurate, consistent, and
reasonably safe than the existing design codes in terms of the mean, coefficient of variation,
and lower 95%.

Table 6. Statistical methods for SF using various models.

GP ANN EPR ACI EC2

Maximum 1.81 1.90 2.10 2.93 3.94
Minimum 0.36 0.35 0.42 0.31 0.43
Average 0.97 0.95 0.98 1.24 1.49
C.O.V. 25% 31% 29% 43% 44%

Lower 95% 0.92 0.9 0.93 1.14 1.37

6.2. Safety of Various Models Versus Slab Size

Figure 8 shows the SF calculated using ANN, GP, EPR, ACI, and EC2 models versus
the effective depth, as well as the best fit line for each method. The figure shows that the
safety of ACI and EC2 increases with the decrease in the slabs size. On the other hand, the
safety of the GP, ANN, and EPR methods was consistent concerning the effective depth.
This is because the AI models captured the influence of the slabs size on the strength.
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Figure 8. SF calculated using various models versus d.

6.3. Safety of Various Models Versus Concrete Compressive Strength

Figure 9 shows the SF calculated using ANN, GP, EPR, ACI, and EC2 models versus
the concrete strength, as well as the best fit line for each method. The figure shows that
the safety of ACI and EC2 decreases with the increase in the concrete strength. On the
other hand, the safety of the GP, ANN, and EPR methods was consistent with the concrete
strength. This is because the AI models captured the influence of the concrete strength on
the strength.

Materials 2022, 15, x FOR PEER REVIEW 12 of 18 
 

 

 

Figure 8. SF calculated using various models versus 𝑑. 

6.3. Safety of Various Models Versus Concrete Compressive Strength 

Figure 9 shows the SF calculated using ANN, GP, EPR, ACI, and EC2 models versus 

the concrete strength, as well as the best fit line for each method. The figure shows that 

the safety of ACI and EC2 decreases with the increase in the concrete strength. On the 

other hand, the safety of the GP, ANN, and EPR methods was consistent with the concrete 

strength. This is because the AI models captured the influence of the concrete strength on 

the strength. 

 

Figure 9. SF calculated using various models versus 𝑓𝑐
′. 

  

d (mm)

S
F

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200

ANN EC2 ACI EPR

GP Ideal Linear (EC2) Linear (ACI)

Linear (EPR) Linear (GP) Linear (ANN)

S
F

fc' (MPa)

0

1

2

3

4

5

0 20 40 60 80

ANN EPR EC2 ACI
GP Ideal Linear (EC2) Linear (ACI)
Linear (GP) Linear (EPR) Linear (ANN)

Figure 9. SF calculated using various models versus f ′c .

6.4. Safety of Various Models Versus Concrete Density

Figure 10 shows the SF calculated using ANN, GP, EPR, ACI, and EC2 models versus
the concrete density, as well as the best fit line for each method. The figure shows that the
safety of ACI and EC2 decreases with the increase in the concrete density. On the other
hand, the safety of the GP, ANN, and EPR methods was consistent concerning the concrete
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density. This is because the AI models captured the influence of the concrete density on the
strength.
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6.5. Safety of Various Models Versus Column Dimension to Depth Ratio

Figure 11 shows the SF calculated using ANN, GP, EPR, ACI, and EC2 models versus
the column dimensions, as well as the best fit line for each method. The figure shows that
the safety of ACI and EC2 is different relative to the column dimensions. This is due to
the fact that ACI considers the column dimension, whereas EC2 does not. On the other
hand, the safety of the GP, ANN, and EPR methods was consistent concerning the column
dimensions. This is because the AI models captured the influence of the column dimensions
on the strength.
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6.6. Safety of Various Models Versus Flexure Reinforcements

Figure 12 shows the SF calculated using the ANN, GP, EPR, ACI, and EC2 models
versus the flexure reinforcement ratio, as well as the best fit line for each method. The figure
shows that the safety of the ACI and EC2 is not consistent with the flexure reinforcement
ratio compared to the proposed models. In addition, the ACI safety increases with the
increase in the flexure reinforcement. On the other hand, the safety of the EC2 decreases
with the increase in the flexure reinforcement ratio, which is because EC2 considers the
effect of the flexure reinforcement ratio and EC2 does not. Moreover, the safety of the
GP, ANN, and EPR methods was consistent concerning the flexure reinforcement ratio.
This is because the AI models captured the influence of the flexure reinforcement ratio on
the strength.
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7. Future Studies

It is recommended that the following future studies be further investigated:

• Design code development for cases of tension forces [48].
• Investigating punching shear with different tubes of columns [49,50];
• More machine learning methods [51,52];
• The behavior of full-scale slabs with thickness larger than 180 mm.
• The effect of using fibers in the concrete mix of lightweight concrete on the punching

shear strength.

8. Conclusions

This research presents three models using three (AI) techniques (GP, ANN, and EPR)
to predict the punching capacity of LWC slabs (Vu) using the concrete density (γ), columns
dimensions (a & b), slab depth (d), concrete strength (f′c), and reinforcement ratio by steel
yield stress (µfy ). Although concluding remarks are limited to the range of parameter
values in the database, which can improve with more testing of slabs, concluding remarks
are as follows:

• Both (ANN) and (EPR) have the greatest prediction accuracy (73.9% and 73.6%, re-
spectively), whereas the (GP) model has the lowest prediction accuracy (67.6%);

• (GP) and (EPR) have almost the same level of accuracy (65.3% and 68.1%, respectively);
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• Although the error% of the (ANN) and (EPR) models are so close, the output of (EPR)
is closed-form equations, which could be used manually or as software, unlike the
(ANN) output, which cannot be used manually;

• The summation of the absolute weights of each neuron in the input layer of the
developed (ANN) model indicates that the slab depth (d) has a major influence on the
punching capacity; other parameters have a minor effect, especially the compressive
strength of the concrete;

• The formula developed using (EPR) did not include the parameter (µfy ), which
indicates its minor effect on the punching capacity.

• The GA technique successfully reduced the 210 terms of the conventional polynomial
regression quadrilateral formula to only ten terms without significant impact on
its accuracy.

• AI models captured the true behavior and overcame the variability of the traditional
design codes concerning the effective parameters.
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