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Abstract: Lower oxygen vacancy formation energy is one of the requirements for air electrode
materials in solid oxide cells applications. We introduce a transfer learning approach for oxygen
vacancy formation energy prediction for some ABO3 perovskites from a two-species-doped system
to four-species-doped system. For that, an artificial neural network is used. Considering a two-
species-doping training data set, predictive models are trained for the determination of the oxygen
vacancy formation energy. To predict the oxygen vacancy formation energy of four-species-doped
perovskites, a formally similar feature space is defined. The transferability of predictive models
between physically similar but distinct data sets, i.e., training and testing data sets, is validated by
further statistical analysis on residual distributions. The proposed approach is a valuable supporting
tool for the search for novel energy materials.

Keywords: solid oxide cells; oxygen vacancy formation energy; transfer learning; artificial neural
networks; Bayesian analysis

1. Introduction

Reducing CO2 emissions has become a top priority for economies all over the world
to fulfill the obligations for environmental protection. Therefore, the development of new,
cost-efficient energy conversion technologies becomes significantly important. One such
technology is the solid oxide cell (SOC), which either transforms chemical to electrical en-
ergy with high efficiency (SOFC: solid oxide fuel cell) or uses renewable energy to produce
hydrogen or hydrogen-based synthetic fuels (SOEC: solid oxide electrolysis cell). Addi-
tionally, the SOC can also be operated within one device in both modes alternately (rSOC:
reversible solid oxide cell) [1,2]. The most important energy carriers include hydrogen,
natural gas, biogas and other renewable fuels, and the resulting reduction of emissions
of CO2 is a major argument for the large-scale deployment of this technology. However,
degradation effects in both modes are still a relevant R&D topic. Especially in SOFC mode,
the degradation of the air electrodes has been identified as a major issue limiting the lifetime
and durability of the stacks, posing a crucial challenge to extended application.

(La,Sr)(Co,Fe)O3−δ (LSCF) is one of the major air electrode materials for SOC applica-
tions [3–11]. However, Sr is a very reactive element and contributes to several degradation
issues. On the one hand, Sr-containing compounds tend to segregate at the LSCF surface in
the form of SrO [12–14]. In SOFC operation mode, the segregated Sr becomes a reaction
partner for volatile Cr species, which are originating from the high chromium-containing
metallic interconnects. During the operation of an SOFC stack, a Cr2O3-containing scale
forms on the surface of the ferritic interconnect, which results in the evaporation of Cr
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species. The segregated SrO reacts with the volatile Cr species, forming Sr-Cr-O secondary
phases, and leads to poisoning of the LSCF cathode [15]. The typical Cr poisoning product
is SrCrO4, which is found on the top of the electrode surface [16]. Due to local drops of the
oxygen partial pressure pO2 in the air electrode, Sr-Cr-O also can form at the LSCF/GDC
interface [17]. On the other hand, in both SOFC and SOEC operation modes, Sr may
diffuse to the ZrO2-based electrolyte through grain boundaries of the Gd-doped Ceria
(GDC) diffusion barrier layer, and it may subsequently react with ZrO2 in the electrolyte,
forming SrZrO3 at the GDC/electrolyte interface. The formed SrZrO3 is an ionic insu-
lator, which lowers the electrochemical performance of SOCs [1,18]. Additionally, both
thermodynamic calculations and experiments [19] show that in the presence of humidity
in the air, volatile Sr species (mainly Sr(OH)2) can form, which are similar in amount
to the volatile Cr species. The evaporation of Sr leads then to Sr depletion in the LSCF
electrode and subsequently lowers the performance. During the long-term operation in
SOFC mode, the volatile Sr(OH)2 may react with ZrO2-based electrolytes and form ion
insulating SrZrO3 precipitates. Altogether, the negative impact of Sr-related SOC poisoning
effects is therefore substantial.

For the long-term stability of SOC stacks, it is essential to suppress detrimental side
reactions as much as possible. Therefore, it is desirable to find new, Sr-free air-electrode
materials. The potential materials should be chemically and mechanically compatible
with adjacent components, possess good tolerance with respect to impurities in the sur-
rounding atmosphere, and also have a low oxygen vacancy formation energy to guarantee
fast oxygen surface exchange and bulk diffusion. Perovskite oxides (ABO3) with cubic
symmetry, such as La1−xSrxMnO3 and La1−xSrxCo1−yFeyO3, have shown high potential as
air electrode materials in SOC applications [20]. In general, the vast amount of candidate
materials for potential air electrode materials makes a systematic search for new and supe-
rior materials difficult or even impossible, and therefore, guidance by machine learning
tools, in particular artificial neural networks (ANNs) for optimising properties of materials
is a promising approach.

In this work, we assess the transferability of ANN parameters learned to predict
oxygen vacancy formation energies for some ABO3 perovskite systems from two-species-
doped to four-species-doped systems. In Section 2, the data sets are introduced, and the
methodological background is presented. In Section 3, the feature space for the four-species-
doped perovskites is introduced. The transfer learning performance of the sets of models
learned for the predictive task is presented, and the statistical analysis required to judge
the transferablity of the learned models between the distinct data sets is explained. Both
classical hypothesis testing-based and Bayesian sampling approaches are discussed. In
Section 4, we summarise and conclude the results for the prediction task, the transfer
learning performance and the overall feasibility of this approach.

2. Methods and Data
2.1. Data Set

The training data are taken from a substantial amount of already published results [21],
which contain information on a large variety of ABO3 perovskites. We notice that all the
information from [21] was obtained by ab initio calculations. Here, we are specifically
interested in ACoO3 and AFeO3 systems, with 121 samples extracted. The features of the
data set include the species’ electronegativities ENA, ENB (dimensionless Pauling scale),
the ionic radii rA, rB (in Ångstrom), their masses mA, mB (atomic mass units) and others. We
stick to them as they represent the selection of features we worked with. Apparently, also
the oxygen vacancy formation energy EO

V , which is the target feature of the prediction task,
is provided. The scatter matrixplot of the data set shown in Figure 1 gives a first intuitive
impression of the pairwise correlations. The usability of these characteristic features of
chemical species for machine-learning based prediction of formation energies was already
demonstrated in [22].
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The test data set includes 15 A-site doped samples A1x A21−x (Co, Fe)O3, which are
obtained from the literature as listed in Table 1. While the feature space of the training data
set directly represents the input features, the feature space of the testing data set represents
combinations of physically distinct quantities as joint input features. The layout of the
testing data set feature space is detailed in Section 3.1.

Figure 1. Scatter matrix of the training data set prior to reduction, which allows for an intuitive
judgement of pairwise correlations. The units of the features are Ångstrom for the radii, eV/atom for
the oxygen vacancy formation energy, and atomic mass units for the mass. The electronegativity is
measured using the dimensionless Pauling scale.

Table 1. Oxygen vacancy formation energies and references. The selected predictions in the last
column result from the 5× 5× 1 + 6 bias network (option 4).

Chemical Formula EO
V /eV per O-Atom Reference EO

V /eV (Predicted)

La0.75Sr0.25FeO3 3.412 [23]
La0.5Sr0.5FeO3 3.344 [23]
La0.8Ca0.2FeO3 3.515 [24]
Pr0.8Ca0.2FeO3 3.53 [24]
Ba0.5Sr0.5FeO3 2.22 [25] 2.05

La0.75Sr0.25CoO3 2.30 [23]
La0.5Sr0.5CoO3 2.19 [23]
Ba0.5Sr0.5CoO3 1.21 [25] 1.39

La0.5Sr0.5Co0.5Fe0.5O3 2.75 [23]
La0.75Sr0.25Co0.5Fe0.5O3 2.82 [23]
La0.5Sr0.5Co0.8Fe0.2O3 2.735 [26]
Ba0.5Sr0.5Co0.5Fe0.5O3 1.63 [25] 1.72

Ba0.5Sr0.5Co0.75Fe0.25O3 1.35 [25] 1.56
Ba0.5Sr0.5Co0.25Fe0.75O3 1.87 [25] 1.87

SrCo0.8Fe0.2O3 1.59 [26] 1.74
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2.2. Artificial Neural Networks (ANNs) and Transfer Learning

Artificial Neural Networks (ANNs) [27] belong to the class of biologically inspired
computational models. Due to their versatility, numerous specialisations have been devel-
oped, which all have in common that they are applied to solve complex non-linear problems.
Exemplary use cases for materials science have been documented, e.g., in [28–32].

The flexibility of ANNs comes at a price—they belong to the group of rather data-
hungry models. Due to the number of parameters that need to be optimized during the
calculations, including the selection of the network topology, the required data set size for a
generalizable model of certain accuracy is comparably large in relation to less complicated
models. This is reflected in the learning curves when benchmarking such models, see,
e.g., [33].

The main idea of transfer learning is the re-use of knowledge acquired from one
task for a related one [34]. The motivation behind transfer learning includes the size
limitations of data sets and also the evolution of the underlying distributions in data
sets over time, which poses substantial challenges to many supervised machine learning
paradigms. In the context of material science, many data sets used for machine-learning-
based investigations of phenomena which are expensive to be addressed experimentally
exhibit a small amount of data points. In this sense, this limiting factor for the application of
many machine learning approaches is also present in the data set of our interest on doped
A11−x A2x (Co,Fe)O3 perovskites. Another challenging aspect of the SOC data set used in this
work is the change of features which we undertake when performing the prediction step,
as will be pointed out later. This aspect is typically also addressed by means of transfer
learning, e.g., in cross-domain sentiment classification in product reviews [35].

The application of transfer learning requires decisions on the determining aspects
of the transfer approach. In the context of our investigations, the aim is the transfer of
an ANN model adjusted to a training domain to a target domain for predictions of more
general chemical compositions. It is assumed that there is a strong correlation between the
two domains in terms of similar distribution functions, which will be also addressed from a
statistical point of view in Section 3.3. Therefore, the approach of our choice is categorised
as transductive transfer learning, i.e., the source and target domain of the predictive task
are different, but related, and the predictive tasks in the source and the target domain
are identical.

The criterion for the distinction of different but related domains is the probability
distribution function for a given feature set. While the number of features in our training
and testing data sets are equal, the physical information associated to the features differs.
Therefore, we do not consider identical but rather formally similar domains. As the
distribution functions in the training domain and the target domain refer to the same
number of phenomenologically similar features, we expect them to be comparable in terms
of classical tests for equality of underlying distributions. The relevant quantities for this
purpose are the residual distribution of the predictions on the testing data set, which
are obtained by applying the transferred ANN model from the training domain and the
residual distribution of the training error.

For the regression tasks to which the ANNs are trained, a reasonable model approx-
imation is expected if three main criteria are met. First, the residual distribution has
zero mean, i.e., there is no remaining shift or offset between predictions and real values.
Second, the residual magnitude is much smaller than the magnitude of the predicted
values, and third, the residual distribution function lacks any systematic trend, i.e., is
homoscedastic. The validation of all these criteria mentioned here will be described in
detail in Section 3.3.

2.3. Bayesian Analysis

We use a Bayesian analysis to deepen the understanding of possible discrepancies in
the distribution of the residual of the training and the testing data set. Generally speaking,
Bayesian analysis allows to estimate from which underlying distribution a present data set
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could most likely be generated. For this purpose, the parameters that describe the possible
distributions are considered as random variables themselves. Thus, the values that these
parameters take are randomly varied when generating a large set of corresponding random
values. The parameters that characterise the distribution with the highest agreement
between randomly generated data and real data are used as approximation of the assumed
underlying distribution of the process that generated the real data. Formally, determining
the set of characterising parameters that maximises the agreement between generated and
real data is based on Bayes’ theorem for distributions:

f (θ|data) =
f (data|θ) f (θ)

f (data)
, (1)

with f (θ|data) denoting the posterior distribution for the parameter set θ, f (data|θ) denot-
ing the sampling density of the data, which is proportional to the likelihood, f (θ) is the
prior distribution for θ and f (data) is the marginal probability of the data.

Practically, employing Bayes’ theorem means that we can simulate f (data|θ) via
probabilistic descriptions. For that, we inform the model with a prior f (θ) that reflects our
initial understanding of the distribution of the parameter set θ independent of the data set
we are operating with. Thus, we can determine the quantity of our interest, namely the
posterior distribution f (θ|data). The normalising factor f (data) =

∫
dθ f (data|θ) f (θ) is a

constant, and the basic proportionality can be read as Posterior ∼ Likelihood × Prior.
This approach has the substantial benefit that not only point measures such as median

or average can be compared, but the entire set of distributional characteristics can be
considered. In the context of the investigations presented here, the relevant quantity is
the residual distribution in training and testing data sets. As will be pointed out later,
a t-distribution will be a suitable basis for the description of the residual in the training
data set, as the test data set is small. Therefore, we will also choose a t-distribution when
we perform Bayesian analysis on the testing data set and consider the agreement between
the distributions on training and testing data set.

The technical basis of the Bayesian analysis presented in Section 3.3.2 is the package
pymc3 [36], which is a comprising Python library for Monte Carlo-based sampling schemes.
It also wraps the majority of the algorithmic and numerical complexity of implementing
efficient solvers that mimic naive Bayesian sampling. Typically (and in our case as well),
the applied solvers belong to the class of Markov Chain Monte Carlo (MCMC) algorithms.

3. Results and Discussion
3.1. Feature Space Reduction and Transfer Feature Space

As explained in Section 2.2, the appropriate choice of the feature space is of decisive
importance when learned model parameters shall be transferred for a new predictive task.
Based on the available input features, we have evaluated the performance of six input
features and the six combinations of five input features when one feature is removed. The
difference of the MSE121, i.e., the mean squared error (MSE) obtained during the training
on the 121 data points, for the six-input feature scenario and the distinct five-input feature
options is labelled as δ = MSE121 −MSE0

121, with MSE0
121 being the MSE for the six-input

feature space. Therefore, the more positive the value of delta is, the more important the
removed feature is.

While the reduction of the feature space is typically addressed via unsupervised or
semi-supervised machine learning methods such as principle component analysis or mani-
fold reconstruction, our rather manual approach provides a better intuitive understanding
of the resulting performance differences. Since the transfer from the two-species-doped per-
ovskites to the four-species-doped perovskites requires a redefinition of the input features,
we stay with the manual approach. The input features of these 15 samples are calculated
by weighted summation. The weights for the different features are chosen from a set of
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ad hoc estimates of suitable candidate weights. For example, for La0.75Sr0.25FeO3, suitable
weights for estimating the ionic radius rA are

rA = 0.75rLa + 0.25rSr. (2)

For each of these six possibly removed features and the full feature set, the topology of
the ANN is optimised, using the Tensorflow library [37]. Some qualitative reasoning for the
minimal set of neural layers for a given set of activation functions might be inspired by the
phenomenological perspective on the problem. However, a precise, quantitative prediction
of the optimal ANN topology based on arguments from the application domain is rarely
possible. Taking into account that we aim at the regression of the non-linear, yet only mildly
complex (considering the dimensionality of the feature space) functional dependence of the
oxygen vacancy formation energy on the features introduced in Section 2.1, we tackle this
problem as follows: The input layer of the ANN has either five or six nodes, respectively.
In both cases, we add nodes and layers sequentially as long as our performance metric of
the prediction increases. Therefore, the initial topology on top of the input layer is a hidden
layer with two neurons and an output layer with a single neuron. The number of edges
ranges from 12 for a 5× 2× 1 ANN to 66 for a 5× 5× 5× 1 + 11 bias nodes ANN when
using five input features. When six input features are used, the number of edges ranges
from 14 for an 6× 2× 1 ANN up to 71 for an 6× 5× 5× 1 + 11 bias nodes ANN.

Taking into account the limited size of the data set and the generalisability of the
learned models, the maximum number of neurons is reached quite fast. The size of
121 data points on the training data set leads to a substantial penalty in the bias-corrected
performance metrics that we use for the largest topology with altogether 71 edges.

To determine the optimal ANN topology for each of the input feature combinations,
a 10-fold cross-validation based on the MSE is used, with the results being listed in Table 2.
From these evaluations, the most suitable feature space for the task could be identified.
Option 4 has the smallest values for MSE121 (0.675), MSE15 (0.064) and MAPE15 (0.086).
Here, MSE15 and MAPE15 are mean squared and mean absolute percentage error on
the 15 data points in the test data set. It also has the highest benefit from reducing the
feature space, δ = −0.144. This is the only model that provides an MAPE below 10%
for the transferred prediction of four-species-doped perovskites from two-species-doped
perovskites. For a better impression on the accuracy of the network forecast, we added
selected predicted oxygen vacancy formation energy for BaxSr1−xFeyCo1−yO3 (BSCF) to
Table 1. We see that the energies and trends are predicted rather well despite the small size
of the training data set, which contains only four compositions with this chemistry.

Table 2. Selected ANN topologies. MSE15 and MAPE15 are mean squared and mean absolute
percentage error on the 15 data points in the test data set.

Feature Variables Selected ANN Topology MSE121 MSE15 MAPE15 δ = MSE121 − MSE0
121

Group 1: ENA, ENB, rA, rB, mA, mB 6× 4× 1 + 0 bias 0.819 0.723 0.352 0

Group 2: ENA,ENB, rA, rB, mA 5× 5× 1 + 0 bias 0.753 0.636 0.334 −0.066

Group 3: ENA, rA, rB, mA, mB 5× 5× 1 + 0 bias 0.806 0.859 0.370 −0.013

Group 4: ENA, ENB, rA, mA, mB 5× 5× 1 + 6 bias 0.675 0.064 0.086 −0.144

Group 5: ENA, ENB, rB, mA, mB 5× 5× 1 + 6 bias 1.122 0.123 0.103 0.303

Group 6: ENB, rA, rB, mA, mB 5× 3× 3× 1 + 0 bias 1.246 3.152 0.763 0.427

Group 7: ENA, ENB, rA, rB, mB 5× 5× 1 + 6 bias 0.987 0.264 0.226 0.168

The application of the transfer model to generate a prospective data set is discussed
in the next paragraph. From a chemical perspective, we find that the electronegativity,
ionic radius and atomic mass of the A-site element are more important features than the
corresponding B-site properties. In fact, the electronegativity of the A-site element is the
most important feature variable, while the ionic radius of the B-site element is the least
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important feature variable. The importance of the electronegativity and mass of the B-site
element are roughly comparable. Altogether, the feature importance in descending order is:
electronegativity of the A-site element, ionic radius of the A-site element, atomic mass of the
A-site element, electronegativity of the B-site element, mass of the B-site element and finally
the ionic radius of the B-site element. For some parameters, such as the ionic radii or
the electronegativity, an influence on the oxygen vacancy formation energy is plausible,
as these parameters directly influence the lattice stability and the interatomic bonding. This
is less obvious for the masses of the elements, which according to the obtained results do
have an influence on EO

V , although the effect is not as pronounced as in particular that of
ENA and rA.

3.2. Prospective Studies

As the model transfer from two-species doping to four-species doping has been tested
with an acceptable accuracy for the prediction of the oxygen vacancy formation energies,
we apply the model next to provide prospective studies for a larger variety of dopings. The
first application focuses on A1x A21−x Co0.5Fe0.5O3 dopings. In the training data set, A1 and
A2 are two arbitrary elements from 68 options for the A site. The electronegativity for B
(dimensionless Pauling scale) and the mass (in atomic mass units) for B are fixed to 1.855 and
57.3891, respectively, which corresponds to the equal mixing of Fe and Co on this site. Using
the trained model, we vary independently the (mean) atomic radius, the electronegativity
and the mass of the A site element. Here, we note that only the averaged quantities of
the A site elements are needed, which are calculated in analogy to Equation (2) using the
values for A1 and A2 and the composition variable x, e.g., mA = xmA1 + (1− x)mA2 . The
varied parameters are discretized over 30 steps, with rA being in the range of 0.27 to 1.73
Ångstrom, ENA in the interval [0.82, 2.55] of the dimensionless Pauling scale, and mA in the
range of 6.941 to 238.0289 atomic mass units, which corresponds to the parameter regimes
of typical elements for the A site. The resulting prediction for the oxygen vacancy formation
energy EO

V of A1x A21−x Co0.5Fe0.5O3 for given rA, ENA and mA is plotted in the heat map
shown in Figure 2.

Figure 2. The predicted variation of EO
V for A1x A21−x Co0.5Fe0.5O3 dopings with varying rA, ENA and

mA for fixed ENB and rB. The high and low oxygen vacancy formation energy regions show some
clustering, although a simple trend cannot be observed.

Obviously, there is some clustering of low and high oxygen vacancy formation energies,
but the dependencies are rather nontrivial. For example, low values of EO

V can be found
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in regions of low and high A site radii as well as for low atomic masses mA, as can also
been seen in two-dimensional slices of the heat map for fixed average A site mass mA in
Figure 3.

Figure 3. Cuts through the 3D color map in Figure 2 for fixed average A site mass mA for a perovskite
of type A1x A21−x Co0.5Fe0.5O3. Left panel mA = 54.75, center panel mA = 110.53 and right panel
mA = 206.15 atomic units.

We note that negative values of the oxygen vacancy formation energies are contained
in the ab initio training data and shall typically indicate the instability of the given structure.
This aspect will also be discussed below. In the following, we focus on the optimisation of
EO

V , irrespective of the sign.
To link the systematic scan of A site parameters to chemical element, we use the model

to predict the oxygen vacancy formation energy for a composition A1x A21−x Co0.5Fe0.5O3 for
all possible pairs A1 and A2. The dependence on the concentration x is shown for selected
cases of Ba containing compounds in Figure 4.
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BaxCe1 xCo0.5Fe0.5O3
BaxCr1 xCo0.5Fe0.5O3
BaxPt1 xCo0.5Fe0.5O3
BaxAu1 xCo0.5Fe0.5O3
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Figure 4. Oxygen vacancy formation energy EO
V as predicted from the ANN for potential material

combinations A1x A21−x Co0.5Fe0.5O3.
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For many combinations, the minimum oxygen vacancy formation energy EO
V is found

at the limiting values either x = 0 or x = 1 (this is the case, e.g., for combinations of alkaline
and alkaline earth elements), but sometimes, the functional form is very non-monotonic and
exhibits one or several extrema. We have determined for each combination the minimum
value of EO

V and visualised it in Figure 5 for combinations of selected elements, which lead
to particularly low oxygen vacancy formation energies.

Figure 5. Heat map of the colour-coded oxygen vacancy formation energy EO
V for perovskites with

the composition A1x A21−x Co0.5Fe0.5O3. Here, element combinations for A1 and A2 are used, which
lead to particularly low values of EO

V . The numbers inside the element combination field correspond
to the composition x, which minimises EO

V .

Obviously, this matrix is symmetric concerning EO
V (the colour coding), as by con-

struction, this predicted value only depends on the weighted average of the ionic radius,
electronegativity and mass of the A site elements. Diagonal elements correspond to pure
A site occupation, and off-diagonal elements have the antisymmetry property x → 1− x
when A1 and A2 are exchanged. A striking observation is that for many A site pairs, the
energy EO

V is minimised indeed for pure elements (x = 0 or x = 1), and only for specific
elements such as Re, Os, Pt, and Ir, a substantial decrease of EO

V can be obtained compared
to pure elements by forming binaries on the A site, i.e., 0 < x < 1.

The second group of prospective calculations focuses on A10.5A20.5Co0.5Fe0.5O3 sys-
tems, with A1 being a lanthanide element and A2 representing a candidate element from
the alkaline earth metals, specifically Mg, Ca, Sr and Ba. The resulting predictions are
shown in Figure 6.
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Generally, when A1 belongs to the group of the first six lanthanide elements, counted
from La to Sm, doping with 50% Mg or Ca or Sr or Ba at the A site leads to a reduction of EO

V .
Here, we should mention that Pm0.5Sr0.5Co0.5Fe0.5O3 is an exception. If A1 corresponds to
one of the last eight lanthanide elements, counting from Gd to Lu, doping with 50% Ca or
Sr or Ba at the A site increases the oxygen vacancy formation energy EO

V .

La Ce Pr Nd Pm Sm Gd Tb Dy Ho Er Tm Yb Lu
Lanthanide elements in atomic order

2

1

0

1

2

3

4

5
Pr

ed
ict

ed
 E

O v
 (e

V/
O-

at
om

)

A1xCo0.5Fe0.5O3
A1xMg0.5Co0.5Fe0.5O3
A1xCa0.5Co0.5Fe0.5O3
A1xSr0.5Co0.5Fe0.5O3
A1xBa0.5Co0.5Fe0.5O3

Figure 6. Comparison between the predicted oxygen vacancy formation energy EO
V of A1Co0.5Fe0.5O3

perovskites and A site-doped compounds A10.5 A20.5 Co0.5Fe0.5O3 system (A1 = lanthanide element
and A2 = alkaline earth metal: Mg, Ca, Sr or Ba).

Apart from the influence of the doping for varying chemical composition, also the
dependence of EO

V on the ionic radius difference between host element A1 and doping
element A2 has been investigated. As shown in Figure 7, with an exception for Mg as a
dopant, there is a robust trend for the dependence of the oxygen vacancy formation energy
difference on the ionic radius difference. The oxygen vacancy formation energy difference
is calculated as:

∆EO
V = EO

V (A1Co0.5Fe0.5O3)− EO
V (A10.5A20.5Co0.5Fe0.5O3) (3)

For Ca, Sr and Ba as dopants, the difference in the vacancy formation energy shifts from
the positive to the negative regime with increasing difference of the ionic radii of host and
dopant. For Mg, no clear trend is visible. Altogether, these observations support the role of
the ionic radius as a relevant feature variable for the oxygen vacancy formation energy.

Altogether, preferable air electrode materials for SOCs exhibit low values of EO
V , as they

correspond to a higher concentration of oxygen vacancies. This promotes rapid oxygen
adsorption and dissociation at the electrode.

However, to be a potential air electrode material, there are other conditions that should
be also considered, such as the stability of the perovskite structure, a considerable electronic
conductivity, and the chemical and mechanical compatibilities with other components in
SOCs. The stability of the structure is also related to the sign of EO

V , and it is obvious that
a comprehensive investigation requires also the consideration of such criteria, which is
beyond the scope of the present work.
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Figure 7. The influence of the ionic radius difference between the host element (A1 = lanthanide
element) and the dopant element (A2 = Mg, Ca, Sr and Ba) at the A site on the oxygen vacancy
formation energy EO

V .



Materials 2022, 15, 2879 12 of 18

3.3. Statistical Analysis: Validity of the Applied Transfer Learning Approach

As discussed in Section 2.2 on artificial neural networks, performing regression via
ANNs is in general a non-linear regression. Therefore, the standard approach to estimate
the quality of a fit and significance of a regression in terms of R2 and a p-value is not
generally applicable. Furthermore, we use very asymmetrically sized training and test data
sets while assuming we may transfer the model learned on the training data to apply it
to the test data based on the formal similarity of the feature spaces for both data sets. The
most crucial point that must be addressed concerns the transferability of the trained model
to the testing data set. In the ABO3 training data set with binary doping, the B site is either
Fe or Co, and the determined characteristic is the set [rA, ENA, mA, ENB, mB]. In the testing
A1A2B1B2O3 data set, the same characteristic is used, but the radius, electronegativities
and masses are obtained as linear superposition in accordance with the stochiometry of the
sample. While the format of the features remains unchanged, it is not clear if the choice of
linear superposition for the complex doped configurations in the test sample is suitable for
the prediction of the oxygen vacancy formation energy. Usually, in applications of transfer
learning, the transferred model parameters are used as initialisation of another training
of the transferred model, or additional layers are added to adapt the learned model to the
new data set. However, due to the limited size of our testing data set, we aim at a direct
transfer of the model, which was trained on the 121 ABO3 data points to the test data set,
which consists of 15 A1A2B1B2O3 data points. Consequently, it is required to investigate
the feasibility of this approach from a statistical perspective. In addition to the performance
of the model on the individual data sets, we therefore also evaluate the discrepancy of the
residual distributions in both data sets with respect to the trained model. The evaluation is
performed both from a classical null hypothesis testing (NHT) and a Bayesian perspective.

3.3.1. Classical Null Hypothesis Testing

The error in both data sets needs to be normally distributed with zero mean and
homoscedastic. Satisfaction of these two criteria tells us—independent of the accuracy of
the learned models—how reasonable it is to approach the prediction of the oxygen vacancy
formation energies via a machine-learned model. In addition to visual inspection, we
conduct the Shapiro–Wilk (SW) [38] test for normalcy of the residual distribution, a Breush–
Pagan (BP) test for heteroscedasticity and the Kolmogorov–Smirnov test for the difference
between the two univariate distributions. We briefly recall the idea and evaluation of these
three tests before we present the results.

The Shapiro–Wilk test is a test for the null hypothesis that a data set is normally dis-
tributed. The sample should not include more than 5000 data points, and the Shapiro–Wilk
test is reported to provide a higher power than other normalcy tests based on analysis of
variance (ANOVA) in the regime of small data sets with up to 50 data points [39]. Therefore,
it is the test of choice, as we want to use the same test with the same implementation
(scikit.stats package) on both data sets for easy comparability. The Shapiro–Wilk test
statistic W measures the correlation between the transformed and standardised empirical
distribution and the normal distribution and thus has an upper limit of unity. The p value
of the W statistic has to be larger than the desired alpha level of the test, i.e., the probability
of false rejection of the null hypothesis.

Concerning the homoscedasticity assumption, the Breush–Pagan test detects linear
deviations from a homogeneous variance distribution. The test statistic LM is defined as R2

scaled by the sample size n, LM = nR2. If it has a p value below 0.05, the null assumption
of homoscedasticity is rejected. Due to the smallness of the test data set, we prefer it instead
of the White test, which is more sensitive as it covers more types of heteroscedasticity
but requires a large sample size as it is an asymptotic test.

The third test we apply is the Kolmogorov–Smirnov (KS) two-sample test. It considers
the difference in the empirical distribution functions (i.e., probability that the empirical
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sample from the assumed distribution takes values up to x) F1,n(x), F2,m(x), with sample
sizes n and m for training and test data. The test statistic is:

Dn,m = supx|F1,n(x)− F2,m(x)|. (4)

The null hypothesis is the equality of the underlying distribution functions, and for a
given alpha level, it is rejected for:

D >

√
−1

2
ln

α

2

√
n + m

nm
. (5)

We note that the Kolmogorov–Smirnov test is robust to small sample sizes and is
non-parametric; i.e., while the small data set with 15 data points only allows for a check of
normality with less power, the Kolmogorov–Smirnov test would not suffer from deviations
from normality. However, as pointed out in [40], the sample sizes for the two-sample KS
test should be chosen equally if possible, as increasing asymmetry of the sample sizes
leads to higher probability of not rejecting a false null. Therefore, we restrict the training
data set to the subset defined by all values which are in the range of the predicted values
of the test data set. The resulting restricted training data set contains 38 data points.
Consequently, with a confidence level of α = 0.01, the critical value of the KS test statistic,
D, is Dcrit(α = 0.01) = 0.497. Using the scipy implementation of the two-sample KS test,
the value for the KS statistic is D = 0.202 with a p-value of pD = 0.723. The KS test does
not reject the hypothesis of equal distribution functions as D < Dcrit, and the p-value above
the anticipated significance level indicates equality.

We summarize the null hypothesis test-based inspection of the statistical aspects of
the training and test data set in Table 3.

Table 3. Comparison of relevant test statistics for training and testing data sets. For the Kolmogorov–
Smirnov two-sample test, we report the difference of the empirical distribution functions and the
p-value in both columns, as it describes the difference between these two and thus belongs to both
data sets.

Test Statistics Training Data Set Test Data Set

Shapiro–Wilk: (W, p) 0.988, 0.389 0.984, 0.989
Breush–Pagan: (LM, pLM) 10.13, 0.0383 11.35, 0.0229

Kolmogorov–Smirnov: (D, pD) 0.202, 0.723 0.202, 0.723

The model trained on the training data set satisfies the normalcy of the residual
distribution on both data sets as indicated by the Shapiro–Wilk test results. The Breush–
Pagan Test tests the systematic linear deviation from a normal distribution of the residuals.
It shows a p value of 3.83% for the training data set and 2.29% for the test data set, indicating
that homoscedasticity is not fulfilled. However, while the scaled R2 indicated by the value
of the Lagrange parameter LM is about ≈0.08 for the training data set, it is of order 1
for the test data set. For a standard confidence level of α = 0.05, the assumption of
homoscedasticity thus would be rejected, although we see a small value for the squared
coefficient of determination R2 for the training data set.

The Kolmogorov–Smirnov two-sample test shows no rejection of the hypothesis of
equal underlying distribution of training and test data. While we reduced the difference
in sample sizes to take into account the weakness of the KS two-sample test with respect
to sample size differences, this is a qualitative approach that would require extensive
simulation efforts to be developed as a quantitative scheme. Such simulation efforts
are beyond the scope of this article. We note that the KS test statistics are determined
for an alpha level of 0.01 to provide a higher requirement on the probability of a false
rejection here.

Whereas Breush–Pagan and Kolmogorov–Smirnov testing support the transfer learn-
ing approach, the Breush–Pagan test indicates heteroscedasticity especially in the test data
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set. Therefore, to further investigate the similarity of predictions for training and test data
set, the next paragraph provides the results from a Bayesian analysis of the discrepancy of
the residual distributions in both data sets. Combining these results and the results from
the next section provides a better basis to judge whether the introduced pragmatic transfer
learning approach is suitable.

3.3.2. Bayesian Analysis

The formal basis for the comparison of training and test data set is the residual
distribution. If the residual distributions in both data sets are not significantly different, it
is assumed that the transfer of the learned parameter values from the training to the testing
data set is appropriate. To estimate the distributional discrepancies in both data sets via
Bayesian analysis, a sampling distribution has to be chosen. Based on the results presented
below in Figure 8, we choose the t-distribution as we see potential finite size effects due to
the limited sample size. Therefore, the probabilistic character of the model specification
includes not only the mean and standard deviation, as it would in the case of a Gaussian
distribution, but also the normality parameter ν. The normality parameter controls the
strength of the finite size effects in terms of the tail mass in the t-distribution. When ν→ ∞,
the t-distribution becomes identical to a Gaussian distribution.

The first part of the Bayesian analysis of the transferability of trained parameters from
the training to the testing data set includes a probabilistic modelling of both data sets.
Therefore, we perform a Bayesian analysis using the library pymc3 for the characteristics of
the t-distributions that we use to model the residual distribution. The random variables
for the sampling thus include the mean, standard deviation and normality parameter.
Generator distributions are a Gaussian for the mean, a half (positive) Gaussian for the
standard deviation and an exponential distribution for the normality parameter. To reflect
potential finite size effects in the testing data set, we assign one common normality pa-
rameter distribution to the generator samples from both the training and testing data set.
The results from this first step of the analysis are visualised in Figure 8.

In this figure, the distributions approximating the residuals are also evaluated with
respect to the highest posterior density (HPD) regions. It is defined as a credible interval
in Bayesian analysis, i.e., the interval into which an unobserved parameter will fall with a
certain probability. It is the shortest possible interval on the posterior density for the given
probability, in our case 0.94 (for further details, we refer to [41]). As shown in Figure 8, both
residual distributions have a comparably small deviation from zero mean, and the HPDs
have a large overlap, indicating a high probability that any residual mean obtained from
modelling the training sample could also be obtained from modelling the testing sample. In
contrast to that, the means and HPDs of the standard deviation modelling of the residuals
show a relevant discrepancy, which requires attention in the following step.

Finally, for the quantitative part of the Bayesian analysis of transferability, the metric
for effect size of our choice is Cohen’s d; i.e., it is the ratio of the mean shift to the pooled
(symmetrically weighted) standard deviation. Therefore, we consider the distribution of the
mean shift between the training and testing data set residual distribution, the distribution of
the standard deviation shift between the training and testing data set residual distribution,
and the effect size, which is Cohen’s d. With a value of only 0.1, the effect is weak, which
suggests that transferability of the trained model from the training to the testing data set is
indeed appropriate. The results are shown in Figure 9.
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Figure 8. Bayesian assessment of the residuals for the 5 × 5 × 1 + 6 bias ANN layout in the testing
and training data set. The top left panel shows the fitting of the normal distribution of the mean of
the residual of the training data for an underlying t-distribution. The top right panel shows the mean
value normal distribution of the test data residual for an underlying t-distribution. The bottom left
right and bottom right panels present the analogous information for the standard deviation. Note
that the normality factor of the underlying t-distribution has a mean of ν = 13. The shown highest
posterior density (HPD) intervals are fixed to 0.94.

Figure 9. Bayesian assessment of the difference in the underlying generating distributions. In the left
panel, the difference of means shows the distributional discrepancy between the residual distribution
in the training and testing data set. With a mean shift of only 0.061, both the training and test data
sets exhibit only weak deviations from the zero mean assumption for the residual distribution. While
the standard deviation shows a more pronounced difference between the simulated t-distributions on
the training and test data sets (centre panel), the overall effect size is small with a value of 0.1 (right
panel). Note that the choice of the effect size metric corresponds to Cohen’s d, which is a pooled
mean shift relative to the standard deviation.

4. Conclusions

Finding new materials for energy applications is a complex task with many, often
conflicting requirements. Due to the enormous number of elemental combinations, a brute
force approach is usually impossible. Therefore, guidance from modelling approaches,
and more recently in particular machine learning techniques, can be extremely valuable.
One of the challenges for the automatic search for material candidates is typically the
low number of data sets, which can be used to train the models. Due to this limitation,
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an extension towards more general material classes beyond the training data set is usually
a major challenge.

The central motivation of our investigation was therefore the transferability of predic-
tive models between physically similar but distinct data sets. Hence, an ANN was trained
to predict the oxygen vacancy formation energy EO

V of two species doped perovskites
ACoO3 and AFeO3, as a basis for transfer learning towards more complex configurations.
For that, the ANN parameters learned to predict the EO

V from the domain of two-species-
doped perovskites (ACoO3 and AFeO3) were directly transferred and used to predict
the EO

V of four-species-doped perovskites (A1x A21−x (Co,Fe)O3). We find that the MAPE
of the transferred model is less than 10%. Therefore, the transferred model can be used
for screening potential perovskite candidates for SOC application regarding the oxygen
vacancy formation energy. The transferability was validated by statistical analysis on the
residual distributions of both the two-species-doped perovskites (ACoO3 and AFeO3) data
set and the four-species-doped perovskites (A1x A21−x (Co,Fe)O3) data set. For that, classical
null hypothesis testing and Bayesian analysis were performed. As examples of applications,
at first, the transferred model was used to predict the EO

V of A1x A21−x Co0.5Fe0.5O3 systems,
with A1 and A2 being two arbitrary elements from the elements pool. The results show a
nontrivial clustering of low and high EO

V , from which no simple design rules can be derived.
Then, the transferred model was used to predict the EO

V of A10.5A20.5Co0.5Fe0.5O3 systems,
with A1 being a lanthanide host element and A2 a dopant element from the alkaline earth
metals, specifically Mg, Ca, Sr and Ba. It was found that the ionic radius difference between
the host and the dopant elements at the A site has an impact on EO

V . While the reached level
of accuracy may not be sufficient to save final calculations or experiments on promising
perovskite candidate systems, it is satisfactory for screening purposes at a small amount
of computational expense. Especially for complex materials, where a large difference in
computational effort between ab initio simulations and machine learning exists, such a
screening approach can offer a striking advantage, as this allows scanning significantly
larger configurational spaces. Moreover, the approach may unravel the influence of pa-
rameters on the output quantity, for which physical arguments are less obvious. In return,
a purely data-based inspection without the use of physical arguments can hardly lead to
quantitative descriptions for sparse data sets, which are rather common in materials science.
Overall, the developed scheme may therefore be a valuable supporting tool for the search
for novel energy materials with optimized properties.
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