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Abstract: The emission of greenhouse gases and natural-resource depletion caused by the production
of ordinary Portland cement (OPC) have a detrimental effect on the environment. Thus, an alternative
means is required to produce eco-friendly concrete such as geopolymer concrete (GPC). However,
GPC has a complex cementitious matrix and an ambiguous mix design. Aside from that, the
composition and proportions of materials utilized may have an impact on the compressive strength.
Similarly, the use of robust and efficient machine-learning (ML) approaches is now required to
forecast the strength of such a composite cementitious matrix. As a result, this study anticipated the
compressive strength of GPC with waste resources using ensemble and non-ensemble ML algorithms.
This was accomplished through the use of Anaconda (Python). To build a strong ensemble learner by
integrating weak learners, adaptive boosting, random forest (RF), and ensemble learner bagging were
employed. Furthermore, ensemble learners were utilized on non-ensemble or weak learners, such
as decision trees (DT) and support vector machines (SVM) via regression. The data encompassed
156 statistical samples in which nine variables, namely superplasticizer (kg/m3), fly ash (kg/m3),
ground granulated blast-furnace slag (GGBS), temperature (◦C), coarse and fine aggregate (kg/m3),
sodium silicate (Na2SiO3), and sodium hydroxide (NaOH), were chosen to anticipate the results.
Exploring it in depth, twenty sub-models with ensemble boosting and bagging approaches were
trained, and tuning was performed to achieve the highest possible coefficient of determination (R2).
Moreover, cross K-Fold validation analysis and statistical checks were performed via indicators for the
evaluation of the models. The result revealed that ensemble approaches yielded robust performance
compared to non-ensemble algorithms. Generally, an ensemble learner with the RF and bagging
approach on a DT yielded robust performance by achieving a better R2 as 0.93, and with the lowest
statistical errors. The communal model in artificial-intelligence analysis, on average, improved the
accuracy of the model.

Keywords: fly ash; slag; machine-learning; validation; parametric analysis; ensemble approaches

1. Introduction

The emissions of greenhouse gas (GHG) in the environment have caused the melting
of glacier reservoirs, which tremendously contributes to major threats to the globe [1]. The
concrete sector is believed to be the most significant source of greenhouse-gas emissions,
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contributing up to 50% of world emissions [2]. Thus, Portland cement (PC), an essential
component of concrete, significantly contributes to GHG emissions [3]. The production
of PC contributes around 7% to the atmosphere and the environment. Furthermore, the
calcination of calcium oxide (CaO) during the cement-manufacturing process accounts
for 50% of CO2 emissions [4]. Currently, 4000 million tons of PC are produced annually,
with an anticipated of about 6000 million tons by 2060 [5]. These figures show the need for
alternative measures to meet the rising demand for concrete while using fewer resources
and effectively emitting less CO2 [6,7]. Therefore, the utilization of leftover recycled and
waste substances in concrete is one of the proposed scientific and realistic remedies for
reducing its high demand [8–11]. This will not only meet the growing need for concrete,
but it will also reduce the risk to the environment [9]. In this regard, fly ash (FA) and
GGBS as natural pozzolanic materials can be effectively used as supplemental cementitious
materials in the construction sector [12–15]. Thus, their use in the building sector could
reduce the environmental consequences associated with the manufacturing and usage of
cement in the building industry. Moreover, the addition of these materials with alkaline
solvents such as Sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) produces viable
and eco-friendly environmental concrete such as geopolymer concrete (GPC) [16–19]. The
amorphous gel form of GPC possesses many outstanding and attractive characteristics,
including resistance to sulfate attack, acid resistance, enhanced durability, fire resistance,
and an undoubtedly greater compressive strength than conventional concrete [12,20–23].
Likewise, their use in the construction industry can extensively lessen CO2 emissions in
the atmosphere [24]. Moreover, the difference between ordinary Portland cement (OPC)
and GPC is illustrated in Table 1. Studies have revealed that the chemical and physical
properties of the matrix have a major influence on the strength of GPC. Thus, the fly-ash-
to-NaOH ratio, Na2SiO3-to-NaOH ratio, workability, fly-ash-to-sand ratio, molarity, and
alkaline ratio affect the strength of concrete [25–27]. Ukritnukun et al. [28] observed that
the blast-furnace slag concentration, curing temperature, and silicate modulus all had a
beneficial effect. Additionally, Asghar et al. [29] determined the ideal molar ratios of Ca/Si
(calcium oxide/silica) and (Na + K)/Si ((sodium + potassium)/silica), as well as the ideal
volume ratio (H2O/solid)vol for increasing the strength properties of GPC. Songpiriyakij
et al. [30] found that a Si-to-Al ratio of 15.9 resulted in the formation of GPC with the
relatively high compressive strength of 73 MPa. Puertas et al. [31] examined the strength
and growth characteristics of fly-ash/slag-paste-hydration products. After 28 days of
curing at 25 ◦C, they reported that the mechanical properties of the mix with a fly-ash/slag
ratio of 1.0 that was cured at 25 ◦C and stimulated with a 10 M NaOH solution exceeded
50 MPa. Moreover, according to Rai et al. [31], the cumulative effect of NaOH molarity,
curing temperature, and activator-to-binder ratio directly impacts the initial compressive
strength, while the NaOH/Na2SiO3 ratio is not statically important, and the target strength
can be attained more quickly at high temperatures than at room temperatures.

Table 1. Comparison of GPC with OPC.

Attributes GPC OPC Summary References

Tensile strength Greater Lower
GPC has higher strength due to presence of
aluminosilicate, activators and types of
activators that enhance the strength at early age.

[32]

Acid attack More resistance Less resistance
Presence of aluminosilicate, activators and
types of activators show enhanced resistance
to acidic attack

[33]

Durability More resistance Less resistance
Presence of aluminosilicate, activators and
types of activators show enhanced resistance
to acidic attack

[34]
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Table 1. Cont.

Attributes GPC OPC Summary References

Compressive strength Higher Lower Same factors as tensile strength [35]

Porosity Significantly less Moderate
Internal geopolymeric structure and presence
of aluminosilicate, activators and types of
activators influence GPC porosity.

[36]

Fire resistance Significantly higher Limited
GPC concrete is more resistant to
deterioration caused by high temperatures as
compared to OPC.

[37]

CO2 emission Lower Higher Utilization of waste materials shows lesser
CO2 as compared to OPC [38]

To make GPC, pozzolanic materials with binding properties are polymerized at high
temperatures in an alkaline medium [39]. As a result, a crystalline and amorphous com-
pound is formed, which can be used to achieve the desired mechanical properties [39].
However, the high demand for heat curing in the production of a geopolymerization com-
pound is not recommended for in-field application. Due to the high heat demand of curing,
this will limit the use of FA-GPC in the construction domain [40]. Thus, heat demand can
be reduced by using a slag blend with a high concentration of calcium, silica, and alumina.
The use of the GGBS slag blend in conjunction with FA gives a dense microstructure with
hydrated and polymerization products that significantly improve the early age strength
of GPC. Yazdi et al. [41] examined the outcome of GPC by varying the dosage of FA with
GGBS. The author showed that replacing FA with GGBS results in a significant increase
in compressive and flexural strength of 100 MPa and 10 MPa, respectively. Furthermore,
Fang et al. [40] studied the varying dosage of slag content on the flexural and split ten-
sile strength of FA-GPC. The author revealed a higher strength due to the formation of
C-A-S-H gel and N-A-S-H. This ultimately speed up the reaction process of GPC [40]. The
compressive strength of concrete is typically evaluated by conducting physical tests. In
general, concrete specimens that are cubical and cylindrical in shape are produced by
using precise mixture ratios and curing with water for approximately 28 days to yield
the hydrated products [42]. Afterwards, the compressive strength is determined using a
compression-testing machine. This approach is common in the execution of work in the
field and laboratory, yet it is inefficient and time-consuming. Rather than using standard
experimental procedures to determine the compressive strength of concrete, empirical
regression methodologies are preferable for estimating the strength of concrete [43]. On the
other hand, the literature reveals that the chemical composition and physical proportions
of variables have a significant impact on the GPC [44]. Moreover, heterogeneity exists in
the production of GPC as a result of the variety of parameters involved. While various
algorithms and methods based on statistical approaches are capable of evaluating the
compressive nature of GPC, the relationship between factors and mechanical strength is
not well understood. Thus, machine-learning (ML) approaches may now be used to predict
the compressive strength of concrete, thanks to recent advances in artificial-intelligence
algorithms [45–52]. The evolution of the advanced prediction algorithms could be used
for a variety of purposes, such as regression, classification, and clustering of data [53].
Estimating the compressive loading capacity of concrete is just one application of the
ML regression function. The ML methodology, in contrast to prior regression methods,
delivers very precise results [54,55]. The discovery of artificial-intelligence algorithms
such as genetic engineering programming (GEP), support vector machine (SVM), artificial
neural network (ANN), and ensemble approaches has enabled researchers to address tough
problems [56–61].

This research will investigate the effect of network- and tree-based models for predic-
tion by employing boosting, AdaBoost (bagging), and utilizing modified bagging random
forest (RF). Unlike previous research, this study does not exclusively depend on ensemble
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techniques, but also discusses the tree- and network-based studies on ensemble learning.
Second, this study is based on modeling of ensembles over individual models in order
to anticipate the compressive behavior of GPC using secondary raw materials. To the
authors’ knowledge, no work similar to ensemble ML models for GPC has been employed.
Furthermore, this modeling was carried out in Anaconda navigator version 1.9.12 with
Python version 3.7.

2. Database Presentation Using Python

For the representation of the database, the Anaconda-based Python programming
(version 3.7) was utilized from the published literature (Table S1) [62–72]. The data were
gathered from the accessible literature and comprise nine parameters, namely as fly ash
(kg/m3), alkaline activator (kg/m3), aggregate (kg/m3), GGBS (kg/m3), NaOH molarity,
SP dosage (kg/m3), curing temperature (◦C) and an output parameter of compressive
strength as illustrated in Figure 1. Every parameter that was chosen had a significant
impact on the strength qualities of fly-ash-slag-based concrete. Moreover, the Python
programming language was used to find the link between these variables and concrete
compressive strength. Additionally, the influential variables in forecasting the mechanical
strength were evaluated through the use of permutation features. Furthermore, Table 2
illustrates the variable range values with maxima and minima based on the 156 data points,
while Table 3 displays the results of the statistical-analysis check, which includes the mean,
the count, and the standard deviation. The parameters used in making the models have a
substantial influence on the model’s robustness. Seaborn, a command in Python, is used to
employ machine learning (ML) and to depict the correlation between two variables.

Table 2. Contribution of parameters with ranges.

Variables Used Acronym Minima Maxima

Input variables

Fly ash FA 0 400

Fine aggregate FIA 547 810.6

Ground granulated blast furnace slag GGBS 0 409

Coarse aggregate CAA 966 1293

Sodium hydroxide NaOH 9 143.3

Sodium silicate Na2SiO3 54 192.9

Super plasticizer SP 0 180

Temperature T ◦C 0 60

Output

Compressive strength fc’ 10.5 89.6
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Figure 1. Frequency distribution of input and output parameters.

Table 3. Descriptive data of parameters.

Statistical Description FA GGBS Fine Coarse NaOH Na2SiO3 SP NaOH Temp.

Mean 252.5 151.4 729.8 1096.0 60.5 123.0 77.6 8.6 28.1

Standard Error 6.9 6.9 5.4 9.4 2.1 2.9 6.5 0.3 1.6

Median 270.0 135.0 760.5 1090.8 57.1 115.7 7.9 8.0 25.0

Mode 303.8 101.3 774.0 1090.8 81.0 81.0 0.0 8.0 30.0

Standard Deviation 86.3 86.7 68.0 117.9 26.8 35.7 81.0 3.9 20.6

Sample Variance 7442.7 7522.7 4620.5 13,889.3 720.4 1275.1 6558.3 15.2 422.4

Kurtosis 2.5 2.2 0.0 −1.5 3.0 −0.9 −1.9 0.2 −0.9

Skewness −1.4 1.3 −0.8 0.3 1.2 0.1 0.2 −0.5 0.3

Range 400.0 409.0 263.6 327.0 134.3 138.9 180.0 16.0 60.0

Minimum 0.0 0.0 547.0 966.0 9.0 54.0 0.0 0.0 0.0

Maximum 400.0 409.0 810.6 1293.0 143.3 192.9 180.0 16.0 60.0

Sum 39,384.5 23,624.5 113,849.2 170,980.4 9432.3 19,185.4 12,100.6 1336.0 4380.0

Count 156.0 156.0 156.0 156.0 156.0 156.0 156.0 156.0 156.0
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3. Methods

ML technologies are now being used in a wide range of industries to anticipate and
understand the nature of various constituents. In this study, ML-based methods such as
SVM, the decision tree (DT), RF, and multiple linear regressions (MLR), were utilized to
estimate the compressive strength of GPC. These methods were chosen for their popularity,
robustness in predicting outcomes, and were recognized as the top evaluated algorithms.
Furthermore, the ensemble model with weak learners was utilized to model the strength
of GPC utilizing AdaBoost and bagging. Moreover, Figure 2 depicts the entire systematic
diagram of the individual and ensemble learning approach.
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Figure 2. Flow diagram of models used in this research.

3.1. Decision Tree

This is a supervised ML approach that creates a tree-like model from training data
using the DT. It is similar to a schematic flow in that each of the vertices reflects a test
of a characteristic and that each route reflects the result of the test o that feature. It is
referred to as a DT due to the fact that its form is comparable to that of a tree. This is
accomplished through the use of partitions in predictors, which allows the target variables
to be based primarily on divisions between the input parameters. Due to the fact that the
regression tree automatically picks values, the educated regression tree presents parameters
that are much more relevant to anticipate target variables from the preceding tree node
than variables, which are less important to predict target variables. Because the specified
dataset has no classifications, a regression model is fitted to the target variable using the
independent variables. Every variable has several sites of division. The technique compares
the predicted and actual numbers for each division point. The split point errors for all
variables are summed, and the variable with the fitness function’s fewest values is chosen
as the split point. This process is repeated.

3.2. Random Forest

The RF approach is both a regression and a cataloging approach, and it has been the
subject of the majority of the research work. Breiman invented RF regression in 2001, and it
is widely regarded as an improvement over traditional classification regression methods.
It is reported that the key advantages of RF are its flexibility and speed in building input–
output relationships. The main difference between DT and RF is that DT only builds one
tree whereas RF builds a forest of trees where dissimilar data are randomly picked and
given to each tree. The data are organized into rows and columns for each model tree,
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with different sizes of columns and rows being used for different trees. Moreover, the
development of every tree is carried out in the sequence of phases shown below.

1. Approximately two-thirds of the entire dataset is picked at random for each forest and
is symbolized by the data frame, a process known as bagging. In order to discover the
optimum node-splitting technique, the predictor parameters are chosen at random.

2. Out-of-bag error is assessed for all of the trees based on the data that are available.
Then, the mistakes from each tree are added together in order to yield the final output
for each tree.

3. Each tree provides a statistical analysis based on regression, and the algorithm chooses
the forest that receives the greatest number of votes. The votes might be 0 or 1. The
fraction of 1 s is a prediction probability.

3.3. Support Vector Regression

Vapnik is considered to be the originator of SVM, which was initially utilized in the
year 1995. It is now frequently used for classification, prediction, and regression. Because
SVMs can effectively handle nonlinear regression problems, they are commonly utilized in
input–output analysis. This is accomplished by applying a static diagraming strategy to the
SVM analysis data in order to map them into n-dimensional function space. After that, the
nonlinear activation operations are employed to match the substantially high-dimensioned
space in which the information on the input parameters is more distinct from the original
data, leading to a much more precise match. The linear function in space is denoted by the
symbol f (x, w), which may be written as follows:

f (x, w) = ∑n
j=1 wjgj(x) + b (1)

where, ‘b’, ‘gj(x)’, and ‘w’ denote the nonlinear bias term, input space, and weight vec-
tor transformations determined by enhancing the normalized risk function, respectively.
Assessment quality is also calculated by a loss function Lε, where Lε can be given as follows.

Lε = Lε(y, f (x, w)) =

{
0

|y− f (x, w)|
i f |y− f (x, w) ≤ ε

otherwise
(2)

SVM regression is unique in that it uses an ε-insensitive loss function to compute a
linear regression function for the additional higher-dimensional space while minimizing
model complexity ||w||2. This job is proven by non-negative slack variables ξi + ξi

*, where
I = 1, . . . , n is used to find models from the π-insensitive field. Thus, the SVM regression
can be built by streamlining the function as follows:

min
1
2
||w||2 + C ∑n

i=1(ξi + ξ∗i ) (3)

subject to


yi − f (xi, w) ≤ ε + ξ∗i
f (xi, w)− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, . . . , n

(4)

This optimization issue may be turned into a dual situation that can be resolved by

f (x) = ∑nsv
i=1(αi + α∗i )K(x, xi) subject to 0 ≤ α∗i ≤ C, 0 ≤ αi ≤ C (5)

where nSV is the quantity of provision vectors. The kernel function is

K(x, xi) = ∑m
i=1(gi(x) + gi(xi)) (6)

During the training process, selected SVM kernel functions such as the linear, radial
basis, polynomial, and sigmoid functions are used to determine support vectors along the
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function surface of the function surface. The kernel settings are influenced by the type of
kernel used and the software that is implemented.

3.4. Boosting and Bagging Ensemble Approaches

Ensemble techniques are used to improve ML recognition and prediction accuracy. By
integrating and aggregating numerous weaker prediction models, these methods generally
assist in alleviating over-fitting issues (component sub-models). It is possible to make a
smarter learner by intelligently altering training data and constructing several sub-models
(A, B, . . . , N). Furthermore, the ideal model may be made by merging prominent sub-
models using voting and averaging combination measures to reach the best possible result,
as illustrated in Figure 3. Bagging is among the most widely used ensemble modeling
techniques, which uses the bootstrap resampling method to gather data and calculate
benefits. During the bagging procedure, the first training set substitutes partial models
from the actual model. A few data samples can appear in multiple models, whilst some
do not appear at all in any product models. The final model outcome is then calculated by
taking an average of the outputs from all of the component models.

The boosting process, like the bagging technique, generates a cumulative model that
results in the construction of a number of components that are more precise than non-
ensemble models. Additionally, boosting is the process of using weighted averages by
relying on sub-models to determine where it should be included in the finalized model.
Based on individual learners such as SVM, DT, and RT, this study predicts the strength of
GPC using boosting and bagging techniques.

There are two types of tuning parameters utilized in communal (ensemble) algorithms:
(i) parameters that are connected with the perfect amount of model learners, and (ii) learning
rates. The boosting and bagging algorithms with twenty ensemble models were made from
the individual base learner and the best model constructs were picked based on strong
correlation coefficient values, as shown in Figure 3 and Table 4. It can be seen that the DT
with AdaBoost and bagging with N = 5 and 9 yields an R2 of 0.92. Moreover, support vector
regression (SVR) shows a similar trend with an estimator of 4 and 12 yielding a strong
correlation of about 0.90 and 0.93, respectively.

Table 4. N-estimator response of models.

Technique Used Ensemble
Approaches Machine-Learning Methods Ensemble Models Optimum Estimator R2-Value

Individual - DT - - 0.7623
- SVR - - 0.7923

Ensemble Bagging DT - Bagging (10,20,30 . . . .200) 09 0.9206
SVR - Bagging (10,20,30 . . . .200) 12 0.9300

Ensemble Boosting DT - AdaBoost (10,20,30 . . . .200) 05 0.9257
SVR - AdaBoost (10,20,30 . . . .200) 04 0.9005

Modified learner RF (10,20,30 . . . .200) 10 0.9388
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4. Model Assessment Using Statistical Measures

The robustness of the model is evaluated by statistical checks in the form of error
measures for individual and ensemble models are presented from Equations (7) and (8)

MAE =
1
n ∑n

i=1|xi − x| (7)

RMSE =

√√√√
∑

(
ypred − yre f

)2

N
(8)

5. Result

A linear regression model for predicting GPC with variable influences is illustrated
in Figure 4. It should be noted that the Python-based approach has a strong correlation in
the prediction of strength, as demonstrated in Figure 4a. However, this approach shows
a lesser correlation in prediction with R2 = 0.637. In addition, the difference between the
prediction and target in terms of its absolute-error distribution is illustrated in Figure 4b,
showing that the majority of the predicted outcomes depict greater error with 17.87 MPa
(maximum), 0.29 MPa (minimum), and 7.69 MPa (average) absolute error, specifying that
the data set of the model is biased. It shows that linear regression may be used to anticipate
non-linear analysis results to a limited extent. Although, the MLR model cannot be used
for non-linear analysis outcomes that have the strongest correlation to their outcome.
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5.1. Decision Tree

The supervised and nonlinear regression model with a DT provided a soundly favor-
able prediction outcome, as depicted in Figure 5. In addition, the DT was modeled using
several ensemble methods, such as bagging and boosting, as depicted in Figure 5. It can
be seen in Figure 5a that the DT as an individual algorithm produces a good relationship
with R2 = 0.76. Moreover, the performance of the model can also be assessed by its absolute
error, as demonstrated in Figure 5b. However, the model accuracy and outcome prediction
can also be evolved by using ensemble approaches due to its performances and robustness.
In addition, adding a boosting regressor to the weak or individual learner shows a positive
correlation with R2 = 0.92, as depicted in Figure 5c, with its reduced error distribution in
Figure 5d. The bagging model illustrates a good R2 = 0.92 with average errors of 15.78 MPa
(lesser maximum), 0.26 MPa (minimum), and 3.22 MPa compared to MLR, as shown in
Figure 5e,f. Although, the same individual model was modeled with AdaBoost regressor,
showing a clear significant enhancement of the model. Moreover, the efficiency of the
model can also be judged by its absolute errors, as depicted in Figure 5g. Its shows that the
model performance is significantly enhanced as compared to the MLR model.
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5.2. Support Vector Regression

ML with SVR was carried out to predict the mechanical properties of GPC, as shown
in Figure 6. The predicted outcome with experimental data points as individual regression
models depicts a strong relationship with R2= 0.79 due to its obstinate generalization
capacity in making a robust performance, as shown in Figure 6a. Similarly, to the DT,
SVR model accuracy can also be evaluated by its absolute-error distributions, as depicted
in Figure 6b. It shows that the overall results of the predicted outcome lie close to the
experimental values with minor data lying as outliers, but it does not devalue the accuracy
of the model. In addition, in terms of statistical measures, SVM models show reduced
average errors of about 5.69 MPa as compared to MLR (7.69 MPa). Likewise, the SVM
model is ensembled and thus shows significant enhancements as depicted in Figure 6c,e
with R2 = 0.90 and R2 = 0.93, respectively. Figure 6c,d represent the regression analysis
of the boosting algorithm with its error distribution, showing that the boosting algorithm
has an obstinate effect on forecasting the properties of concrete. Overall, the efficiency of
the model can also be evaluated by its maximum (13.97 MPa), minimum (0.19 MPa), and
average errors (4.14 MPa), and it is reported as a minimum compared to MLR. In addition,
the bagging algorithm shows a similar trend by yielding a reasonable model with R2= 0.93
and its error distribution of 9.92 MPa (maximum), 0.08 MPa (minimum), and 3.76 MPa
(average), as illustrated in Figure 6e,f. The overall comparison between SVR and bagging
and boosting in terms of their absolute errors is shown in Figure 6g. The model with SVR
demonstrates a significant and accurate prediction due to the strong learner in the model.
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5.3. Random Forest

The RF algorithm is a type of ensemble ML approach that incorporates the bagging
method and random-feature-selection procedure to yield a predictive model. The predictive
performance between the target and experimental results is depicted in Figure 7. The model
illustrates a well-defined correlation with R2= 0.938 and is also assessed by its absolute
error distributions as illustrated in Figure 7b. It can be seen that the RF-based model gives
a lesser difference between prediction and experimental values with maximum, minimum,
and average errors of about 10.54 MPa, 0.08 MPa and 3.217 MPa, respectively. Similarly,
the forecasted results show that the influence of the strong learner in prediction is far better
than individual approaches.
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5.4. Cross-Validation Results

In order to assess a model, it must have the desired level of accuracy. To assure the
accuracy of prediction models, it is necessary to perform this validation. The validation of
this model was performed by using a ten-fold validation, as illustrated in Figure 8. This
strategy is intended to limit the degree of bias involved in selecting the training data set at
random during the training process throughout the training phase. It divides the data that
are used to make the model into ten equal sections.

It uses nine out of ten subsets to design the robust learner and one set to authenticate
the model. This approach yields an average error accuracy and is evaluated through statisti-
cal errors. The ten-fold cross-validation approach is said to demonstrate the generalization
and dependability of the model performance, as demonstrated in Figure 8. The DT model
with the ensemble approach via AdaBoost and bagging depicts good ten-fold R2 values
with an average values of R2 = 0.89 and 0.879 for the AdaBoost and bagging approaches,
as illustrated in Figure 8a. Similarly, the model shows a significant validation response by
showing lesser RMSE and MAE errors with 8.99 MPa and 10.65 MPa for both ensemble
models, respectively, as shown in Figure 8b,c. Moreover, the validation response via the
SVR model in terms of R2 shows an average error of 0.89 and 0.86 for the tenth k series
for both models, as illustrated in Figure 8d. This depicts a strong accuracy of the models
towards predictions. Likewise, the validation response in term of RMSE and MAE for
the SVR model demonstrate the same response as for DT by showing lesser errors, as
illustrated in Figure 8e,f. Additionally, the RF model depicts a comparable response to
DT and SVR by adamantly representing a positive R2 relation with predicted values and
showing lesser errors.

5.5. Statistical Analysis of Models

The evaluation of the models is also performed by conducting statistical measures.
Apart from R2, the statistical check is significantly useful in the assessment of any model by
measuring the numerical values, as depicted in Table 5. It can be seen that the individual
model yields an MAE error of about 7.69 MPa, which is more than the ensemble models. DT
with AdaBoost and bagging yields 53.3% and 58.12% more accurate models as compared
to the individual. Similarly, RMSE and MSE show the similar response for the DT model.
The SVR model shows that the ensemble model increases the efficiency of the models by
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27.24%, 49.51%, and 28.99% for the AdaBoost model and by 33.92%, 60.8%, and 37.4% for
the bagging model due to the incorporation of the weak learner in the making of a resilient
model. Likewise, the RF model demonstrates a more efficient prediction model due to its
lesser errors, as illustrated in Figure 7.
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Table 5. Statistical analysis.

Approaches Use ML Methods MAE MSE RMSE

Individual learner DT 7.69 63.20 7.95
SVR 5.69 55.20 7.43

Ensembling with AdaBoost DT 3.59 20.70 4.55
SVR 4.14 27.87 5.28

Ensembling with bagging DT 3.22 21.52 4.64
SVR 3.76 21.62 4.65

Ensemble model RF 3.21 16.89 4.11

5.6. Permutation Features Analysis of Variables in Geopolymer Concrete

The permutation analysis depicts the influence of each variable on the target strength
of GPC, and was conducted through the spyder notebook by using Python language in
Anaconda software, as illustrated in Figure 9. The analysis results reveal that the GGBS, FA,
and temperature (◦C) have a significant effect on the strength of GPC due to the occurrence
of major SiO2, Al2O3, and CaO in the amorphous state [73–75]. Additionally, the presence
of GGBS in concrete gives rise to binding phenomena in the presence of the alkaline
medium. Moreover, when GGBS is combined with FA in an alkaline medium, it gives rise
to additional calcium content that is responsible for the enhanced mechanical properties.
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6. Conclusions

The aim of this research was to anticipate the strength of GPC using the individual
and ensemble ML approaches. For prediction, two individual approaches, DT and SVR,
and three ensemble techniques, bagging, AdaBoost, and RF regression were used, and the
following conclusions are drawn from the analysis.

1. The DT as an individual approach yields a positive outcome with R2 = 0.76. Neverthe-
less, the ensemble approaches with bagging and boosting depict precise results with
R2 = 0.92. These indications make it clear that the ensemble approach yields positive
results due to its weak-learner incorporation.

2. SVR shows a similar response with ensemble approaches as compared to the individ-
ual approach. Moreover, the SVR model shows superior performance by depicting
a good coefficient of determination with R2 = 0.90 for boosting and R2= 0.93 for
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bagging. Similarly, RFR yields better performance with R2 = 0.93 for the testing
set. This shows that the ensemble model yields robust performance as compared to
non-ensemble approaches.

3. Cross-validation of the test set reveals lesser MAE, RMSE errors, and good average
correlations of R2 for the DT, SVR, and RF, indicating the accuracy of the model.
Statistical-analysis results reveal lesser error for MAE, RMSE and MSE as compared
to individual approaches.

4. The RF and SVR with bagging were superior to individual and ensemble approaches
by showing R2 = 0.93.

5. Permutation analysis of variables shows that FA, GGBS, and temperature have a major
influence on the strength of GPC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15103478/s1, Table S1: Parameters selected based on the literature
review and the published data used in the prediction of fly ash slag-based concrete [62–72].
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